Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.196
Filtrar
1.
Microb Ecol ; 87(1): 63, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691135

RESUMEN

Bacterial azoreductases are enzymes that catalyze the reduction of ingested or industrial azo dyes. Although azoreductase genes have been well identified and characterized, the regulation of their expression has not been systematically investigated. To determine how different factors affect the expression of azoR, we extracted and analyzed transcriptional data from the Gene Expression Omnibus (GEO) resource, then confirmed computational predictions by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results showed that azoR expression was lower with higher glucose concentration, agitation speed, and incubation temperature, but higher at higher culture densities. Co-expression and clustering analysis indicated ten genes with similar expression patterns to azoR: melA, tpx, yhbW, yciK, fdnG, fpr, nfsA, nfsB, rutF, and chrR (yieF). In parallel, constructing a random transposon library in E. coli K-12 and screening 4320 of its colonies for altered methyl red (MR)-decolorizing activity identified another set of seven genes potentially involved in azoR regulation. Among these genes, arsC, relA, plsY, and trmM were confirmed as potential azoR regulators based on the phenotypic decolorization activity of their transposon mutants, and the expression of arsC and relA was confirmed, by qRT-PCR, to significantly increase in E. coli K-12 in response to different MR concentrations. Finally, the significant decrease in azoR transcription upon transposon insertion in arsC and relA (as compared to its expression in wild-type E. coli) suggests their probable involvement in azoR regulation. In conclusion, combining in silico analysis and random transposon mutagenesis suggested a set of potential regulators of azoR in E. coli.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Nitrorreductasas , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Mutagénesis , Genoma Bacteriano , Biología Computacional , Mutagénesis Insercional
2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673999

RESUMEN

E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO2 and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO2 increases with their electron affinity (single-electron reduction potential, E17) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on E17, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO2 reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Nitrorreductasas , Oxidación-Reducción , Profármacos , Nitrorreductasas/metabolismo , Nitrorreductasas/química , Nitrorreductasas/genética , Profármacos/química , Profármacos/metabolismo , Especificidad por Sustrato , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Potenciometría , Catálisis , Simulación del Acoplamiento Molecular
3.
Talanta ; 274: 125976, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579417

RESUMEN

Hypoxia is commonly regarded as a typical feature of solid tumors, which originates from the insufficient supply of oxygen. Herein, the development of an efficient method for assessing hypoxia levels in tumors is strongly desirable. Nitroreductase (NTR) is an overexpressed reductase in the solid tumors, has been served as a potential biomarker to evaluate the degrees of hypoxia. In this work, we elaborately synthesized a new near-infrared (NIR) fluorescence probe (MR) to monitor NTR activity for assessment of hypoxia levels in living cells and in tumors. Upon exposure of NTR, the nitro-unit of MR could be selectively reduced to amino-moiety with the help of nicotinamide adenine dinucleotide. Moreover, the obtained fluorophore emitted a prominent NIR fluorescence, because it possessed a classical "push-pull" structure. The MR displayed several distinguished characters toward NTR, including intense NIR fluorescent signals, large Stokes shift, high selectivity and low limit of detection (46 ng/mL). Furthermore, cellular confocal fluorescence imaging results validated that the MR had potential of detecting NTR levels in hypoxic cells. Significantly, using the MR, the elevated of NTR levels were successfully visualized in the tumor-bearing mouse models. Therefore, this detecting platform based on this probe may be tactfully constructed for monitoring the variations of NTR and estimating the degrees of hypoxia in tumors.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Nitrorreductasas/metabolismo , Nitrorreductasas/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Ratones , Humanos , Imagen Óptica/métodos , Rayos Infrarrojos , Ratones Desnudos , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo
4.
Biomaterials ; 308: 122565, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38603823

RESUMEN

As bacterial keratitis progresses rapidly, prompt intervention is necessary. Current diagnostic processes are time-consuming and invasive, leading to improper antibiotics for treatment. Therefore, innovative strategies for diagnosing and treating bacterial keratitis are urgently needed. In this study, Cu2-xSe@BSA@NTRP nanoparticles were developed by loading nitroreductase-responsive probes (NTRPs) onto Cu2-xSe@BSA. These nanoparticles exhibited integrated fluorescence imaging and antibacterial capabilities. In vitro and in vivo experiments showed that the nanoparticles produced responsive fluorescence signals in bacteria within 30 min due to an interaction between the released NTRP and bacterial endogenous nitroreductase (NTR). When combined with low-temperature photothermal therapy (PTT), the nanoparticles effectively eliminated E. coli and S. aureus, achieved antibacterial efficacy above 95% and facilitated the re-epithelialization process at the corneal wound site in vivo. Overall, the Cu2-xSe@BSA@NTRP nanoparticles demonstrated potential for rapid, noninvasive in situ diagnosis, treatment, and visualization assessment of therapy effectiveness in bacterial keratitis.


Asunto(s)
Antibacterianos , Escherichia coli , Queratitis , Nanopartículas , Nitrorreductasas , Animales , Nitrorreductasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Nanopartículas/química , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Escherichia coli/efectos de los fármacos , Imagen Óptica/métodos , Staphylococcus aureus/efectos de los fármacos , Ratones , Terapia Fototérmica/métodos , Humanos , Cobre/química
5.
World J Microbiol Biotechnol ; 40(5): 151, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553582

RESUMEN

The ubiquity of hexavalent chromium (Cr(VI)) from industrial activities poses a critical environmental threat due to its persistence, toxicity and mutagenic potential. Traditional physico-chemical methods for its removal often entail significant environmental drawbacks. Recent advancements in remediation strategies have emphasized nano and bioremediation techniques as promising avenues for cost-effective and efficient Cr(VI) mitigation. Bioremediation harnesses the capabilities of biological agents like microorganisms, and algae to mitigate heavy metal contamination, while nano-remediation employs nanoparticles for adsorption purposes. Various microorganisms, including E. coli, Byssochlamys sp., Pannonibacter phragmitetus, Bacillus, Aspergillus, Trichoderma, Fusarium, and Chlorella utilize bioreduction, biotransformation, biosorption and bioaccumulation mechanisms to convert Cr(VI) to Cr(III). Their adaptability to different environments and integration with nanomaterials enhance microbial activity, offering eco-friendly solutions. The study provides a brief overview of metabolic pathways involved in Cr(VI) bioreduction facilitated by diverse microbial species. Nitroreductase and chromate reductase enzymes play key roles in nitrogen and chromium removal, with nitroreductase requiring nitrate and NADPH/NADH, while the chromium reductase pathway relies solely on NADPH/NADH. This review investigates the various anthropogenic activities contributing to Cr(VI) emissions and evaluates the efficacy of conventional, nano-remediation, and bioremediation approaches in curbing Cr(VI) concentrations. Additionally, it scrutinizes the mechanisms underlying nano-remediation techniques for a deeper understanding of the remediation process. It identifies research gaps and offers insights into future directions aimed at enhancing the real-time applicability of bioremediation methods for mitigating with Cr(VI) pollution and pave the way for sustainable remediation solutions.


Asunto(s)
Chlorella , Escherichia coli , Escherichia coli/metabolismo , Chlorella/metabolismo , NAD , NADP , Cromo/toxicidad , Biodegradación Ambiental , Nitrorreductasas
6.
Acta Parasitol ; 69(1): 1073-1077, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38499920

RESUMEN

PURPOSE: Investigating the genetic variation in thioredoxin reductase (TrxR) and nitroreductase (NR) genes in both treatment-resistant and -sensitive Giardia duodenalis isolates can provide valuable information in identifying potential markers of resistance to metronidazole. The rapid increase in metronidazole treatment failures suggests the presence of genetic resistance mechanisms. By analyzing these genes, researchers can gain insights into the efficacy of metronidazole against G. duodenalis and potentially develop alternative treatment strategies. In this regard, four G. duodenalis isolates (two clinically sensitive and two clinically resistant to metronidazole) were collected from various hospitals of Shiraz, southwestern Iran. METHODS: Parasitological methods including sucrose flotation and microscopy were employed for the primary confirmation of G. duodenalis cysts in stool samples. Microscopy-positive samples were approved by SSU-PCR amplification of the parasite DNA. All four positive G. duodenalis specimens at SSU-PCR were afterward analyzed utilizing designed primers based on important metronidazole metabolism genes including TrxR, NR1, and NR2. RESULTS: Unlike TrxR gene, the results of NR1 and NR2 genes showed that there are non-synonymous variations between sequences of treatment-sensitive and -resistant samples compared to reference sequences. Furthermore, the outcomes of molecular docking revealed that there is an interaction between the protein sequence and spatial shape of treatment-resistant samples and metronidazole in the position of serine amino acid based on the NR1 gene. CONCLUSION: This issue can be one of the possible factors involved in the resistance of Giardia parasites to metronidazole. To reach more accurate results, a large sample size along with simulation and advanced molecular dynamics investigations are needed.


Asunto(s)
Antiprotozoarios , Resistencia a Medicamentos , Variación Genética , Giardia lamblia , Giardiasis , Metronidazol , Nitrorreductasas , Reacción en Cadena de la Polimerasa , Metronidazol/farmacología , Giardia lamblia/genética , Giardia lamblia/efectos de los fármacos , Giardiasis/parasitología , Giardiasis/tratamiento farmacológico , Humanos , Resistencia a Medicamentos/genética , Antiprotozoarios/farmacología , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Irán , Heces/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Simulación del Acoplamiento Molecular , ADN Protozoario/genética
7.
J Air Waste Manag Assoc ; 74(5): 335-344, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38407923

RESUMEN

Azo dyes, when released untreated in the environment, cause detrimental effects on flora and fauna. Azoreductases are enzymes capable of cleaving commercially used azo dyes, sometimes in less toxic by-products which can be further degraded via synergistic microbial cometabolism. In this study, azoreductases encoded by FMN1 and FMN2 genes were screened from metagenome shotgun sequences generated from the samples of textile dye industries' effluents, cloned, expressed, and evaluated for their azo dye decolorization efficacy. At pH 7 and 45°C temperature, both recombinant enzymes FMN1 and FMN2 were able to decolorize methyl red at 20 and 100 ppm concentrations, respectively. FMN2 was found to be more efficient in decolorization/degradation of methyl red than FMN1. This study offers valuable insights into the possible application of azoreductases to reduce the environmental damage caused by azo dyes, with the hope of contributing to sustainable and eco-friendly practices for the environment management. This enzymatic approach offers a promising solution for the bioremediation of textile industrial effluents. However, the study acknowledges the need for further process optimization to enhance the efficacy of these enzymes in large-scale applications.Implications: The study underscores the environmental hazards associated with untreated release of azo dyes into the environment and emphasizes the potential of azoreductases, specifically those encoded by FMN1 and FMN2 genes, to mitigate the detrimental effects. The study emphasizes the ongoing commitment to refining and advancing the enzymatic approach for the bioremediation of azo dye-containing effluents, marking a positive stride toward more sustainable industrial practices.


Asunto(s)
Clonación Molecular , Residuos Industriales , Nitrorreductasas , Industria Textil , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Mononucleótido de Flavina/metabolismo , Compuestos Azo/metabolismo , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Colorantes/metabolismo , Metagenómica/métodos
8.
Anal Chem ; 96(4): 1774-1780, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38230524

RESUMEN

In this paper, we demonstrate the existence of an endogenous mitochondrial azoreductase (AzoR) activity that can induce the cleavage of N═N double bonds of azobenzene compounds under normoxic conditions. To this end, 100% OFF-ON azo-based fluorogenic probes derived from 4-amino-1,8-naphthalimide fluorophores were synthesized and evaluated. The in vitro study conducted with other endogenous reducing agents of the cell, including reductases, demonstrated both the efficacy and the selectivity of the probe for AzoR. Confocal experiments with the probe revealed an AzoR activity in the mitochondria of living cells under normal oxygenation conditions, and we were able to demonstrate that this endogenous AzoR activity appears to be expressed at different levels across different cell lines. This discovery provides crucial information for our understanding of the biochemical processes occurring within the mitochondria. It thus contributes to a better understanding of its function, which is implicated in numerous pathologies.


Asunto(s)
Combinación Besilato de Amlodipino y Olmesartán Medoxomilo , Naftalimidas , Nitrorreductasas , NADH NADPH Oxidorreductasas/metabolismo , Colorantes Fluorescentes/química
9.
PLoS One ; 19(1): e0293731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241420

RESUMEN

Prevention of Clostridium difficile infection is challenging worldwide owing to its high morbidity and mortality rates. C. difficile is currently being classified as an urgent threat by the CDC. Devising a new therapeutic strategy become indispensable against C. difficile infection due to its high rates of reinfection and increasing antimicrobial resistance. The current study is based on core proteome data of C. difficile to identify promising vaccine and drug candidates. Immunoinformatics and vaccinomics approaches were employed to construct multi-epitope-based chimeric vaccine constructs from top-ranked T- and B-cell epitopes. The efficacy of the designed vaccine was assessed by immunological analysis, immune receptor binding potential and immune simulation analyses. Additionally, subtractive proteomics and druggability analyses prioritized several promising and alternative drug targets against C. difficile. These include FMN-dependent nitroreductase which was prioritized for pharmacophore-based virtual screening of druggable molecule databases to predict potent inhibitors. A MolPort-001-785-965 druggable molecule was found to exhibit significant binding affinity with the conserved residues of FMN-dependent nitroreductase. The experimental validation of the therapeutic targets prioritized in the current study may worthy to identify new strategies to combat the drug-resistant C. difficile infection.


Asunto(s)
Clostridioides difficile , Clostridioides difficile/metabolismo , Simulación del Acoplamiento Molecular , Epítopos de Linfocito B , Vacunas Bacterianas , Nitrorreductasas/metabolismo , Epítopos de Linfocito T , Biología Computacional , Vacunas de Subunidad
10.
Chemosphere ; 351: 141173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232904

RESUMEN

Azo dyes, as the most widely used synthetic dyes, are considered to be one of the culprits of water resources and environmental pollution. Anoxybacillus sp. PDR2 is a thermophilic bacterium with the ability to degrade azo dyes, whose genome contains two genes encoding azoreductases (named AzoPDR2-1 and AzoPDR2-2). In this study, through response surface methodology (RSM), when the initial pH, inoculation volume and Mg2+ addition amount were 7.18, 10.72% and 0.1 g/L respectively, the decolorization rate of methyl red (MR) (200 mg/L) could reach its maximum (98.8%). The metabolites after biodegradation were detected by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography mass spectrometry (LC-MS/MS), indicating that MR was successfully decomposed into 4-aminobenzoic acid and other small substrates. In homologous modeling, it was found that both azoreductases were flavin-dependent azoreductases, and belonged to the α/ß structure, using the Rossmann fold. In their docking results with the cofactor flavin mononucleotide (FMN), FMN bound to the surface of the protein dimer. Nicotinamide adenine dinucleotide (NADH) was superimposed on the plane of the pyrazine ring between FMN and the activity pocket of protein. Besides, both azoreductase complexes (azoreductase-FMN-NADH) exhibited a substrate preference for MR. Asn104 and Tyr74 played an important role in the combination of the azoreductase AzoPDR2-1 complex and the azoreductase AzoPDR2-2 complex with MR, respectively. This provided assistance for studying the mechanism of azoreductase biodegradation of azo dyes in thermophilic bacteria.


Asunto(s)
Anoxybacillus , NADH NADPH Oxidorreductasas , Nitrorreductasas , Simulación del Acoplamiento Molecular , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Anoxybacillus/metabolismo , NAD , Cromatografía Liquida , Espectrometría de Masas en Tándem , Compuestos Azo/química , Colorantes/metabolismo
11.
mSystems ; 9(1): e0097223, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38078757

RESUMEN

Nitrofurantoin is a commonly used chemotherapeutic agent in the treatment of uncomplicated urinary tract infections caused by the problematic multidrug resistant Gram-negative pathogen Klebsiella pneumoniae. The present study aims to elucidate the mechanism of nitrofurantoin action and high-level resistance in K. pneumoniae using whole-genome sequencing (WGS), qPCR analysis, mutation structural modeling and untargeted metabolomic analysis. WGS profiling of evolved highly resistant mutants (nitrofurantoin minimum inhibitory concentrations > 256 mg/L) revealed modified expression of several genes related to membrane transport (porin ompK36 and efflux pump regulator oqxR) and nitroreductase activity (ribC and nfsB, involved in nitrofurantoin reduction). Untargeted metabolomics analysis of total metabolites extracted at 1 and 4 h post-nitrofurantoin treatment revealed that exposure to the drug caused a delayed effect on the metabolome which was most pronounced after 4 h. Pathway enrichment analysis illustrated that several complex interrelated metabolic pathways related to nitrofurantoin bacterial killing (aminoacyl-tRNA biosynthesis, purine metabolism, central carbohydrate metabolism, and pantothenate and CoA biosynthesis) and the development of nitrofurantoin resistance (riboflavin metabolism) were significantly perturbed. This study highlights for the first time the key role of efflux pump regulator oqxR in nitrofurantoin resistance and reveals global metabolome perturbations in response to nitrofurantoin, in K. pneumoniae.IMPORTANCEA quest for novel antibiotics and revitalizing older ones (such as nitrofurantoin) for treatment of difficult-to-treat Gram-negative bacterial infections has become increasingly popular. The precise antibacterial activity of nitrofurantoin is still not fully understood. Furthermore, although the prevalence of nitrofurantoin resistance remains low currently, the drug's fast-growing consumption worldwide highlights the need to comprehend the emerging resistance mechanisms. Here, we used multidisciplinary techniques to discern the exact mechanism of nitrofurantoin action and high-level resistance in Klebsiella pneumoniae, a common cause of urinary tract infections for which nitrofurantoin is the recommended treatment. We found that the expression of multiple genes related to membrane transport (including active efflux and passive diffusion of drug molecules) and nitroreductase activity was modified in nitrofurantoin-resistant strains, including oqxR, the transcriptional regulator of the oqxAB efflux pump. Furthermore, complex interconnected metabolic pathways that potentially govern the nitrofurantoin-killing mechanisms (e.g., aminoacyl-tRNA biosynthesis) and nitrofurantoin resistance (riboflavin metabolism) were significantly inhibited following nitrofurantoin treatment. Our study could help inform the improvement of nitrofuran derivatives, the development of new pharmacophores, or drug combinations to support the resurgence of nitrofurantoin in the management of multidrug resistant K. pneumouniae infection.


Asunto(s)
Infecciones por Klebsiella , Infecciones Urinarias , Humanos , Nitrofurantoína/farmacología , Klebsiella pneumoniae/genética , Infecciones por Klebsiella/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/metabolismo , Infecciones Urinarias/tratamiento farmacológico , Genómica , Nitrorreductasas/genética , Riboflavina/metabolismo , ARN de Transferencia/metabolismo
12.
Antimicrob Agents Chemother ; 68(1): e0073123, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38063401

RESUMEN

The intestinal parasites Giardia lamblia and Entamoeba histolytica are major causes of morbidity and mortality associated with diarrheal diseases. Metronidazole is the most common drug used to treat giardiasis and amebiasis. Despite its efficacy, treatment failures in giardiasis occur in up to 5%-40% of cases. Potential resistance of E. histolytica to metronidazole is an increasing concern. Therefore, it is critical to search for more effective drugs to treat giardiasis and amebiasis. We identified antigiardial and antiamebic activities of the rediscovered nitroimidazole compound, fexinidazole, and its sulfone and sulfoxide metabolites. Fexinidazole is equally active against E. histolytica and G. lamblia trophozoites, and both metabolites were 3- to 18-fold more active than the parent drug. Fexinidazole and its metabolites were also active against a metronidazole-resistant strain of G. lamblia. G. lamblia and E. histolytica cell extracts exhibited decreased residual nitroreductase activity when metabolites were used as substrates, indicating nitroreductase may be central to the mechanism of action of fexinidazole. In a cell invasion model, fexinidazole and its metabolites significantly reduced the invasiveness of E. histolytica trophozoites through basement membrane matrix. A q.d. oral dose of fexinidazole and its metabolites at 10 mg/kg for 3 days reduced G. lamblia infection significantly in mice compared to control. The newly discovered antigiardial and antiamebic activities of fexinidazole, combined with its FDA-approval and inclusion in the WHO Model List of Essential Medicines for the treatment of human African trypanosomiasis, offer decreased risk and a shortened development timeline toward clinical use of fexinidazole for treatment of giardiasis or amebiasis.


Asunto(s)
Amebiasis , Entamoeba histolytica , Giardia lamblia , Giardiasis , Nitroimidazoles , Ratones , Animales , Humanos , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Metronidazol/farmacología , Metronidazol/uso terapéutico , Nitroimidazoles/farmacología , Nitrorreductasas
13.
Adv Healthc Mater ; 13(10): e2303472, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37985951

RESUMEN

Current molecular photoacoustic (PA) probes are designed with either stimulus-turned "on" or assembly-enhanced signals to trace biological analytes/events. PA probes based on the nature-derived click reaction between 2-cyano-6-aminobenzothiazole (CBT) and cysteine (Cys) (i.e., CBT-Cys click reaction) possess both "turn-on" and "enhanced" PA signals; and thus, should have higher sensitivity. Nevertheless, such PA probes, particularly those for sensitive imaging of tumor hypoxia, remain scarce. Herein, a PA probe NI-Cys(StBu)-Dap(IR780)-CBT (NI-C-CBT) is rationally designed, which after being internalized by hypoxic tumor cells, is cleaved by nitroreductase under the reduction condition to yield cyclic dimer C-CBT-Dimer to turn the PA signal "ON" and subsequently assembled into nanoparticles C-CBT-NPs with additionally enhanced PA signal ("Enhanced"). NI-C-CBT exhibits 1.7-fold "ON" and 3.2-fold overall "Enhanced" PA signals in vitro. Moreover, it provides 1.9-fold and 2.8-fold overall enhanced PA signals for tumor hypoxia imaging in HeLa cells and HeLa tumor-bearing mice, respectively. This strategy is expected to be widely applied to design more "smart" PA probes for sensitive imaging of important biological events in vivo in near future.


Asunto(s)
Nanopartículas , Técnicas Fotoacústicas , Humanos , Animales , Ratones , Células HeLa , Hipoxia Tumoral , Diagnóstico por Imagen , Nitrorreductasas , Técnicas Fotoacústicas/métodos
14.
J Med Chem ; 67(1): 81-109, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38157261

RESUMEN

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.


Asunto(s)
Mycobacterium tuberculosis , Animales , Oxadiazoles/farmacología , Oxadiazoles/química , Tetrazoles/farmacología , Tetrazoles/química , Pruebas de Sensibilidad Microbiana , Antituberculosos/farmacología , Antituberculosos/química , Relación Estructura-Actividad , Nitrorreductasas , Mamíferos
15.
Environ Sci Pollut Res Int ; 30(54): 116227-116238, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37907824

RESUMEN

2,4,6-trinitrotoluene (TNT) is a nitroaromatic compound that causes soil and groundwater pollution during manufacture, transportation, and use, posing significant environmental and safety hazards. In this study, a TNT-degrading strain, Bacillus cereus strain T4, was screened and isolated from TNT-contaminated soil to explore its degradation characteristics and proteomic response to TNT. The results showed that after inoculation with the bacteria for 4 h, the TNT degradation rate reached 100% and was transformed into 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), 2,4-diamino-6-nitrotoluene (2,4-DANT), and 2,6-diamino-4-nitrotoluene (2,6-DANT), accompanied by the accumulation of nitrite and ammonium ions. Through proteomic sequencing, we identified 999 differentially expressed proteins (482 upregulated, 517 downregulated), mainly enriched in the pentose phosphate, glycolysis/gluconeogenesis, and amino acid metabolism pathways. In addition, the significant upregulation of nitroreductase and N-ethylmaleimide reductase was closely related to TNT denitration and confirmed that the strain T4 converted TNT into intermediate metabolites such as 2-ADNT and 4-ADNT. Therefore, Bacillus cereus strain T4 has the potential to degrade TNT and has a high tolerance to intermediate products, which may effectively degrade nitroaromatic pollutants such as TNT in situ remediation in combination with other bacterial communities.


Asunto(s)
Trinitrotolueno , Trinitrotolueno/metabolismo , Proteómica , Nitrorreductasas/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Suelo
16.
Chem Commun (Camb) ; 60(1): 83-86, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38018699

RESUMEN

Herein, we have developed a novel single-molecular probe (NORP) for selective and accurate determination of NTR in living cells. It was discovered that up-regulation of endogenous NTR occurred in response to hypoxic stimulation, and there was a dependence between the NTR levels and the degree of hypoxia.


Asunto(s)
Colorantes Fluorescentes , Hipoxia , Humanos , Sondas Moleculares , Nitrorreductasas
17.
Molecules ; 28(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005183

RESUMEN

Chagas disease (CD), which is caused by Trypanosoma cruzi and was discovered more than 100 years ago, remains the leading cause of death from parasitic diseases in the Americas. As a curative treatment is only available for the acute phase of CD, the search for new therapeutic options is urgent. In this study, nitroazole and azole compounds were synthesized and underwent molecular modeling, anti-T. cruzi evaluations and nitroreductase enzymatic assays. The compounds were designed as possible inhibitors of ergosterol biosynthesis and/or as substrates of nitroreductase enzymes. The in vitro evaluation against T. cruzi clearly showed that nitrotriazole compounds are significantly more potent than nitroimidazoles and triazoles. When their carbonyls were reduced to hydroxyl groups, the compounds showed a significant increase in activity. In addition, these substances showed potential for action via nitroreductase activation, as the substances were metabolized at higher rates than benznidazole (BZN), a reference drug against CD. Among the compounds, 1-(2,4-difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8) is the most potent and selective of the series, with an IC50 of 0.39 µM and selectivity index of 3077; compared to BZN, 8 is 4-fold more potent and 2-fold more selective. Moreover, this compound was not mutagenic at any of the concentrations evaluated, exhibited a favorable in silico ADMET profile and showed a low potential for hepatotoxicity, as evidenced by the high values of CC50 in HepG2 cells. Furthermore, compared to BZN, derivative 8 showed a higher rate of conversion by nitroreductase and was metabolized three times more quickly when both compounds were tested at a concentration of 50 µM. The results obtained by the enzymatic evaluation and molecular docking studies suggest that, as planned, nitroazole derivatives may utilize the nitroreductase metabolism pathway as their main mechanism of action against Trypanosoma cruzi. In summary, we have successfully identified and characterized new nitrotriazole analogs, demonstrating their potential as promising candidates for the development of Chagas disease drug candidates that function via nitroreductase activation, are considerably selective and show no mutagenic potential.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Mutágenos/farmacología , Tripanocidas/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Triazoles/química , Nitrorreductasas/metabolismo
18.
Mikrobiyol Bul ; 57(4): 625-638, 2023 Oct.
Artículo en Turco | MEDLINE | ID: mdl-37885390

RESUMEN

Trichomoniasis is a sexually transmitted parasitic infection caused by Trichomonas vaginalis. In the diagnosis of trichomoniasis, direct microscopy (DM) is preferred, which is a cheap and fast method, although it has low sensitivity. Culture methods, which are accepted as the gold standard, can only be applied in certain centers due to the need for experienced personnel and the ability to get results within 2-7 days, despite their high sensitivity. In this study, it was aimed to compare conventional microscopic and culture methods used in the routine diagnosis of T.vaginalis with polymerase chain reaction (PCR) method and to investigate ntr4 and/or ntr6 gene polymorphism in the nitroreductase gene region, which are thought to be associated with metronidazole resistance in T.vaginalis strains isolated from clinical specimens. Vaginal swab specimens were collected from the posterior fornix of the vagina with two sterile ecuvion sticks during the gynecological examinations of 200 patients who applied to the Balikesir University Health Practice and Research Hospital, Obstetrics and Gynecology Polyclinic between March 2019 and August 2021. The first swab sample was used for direct microscopic examination, Giemsa staining and conventional PCR analysis, while the second swab specimen was taken into trypticase-yeast-extract-maltose (TYM) medium for T.vaginalis culture and followed for eight days at 37 °C. All specimens were screened for the presence of T.vaginalis using primers specific to the ß-tubulin (btub1) gene region and clinical isolates grown in TYM medium were examined for metronidazole resistance using primers specific for the nitroreductase gene region by using conventional PCR. Drug resistance test was also performed for the isolates in which polymorphism associated with metronidazole resistance was detected. Eight (4%) of 200 patient specimens were found positive by both culture/staining and PCR methods. The mean age of the patients included in the study was 39.9, while the mean age of the patients with positive T.vaginalis was 41.8. The most common clinical findings in the patients were foul-smelling vaginal discharge (36%), groin pain (21%), vaginal itching (19%), and burning sensation during urination (18%). In three out of eight T.vaginalis strains isolated from clinical samples, the presence of polymorphism in the ntr6 gene, which is thought to be associated with metronidazole resistance, was demonstrated by PCR. It was observed that three isolates with ntr6 gene polymorphism were phenotypically resistant to metronidazole (MLK= 390 µM). In this study, the fact that three of eight clinical isolates that were resistant to metronidazole by the broth microdilution method and as well as showing ntr6 gene polymorphism supported the thesis that there might be a close relationship between metronidazole resistance and ntr6 gene polymorphism. As a result, the use of culture and molecular methods in the diagnosis of T.vaginalis, in addition to the microscopy method, may contribute to a more accurate laboratory diagnosis of the agent, to detect metronidazole resistance molecularly and phenotypically, to determine metronidazole resistance rates in our country and to update treatment protocols within the framework of these data.


Asunto(s)
Tricomoniasis , Vaginitis por Trichomonas , Trichomonas vaginalis , Embarazo , Femenino , Humanos , Metronidazol/farmacología , Metronidazol/uso terapéutico , Trichomonas vaginalis/genética , Vaginitis por Trichomonas/diagnóstico , Vaginitis por Trichomonas/tratamiento farmacológico , Tricomoniasis/diagnóstico , Nitrorreductasas/uso terapéutico
19.
Cell Chem Biol ; 30(12): 1680-1691.e6, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37898120

RESUMEN

Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.


Asunto(s)
Metronidazol , Pez Cebra , Animales , Metronidazol/farmacología , Metronidazol/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Metagenoma , Clonación Molecular , Nitrorreductasas/genética
20.
Chemosphere ; 345: 140558, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898462

RESUMEN

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox), a widely used organoarsenical feed additive, can enter soils and be further biotransformed into various arsenic species that pose human health and ecological risks. However, the pathway and molecular mechanism of Rox biotransformation by soil microbes are not well studied. Therefore, in this study, we isolated a Rox-transforming bacterium from manure-fertilized soil and identified it as Pseudomonas chlororaphis through morphological analysis and 16S rRNA gene sequencing. Pseudomonas chlororaphis was able to biotransform Rox to 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), arsenate [As(V)], arsenite [As(III)], and dimethylarsenate [DMAs(V)]. The complete genome of Pseudomonas chlororaphis was sequenced. PcmdaB, encoding a nitroreductase, and PcnhoA, encoding an acetyltransferase, were identified in the genome of Pseudomonas chlororaphis. Expression of PcmdaB and PcnhoA in E. coli Rosetta was shown to confer Rox(III) and 3-AHPAA(III) resistance through Rox nitroreduction and 3-AHPAA acetylation, respectively. The PcMdaB and PcNhoA enzymes were further purified and functionally characterized in vitro. The kinetic data of both PcMdaB and PcNhoA were well fit to the Michaelis-Menten equation, and nitroreduction catalyzed by PcMdaB is the rate-limiting step for Rox transformation. Our results provide new insights into the environmental risk assessment and bioremediation of Rox(V)-contaminated soils.


Asunto(s)
Arsénico , Pseudomonas chlororaphis , Roxarsona , Humanos , Pseudomonas chlororaphis/metabolismo , Suelo , Acetiltransferasas , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Escherichia coli/metabolismo , Arsénico/metabolismo , Biotransformación , Nitrorreductasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...