Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174688, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992361

RESUMEN

The concurrent environmental contamination by nanoplastics (NPs) and norfloxacin (NOR) is a burgeoning concern, with significant accumulations in various ecosystems and potential ingress into the human body via the food chain, posing threats to both public health and ecological balance. Despite the gravity of the situation, studies on the co-exposure contamination effects of these substances are limited. Moreover, the response mechanisms of key functional proteins to these pollutants are yet to be fully elucidated. In this work, we conducted a comprehensive assessment of the interaction mechanisms of NPs and NOR with lysozyme under both single and co-exposure condition, utilizing dynamic light scattering, ζ-potential measurements, multi-spectroscopy methods, enzyme activity assays and molecular docking, to obtain a relationship between the compound effects of NPs and NOR. Our results indicate that NPs adsorb NOR on their surface, forming more stable aggregates. These aggregates influence the conformation, secondary structure (α-Helix ratio decreased by 3.1 %) and amino acid residue microenvironment of lysozyme. And changes in structure affect the activity of lysozyme (reduced by 39.9 %) with the influence of composited pollutants exerting stronger changes. Molecular simulation indicated the key residues Asp 52 for protein function located near the docking site, suggesting pollutants preferentially binds to the active center of lysozyme. Through this study, we have found the effect of increased toxicity on lysozyme under the compounded conditions of NPs and NOR, confirming that the increased molecular toxicity of NPs and NOR is predominantly realized through the increase in particle size and stability of the aggregates under weak interactions, as well as induction of protein structural looseness. This study proposes a molecular perspective on the differential effects and mechanisms of NPs-NOR composite pollution, providing new insights into the assessment of in vitro responses to composite pollutant exposure.


Asunto(s)
Simulación del Acoplamiento Molecular , Muramidasa , Norfloxacino , Muramidasa/química , Norfloxacino/toxicidad , Contaminantes Ambientales/toxicidad , Nanopartículas/toxicidad , Antibacterianos/toxicidad
2.
J Hazard Mater ; 473: 134618, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761764

RESUMEN

The widespread application of antibiotics and plastic films in agriculture has led to new characteristics of soil pollution. The impacts of combined contamination of microplastics and antibiotics on plant growth and rhizosphere soil bacterial community and metabolisms are still unclear. We conducted a pot experiment to investigate the effects of polyethylene (0.2%) and norfloxacin/doxycycline (5 mg kg-1), as well as the combination of polyethylene and antibiotics, on the growth, rhizosphere soil bacterial community and metabolisms of wheat and maize seedlings. The results showed that combined contamination caused more serious damage to plant growth than individual contamination, and aggravated root oxidative stress responses. The diversity and structure of soil bacterial community were not markedly altered, but the composition of the bacterial community, soil metabolisms and metabolic pathways were altered. The co-occurrence network analysis indicated that combined contamination may inhibit the growth of wheat and maize seedings by simplifying the interrelationships between soil bacteria and metabolites, and altering the relative abundance of specific bacteria genera (e.g. Kosakonia and Sphingomonas) and soil metabolites (including sugars, organic acids and amino acids). The results help to elucidate the potential mechanisms of phytotoxicity of the combination of microplastic and antibiotics.


Asunto(s)
Antibacterianos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Triticum , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/microbiología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Antibacterianos/farmacología , Antibacterianos/toxicidad , Microplásticos/toxicidad , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Norfloxacino/farmacología , Norfloxacino/toxicidad , Polietileno/toxicidad
3.
Chemosphere ; 352: 141481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395366

RESUMEN

The production of cheap, efficient, and stable photocatalysts for degrading antibiotic contaminants remains challenging. Herein, Bi2O3/boron nitride (BN)/Co3O4 ternary composites were synthesized using the impregnation method. The morphological characteristics, structural features, and photochemical properties of the prepared photocatalysts were investigated via X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible (Vis) diffuse reflectance spectrum techniques. BN was used as a charge transfer bridge in the ternary composites, which afforded a heterojunction between the two semiconductors. The formation of the heterojunction substantially enhanced the charge separation and improved the photocatalyst performance. The degradation activity of the Bi2O3/BN/Co3O4 ternary composites against norfloxacin (NOR) under Vis light irradiation was investigated. The degradation rate of NOR using 5-wt% Bi2O3/BN/Co3O4 reached 98% in 180 min, indicating excellent photocatalytic performance. The ternary composites also exhibited high photostability with a degradation efficiency of 88.4% after five cycles. Hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+) played a synergistic role in the photocatalytic reaction, where h+ and •O2- were more important than •OH. Consequently, seven intermediates and major photocatalytic degradation pathways were identified. Toxicity experiments showed that the toxicity of the degradation solution to Chlorella pyrenoidosa decreased. Finally, the ecotoxicity of NOR and its intermediates were analyzed using the Toxicity Estimation Software Tool, with most intermediates exhibiting low toxicity.


Asunto(s)
Compuestos de Boro , Chlorella , Cobalto , Norfloxacino , Óxidos , Norfloxacino/toxicidad , Catálisis
4.
J Hazard Mater ; 468: 133801, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377908

RESUMEN

Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 µg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.


Asunto(s)
Contaminantes Ambientales , Cangrejos Herradura , Animales , Cangrejos Herradura/genética , Norfloxacino/toxicidad , Poliestirenos/toxicidad , Estrés Oxidativo
5.
Arch. med. res ; 29(3): 235-40, jul.-sept. 1998. tab, ilus
Artículo en Inglés | LILACS | ID: lil-232640

RESUMEN

Background. Genotoxicity of antibiotic has not been well evaluted, and there is not much information on the genetic risk of quinolone drugs, even though they are widely used as alternative choice drugs in urinary infections. Methods. Pipemidic acid and norfloxacin were tested for their capacity to induce point mutations using the Ames test and DNA damage on Escherichia coli PolA-/PolA+. Results. At non-toxic doses, all of the drugs studied were negative on the E. coli PolA-/PolA+ test with or without in vitro metabolic activation with induced arochlor 1254 rat liver (S9). They did not procedure frameshift mutations in TA98, or base-air substitutions in S. typhimurium hisG46 strains TA100, or UTH8414. Norfloxacin and its induced metabolites in vitro with S9 rat liver were mutagenic to hisG48 strains TA102 and TA104, both of which detect oxidative chemicals. Pipemidic acid induced mutations in S. typhimurium hisG48 strains only when they had an efficient DNA excision repair system. Conclusions. These results suggest that the risk of oxygen-free radical generation from quinolones should be considered


Asunto(s)
Animales , Ratas , Daño del ADN , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Mutación Puntual , Poli A , Salmonella typhimurium , Ácido Pipemídico/toxicidad , Mutación del Sistema de Lectura , Pruebas de Mutagenicidad , Norfloxacino/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA