Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Drug Dev Res ; 85(3): e22195, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704831

RESUMEN

We investigated the angiogenesis-modulating ability of noscapine in vitro using osteosarcoma cell line (MG-63) and in vivo using a zebrafish model. MTT assay and the scratch wound healing assay were performed on the osteosarcoma cell line (MG-63) to analyze the cytotoxic effect and antimigrative ability of noscapine, respectively. We also observed the antiangiogenic ability of noscapine on zebrafish embryos by analyzing the blood vessels namely the dorsal aorta, and intersegmental vessels development at 24, 48, and 72 h postfertilization. Real-time polymerase chain reaction was used to analyze the hypoxia signaling molecules' gene expression in MG-63 cells and zebrafish embryos. The findings from the scratch wound healing demonstrated that noscapine stopped MG-63 cancer cells from migrating under both hypoxia and normoxia. Blood vessel development and the heart rate in zebrafish embryos were significantly reduced by noscapine under both hypoxia and normoxia which showed the hemodynamics impact of noscapine. Noscapine also downregulated the cobalt chloride (CoCl2) induced hypoxic signaling molecules' gene expression in MG-63 cells and zebrafish embryos. Therefore, noscapine may prevent MG-63 cancer cells from proliferating and migrating, as well as decrease the formation of new vessels and the production of growth factors linked to angiogenesis in vivo under both normoxic and hypoxic conditions.


Asunto(s)
Hemodinámica , Neovascularización Patológica , Noscapina , Pez Cebra , Animales , Humanos , Noscapina/farmacología , Línea Celular Tumoral , Hemodinámica/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Hipoxia , Movimiento Celular/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Angiogénesis
2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542508

RESUMEN

Breast cancer is the second leading contributor to the age-standardized mortality rate, for both sexes and all ages worldwide. In Europe and the United States, it is the second leading cause of mortality, with an incidence rate of about 2.6 million cases per year. Noscapine, a well-known alkaloid used as a cough suppressant, demonstrated anti-tumor effects by triggering apoptosis in various cancer cell lines and has the potential to become another ally against breast, ovarian, colon, and gastric cancer, among other types of malignancy. Apoptosis plays a crucial role in the treatment of cancer. Noscapine affected BAX, CASP8, CASP9, NFKBIA, and RELA gene and protein expression in the MCF-7 and MDA-MB-231 cell lines. Gene expression was higher in tumor than in normal tissue, including the BAX expression levels in lung, ovary, endometrium, colon, stomach, and glioblastoma patients; BCL2L1 expression in endometrium, colon, and stomach patients; CASP8 gene expression levels in lung, endometrium, colon, stomach, and glioblastoma patients; RELA in colon, stomach, and glioblastoma patients; and NFKBIA in glioblastoma patients. It can be concluded that noscapine affected genes and proteins related to apoptosis in cancer cell lines and several types of cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Glioblastoma , Noscapina , Masculino , Femenino , Humanos , Noscapina/farmacología , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/genética , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular
3.
Biomed Pharmacother ; 168: 115823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924792

RESUMEN

Psoriasis is a chronic inflammatory skin disease characterized by thickening the epidermis with erythema, scaling, and proliferation. Noscapine (NOS) has several anti-inflammatory, anti-angiogenic, and anti-fibrotic effects, but its low solubility and large size results in its lower efficacy in the clinic. In this regard, solid lipid nanoparticles (SLN) encapsulated NOS (SLN-NOS) were fabricated using the well-known response surface method based on the central composite design and modified high-shear homogenization and ultrasound method. As a result, Precirol® was selected as the best lipid base for the SLN formulation based on Hildebrand-Hansen solubility parameters, in which SLN-NOS 1 % had the best zeta potential (-35.74 ± 2.59 mV), average particle size (245.66 ± 17 nm), polydispersity index (PDI, 0.226 ± 0.09), high entrapment efficiency (89.77 %), and ICH-based stability results. After 72 h, the SLN-NOS 1 % released 83.23 % and 58.49 % of the NOS at pH 5.8 and 7.4, respectively. Moreover, Franz diffusion cell's results indicated that the skin levels of NOS for SLN and cream formulations were 46.88 % and 13.5 % of the total amount, respectively. Our pharmacological assessments revealed that treatment with SLN-NOS 1 % significantly attenuated clinical parameters, namely ear thickness, length, and psoriasis area and severity index, compared to the IMQ group. Interestingly, SLN-NOS 1 % reduced the levels of interleukin (IL)-17, tumor necrosis factor-α, and transforming growth factor-ß, while elevating IL-10, compared to the IMQ group. Histology studies also showed that topical application of SLN-NOS 1 % significantly decreased parakeratosis, hyperkeratosis, acanthosis, and inflammation compared to the IMQ group. Taken together, SLN-NOS 1 % showed a high potential to attenuate skin inflammation.


Asunto(s)
Nanopartículas , Noscapina , Psoriasis , Humanos , Imiquimod/farmacología , Noscapina/farmacología , Lípidos/química , Piel , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Inflamación/tratamiento farmacológico
4.
Int J Biol Macromol ; 247: 125791, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37442512

RESUMEN

Noscapine is a proficient anticancer drug active against wide variety of tumors including lung cancer. Over time, several noscapine analogues have been assessed to maximize the efficiency of the drug, amongst which 9-bromo noscapine remains one of the most potent analogues till date. In the present work, we have synthesized 9-bromo noscapine ionic liquid [9-Br-Nos]IBr2, an active pharmaceutical ingredient based ionic liquid (API-IL) to address the existing issues of solubility and targeted drug delivery in the parent alkaloid as well as the synthesized analogues. We have devised a novel two-step synthesis route (first-ever ionic to ionic bromination) to obtain the desired [9-Br-Nos]IBr2 which is advantageous to its organic analogue in terms of increased solubility, lesser reaction time and better yield. Furthermore, we have compared 9-bromo noscapine ionic liquid with noscapine based on its binding interaction with human hemoglobin (Hb) studied via computational along with spectroscopic studies, and bioactivity against non-small cell lung cancer. We inferred formation of a complex between [9-Br-Nos]IBr2 and Hb in the stoichiometric ratio of 1:1, similar to noscapine. At 298 K, [9-Br-Nos]IBr2-Hb binding was found to exhibit Kb and ∆G of 36,307 M-1 and -11.5 KJmol-1, respectively, as compared to 159 M-1 and -12.5 KJmol-1 during Noscapine-Hb binding. This indicates a more stronger and viable interaction between [9-Br-Nos]IBr2 and Hb than the parent compound. From computational studies, the observed higher stability of [9-Br-Nos]I and better binding affinity with Hb with a binding energy of -91.75 kcalmol-1 supported the experimental observations. In the same light, novel [9-Br-Nos]IBr2 was found to exhibit an IC50 = 95.02 ± 6.32 µM compared to IC50 = 128.82 ± 2.87 µM for noscapine on A549 (non-small lung cancer) cell line at 48 h. Also, the desired ionic liquid proved to be more cytotoxic inducing a mortality rate of 87 % relative to 66 % evoked by noscapine at concentrations of 200 µM after 72 h.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Líquidos Iónicos , Neoplasias Pulmonares , Noscapina , Humanos , Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Hemoglobinas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Noscapina/farmacología , Noscapina/química
5.
Chem Biol Interact ; 382: 110606, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330181

RESUMEN

We present N-imidazopyridine-noscapinoids, a new class of noscapine derivatives that bind to tubulin and exhibit antiproliferative activity against triple positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cells. The N-atom of the isoquinoline ring of noscapine scaffold was altered in silico by coupling the imidazo [(Ye et al., 1998; Ke et al., 2000) 1,21,2-a] pyridine pharmacophore to rationally develop a series of N-imidazopyridine-noscapinoids (7-11) with high tubulin binding affinity. The predicted ΔGbinding of the N-imidazopyridine-noscapinoids 7-11 varied from -27.45 to -36.15 kcal/mol, a much lower value than noscapine with ΔGbinding -22.49 kcal/mol. The cytotoxicity of N-imidazopyridine-noscapinoids was evaluated using hormone dependent MCF-7, triple negative MDA-MB-231 breast cancer cell lines and primary breast cancer cells. The cytotoxicity of these compounds (represented as IC50 concentration) ranges between 4.04 and 33.93 µM against breast cancer cells without affecting normal cells (IC50 value > 952 µM). All the compounds (7-11) perturbed the cell cycle progression at G2/M phase and triggered apoptosis. Among all the N-imidazopyridine-noscapinoids, N-5-Bromoimidazopyridine-noscapine (9) showed promising antiproliferative activity and was selected for detailed investigation. The onset of apoptosis treated with 9 using MDA-MB-231 revealed morphological changes like cellular shrinkage, chromatin condensation, membrane blebbing, and apoptotic bodies formation. Along with elevated reactive oxygen species (ROS), there was a loss of mitochondrial membrane potential, suggesting induction of apoptosis to cancer cells. Compound 9 was also found to significantly regress the implanted tumour in nude mice as xenografts of MCF-7 cells without any apparent side effects after drug administration. We conclude that N-imidazopyridine-noscapinoids possess excellent potential as a promising drug for treating breast cancers.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Noscapina , Humanos , Animales , Ratones , Femenino , Tubulina (Proteína)/metabolismo , Noscapina/farmacología , Noscapina/uso terapéutico , Xenoinjertos , Ratones Desnudos , Microtúbulos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Piridinas/farmacología , Piridinas/uso terapéutico , Neoplasias de la Mama/patología , Proliferación Celular , Línea Celular Tumoral , Apoptosis
6.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835008

RESUMEN

Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.


Asunto(s)
Fibrosis , Noscapina , Peroxidasa , Animales , Femenino , Colágeno/metabolismo , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Fibrosis/veterinaria , Caballos/metabolismo , Noscapina/farmacología , Noscapina/uso terapéutico , Peroxidasa/antagonistas & inhibidores , Peroxidasa/metabolismo , ARN Mensajero/metabolismo
7.
J Org Chem ; 88(3): 1720-1729, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651751

RESUMEN

A photo and Cu-mediated radical-radical approach enabling the one-step synthesis of the phthalideisoquinoline skeleton has been reported. Under mild reaction conditions, a series of N-aryl phthalideisoquinolines containing various substituents were synthesized in moderate to good yields. Bioactivity data demonstrated that a new compound 4x can efficiently inhibit the growth of multiple tumor cell lines with enhancements of more than 10-fold by significantly increasing G2/M arrest compared with noscapine.


Asunto(s)
Antineoplásicos , Noscapina , Antineoplásicos/farmacología , Noscapina/farmacología , Línea Celular Tumoral
8.
Chem Biodivers ; 20(2): e202201089, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36690497

RESUMEN

Noscapine an FDA-approved antitussive agent. With low cytotoxicity with higher concentrations, noscapine and its derivatives have been shown to have exceptional anticancer properties against a variety of cancer cell lines. In order to increase its potency, in this study, we synthesized a series of new amido-thiadiazol coupled noscapinoids and tested their cytotoxicity in vitro. All of the newly synthesised compounds demonstrated potent cytotoxic potential, with IC50 values ranging from 2.1 to 61.2 µM than the lead molecule, noscapine (IC50 value ranges from 31 to 65.5 µM) across all cell lines, without affecting normal cells (IC50 value is>300 µM). Molecular docking of all these molecules with tubulin (PDB ID: 6Y6D, resolution 2.20 Å) also revealed better binding affinity (docking score range from -5.418 to -9.679 kcal/mol) compared to noscapine (docking score is -5.304 kcal/mol). One of the most promising synthetic derivatives 6aa (IC50 value ranges from 2.5 to 7.3 µM) was found to bind tubulin with the highest binding affinity (ΔGbinding is -28.97 kcal/mol) and induced apoptosis in cancer cells more effectively.


Asunto(s)
Antineoplásicos , Noscapina , Simulación del Acoplamiento Molecular , Noscapina/química , Noscapina/metabolismo , Noscapina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Relación Estructura-Actividad , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
9.
Anticancer Agents Med Chem ; 23(6): 624-641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35927808

RESUMEN

Cancer is known as a notorious disease responsible for threatening millions of lives every year. Natural products which act by disrupting the microtubule assembly and dynamics have proven to be highly successful as anticancer agents but their high toxicity owing to lower selectivity has limited their usage. Recently, Noscapine (NOS), a known anti-tussive, has come out to be an effective anti-tubulin candidate with far lesser toxicity. Since its first report as an anti-mitotic agent in 1998, NOS has been extensively studied and modified by various groups of researchers to optimize its anti-tubulin activity. In this review, the recent advancements about the potential of these therapeutic candidates against various cancers have been compiled and analyzed for their inhibitory mechanism in distinct health conditions. It has been observed that the non-polar substitutions (e.g., halides, aryl groups) at specific sites (9-position and N-sites of isoquinoline ring; and modification of a methoxy group) have an enhanced effect on efficacy. The mechanistic studies of NOS and its modified analogs have shown their inhibitory action primarily through interaction with microtubules dynamics thus disrupting the cell-cycle and leading to apoptosis. This review highlights the latest research in the field by providing a rich resource for the researchers to have a hands-on analysis of NOS analogs and the inhibitory action in comparison to other microtubule disrupting anti-cancer agents. The article also documents the newer investigations in studying the potential of noscapine analogs as possible anti-microbial and antiviral agents.


Asunto(s)
Antineoplásicos , Neoplasias , Noscapina , Humanos , Noscapina/farmacología , Noscapina/química , Tubulina (Proteína) , Microtúbulos , Antineoplásicos/química , Moduladores de Tubulina/farmacología , Neoplasias/tratamiento farmacológico
10.
Int J Biol Macromol ; 220: 415-425, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985396

RESUMEN

In this study, we have shown the interaction between opium poppy alkaloid noscapine-based ionic liquid [Pip-Nos]OTf and ct-DNA using UV-visible absorption spectroscopy, fluorescence spectroscopy, CD, and computational studies. The absorption spectra showed a hypochromic shift with no shift in the absorption maxima suggesting groove or electrostatic binding. Fluorescence spectra showed an enhancement in fluorescence emission suggesting that the probable mode of binding should be groove binding. Ethidium bromide (EB) competitive and Ionic strength study showed the absence of intercalative and electrostatic modes of interaction. Further, CD analysis of ct-DNA suggested a groove binding mode of interaction of [Pip-Nos]OTf with ct-DNA. [Pip-Nos]OTf displayed a strong binding with the target ct-DNA with a molecular docking score of -41.47 kJ/mol with all 3D coordinates and full conformation. Also, molecular binding contact analyses depicted the stable binding of drug and ct-DNA with potential hydrogen bonds and hydrophobic interactions. The structural superimposition dynamics analysis showed the stable binding of [Pip-Nos]OTf with the ct-DNA model through RMSD statistics. Moreover, the ligand interaction calculations revealed the involvement of large binding energy along with a high static number of molecular forces including the hydrogen bonds and hydrophobic interactions in their complexation. These significant results report the potency of [Pip-Nos]OTf and its important futuristic role in cancer therapeutics.


Asunto(s)
Líquidos Iónicos , Noscapina , Dicroismo Circular , ADN/química , Etidio , Ligandos , Simulación del Acoplamiento Molecular , Noscapina/farmacología , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Termodinámica
11.
Int Immunopharmacol ; 110: 108984, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780642

RESUMEN

The centrally acting antitussive opiate derivative, noscapine, has been claimed to be a non-competitive bradykinin B2 receptor antagonist. Raloxifene, a selective estrogen receptor modulator, was predicted to bind the bradykinin B2 receptor and to exert a partial agonist activity. These intriguing claims suggest that new molecular scaffolds ("chemotypes") may be identified for small molecule ligands of kinin receptors and that some off-target effects of noscapine or raloxifene may be mediated by bradykinin B2 receptors. An established contractile bioassay for ligands of the bradykinin B2 receptor, the isolated human umbilical vein, was exploited to characterize the inhibitory effect of noscapine and raloxifene on the B2 receptor-mediated contractile response to bradykinin. Observed effects were compared with those of the peptide antagonist icatibant, a potent, selective and competitive B2 receptor antagonist. Our results indicate that neither noscapine (2.5 µM) nor raloxifene (20 µM) behave as B2 receptor antagonists in concentrations that vastly exceeded an effective concentration of the control antagonist, icatibant; further, none of these drugs had direct contractile effects. It is suggested that the previously reported B2 receptor inhibitory effect of noscapine, a putative sigma-receptor agonist, might result from an indirect physiological antagonism, while raloxifene did not appear to have any significant affinity for the B2 receptors.


Asunto(s)
Noscapina , Receptores de Bradiquinina , Bioensayo , Bradiquinina/metabolismo , Antagonistas de los Receptores de Bradiquinina , Humanos , Noscapina/farmacología , Clorhidrato de Raloxifeno/farmacología , Receptor de Bradiquinina B1 , Receptor de Bradiquinina B2 , Receptores de Bradiquinina/metabolismo , Venas Umbilicales/metabolismo
12.
Appl Biochem Biotechnol ; 194(10): 4292-4318, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35366187

RESUMEN

Epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) plays a pivotal role in cellular signaling, growth, and metabolism. The EGFR-TKD is highly expressed in cancer cells and was endorsed as a therapeutic target for cancer management to overcome metastasis, cell proliferation, and angiogenesis. The novel thiazolo-[2,3-b]quinazolinones series were strategically developed by microwave-assisted organic synthesis and multi dominos reactions aimed to identify the potent thiazolo-[2,3-b]quinazolinone inhibitor against EGFR-TKD. This study explores the binding stability and binding strength of newly developed series via molecular docking, molecular dynamics simulation, and MM/PBSA and MM/GBSA calculations. The binding interaction was observed to be through the functional groups on aryl substituents at positions 3 and 5 of the thiazolo-[2, 3-b]quinazolinone scaffold. The methyl substituents at position 8 of the ligands had prominent hydrophobic interactions corroborating their bindings similar to the reference FDA-approved drug erlotinib in the active site. ADMET predictions reveal that derivatives 5ab, 5aq, and 5bq are drug-like and may be effective in in vitro study. Molecular dynamics simulation for 100 ns of docked complexes revealed their stability at the atomistic level. The ΔGbinding of thiazolo-[2,3-b]quinazolinone was found to be 5ab - 22.45, 5aq - 22.23, and 5bq - 20.76 similar to standard drug, and erlotinib - 24.11 kcal/mol was determined by MM/GBSA method. Furthermore, the anti-proliferative activity of leads of thiazolo-[2,3-b]quinazolinones (n = 3) was studied against breast cancer cell line (MCF-7) and non-small lung carcinoma cell line (H-1299). The highest inhibitions in cell proliferation were shown by 5bq derivatives, and the IC50 was found to be 6.5 ± 0.67 µM against MCF-7 and 14.8 µM against H-1299. The noscapine was also taken as a positive control and showed IC50 at higher concentrations 37 ± 1 against MCF-7 and 46.5 ± 1.2 against H-1299.


Asunto(s)
Antineoplásicos , Noscapina , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/farmacología , Clorhidrato de Erlotinib/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Noscapina/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinonas/química , Quinazolinonas/farmacología , Relación Estructura-Actividad , Tirosina
13.
Naunyn Schmiedebergs Arch Pharmacol ; 395(2): 167-185, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34988596

RESUMEN

Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Noscapina/administración & dosificación , Progesterona/administración & dosificación , Animales , Área Bajo la Curva , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada , Semivida , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Masculino , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/farmacología , Noscapina/farmacocinética , Noscapina/farmacología , Estrés Oxidativo/efectos de los fármacos , Progesterona/farmacocinética , Progesterona/farmacología , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico
14.
J Biomol Struct Dyn ; 40(6): 2600-2620, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33140690

RESUMEN

First case of the present epidemic, coronavirus disease (COVID-19) is reported in the Wuhan, a city of the China and all the countries throughout the world are being affected. COVID-19 is named by World Health Organization and it stands for coronavirus disease-19. As on 27th October, 2020, 73,776,588 people around the world are infected. It is also known as SARS-CoV-2 infection. Till date, there is no promising drug or vaccine available in market to cure from this lethal infection. As the literature reported that noscapine a promising candidate to cure from malaria as well reported to be cough suppressant and anti-cancerous. In our previous work, a derivative of noscapine has shown potential behavior against the main protease of novel coronavirus or SARS-CoV-2. Based on the previous study, hybrid molecules based on noscapine and repurposing (antiviral) drugs were designed to target the main protease of novel coronavirus and falcipan-2 using molecular docking. It is proposed that the designed hydrids or conjugates may have promising antiviral property i.e. against the main protease of novel coronavirus and falcipan-2. The designed molecules were thoroughly studied by DFT and different thermodynamic parameters were determined. Further, infrared and Raman spectra of the designed hybrid molecules were determined and studied. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Noscapina , Inhibidores de Proteasas , SARS-CoV-2/efectos de los fármacos , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Noscapina/farmacología , Inhibidores de Proteasas/farmacología
15.
Drug Dev Res ; 83(3): 605-614, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34612529

RESUMEN

Noscapine is a phthalide isoquinoline alkaloid present in the latex of Papaver somniferum and has demonstrated potent antitumor activity in various cancer models. Structural changes in the core molecule of noscapine architecture have produced a number of potent analogs. We have recently synthesized the novel noscapine analogs (3, 4, and 5) with different functional groups appended at ninth position of natural noscapine. The anticancer activity of these compounds has been investigated using various human cancer cell lines such as HeLa (cervical cancer), DU-145 (prostate cancer), MCF-7 (breast cancer), and IMR-32 (neuroblastoma). One of the compounds in this series, 9-ethynyl noscapine (5), has demonstrated good anticancer activity against HeLa cells. Biological studies demonstrated that compound 5 decreased cell viability and colony formation in HeLa cells in a concentration dependent manner. To further uncover the mechanism in detail, we evaluated compound 5 effect on cell cycle progression, microtubule dynamics, and apoptosis. Cell cycle and western blotting analysis revealed that 9-ethynyl noscapine treatment resulted in cell cycle arrest at G2/M and decreased CDK1 and cyclinB1 protein expression. We also observed that 9-ethynyl noscapine (5) treatment leads to disruption in tubulin polymerization and induction of apoptosis by decreasing expression of bcl2, pro-caspase 3, and activation of cytochrome C. Taken together, our results indicate that 9-ethynyl noscapine (5) effectively supresses the growth of cervical cancer cells (HeLa) by disrupting tubulin polymerization, cell cycle progression leading to apoptosis.


Asunto(s)
Antineoplásicos , Noscapina , Neoplasias del Cuello Uterino , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Células HeLa , Humanos , Masculino , Noscapina/farmacología , Polimerizacion , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
16.
Chem Biol Interact ; 352: 109794, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34963564

RESUMEN

Noscapine is a phthalide isoquinoline alkaloid with antitussive activity. Noscapine protects oligodendroglia from ischemic and chemical injury, binds to bitter taste receptors, antagonizes the bradykinin and histaminergic systems, which may be of benefit in treatment of multiple sclerosis. Noscapine normalizes axonal transport and exerts significant therapeutic efficacy in animal models of Parkinson's Disease and Amyotrophic Lateral Sclerosis. Noscapine exerts neuroprotective effects on oxygen- and glucose-deprived fetal cortical neuronal cells and reduces ischemic brain damage in neonatal rat pups. Pilot clinical studies indicated some beneficial effects of noscapine in stroke. Noscapine harbours anxiolytic activity and methyl-noscapine blocks small conductance SK channels, which is beneficial in alleviating anxiety and depression. Noscapine exerts anticholinesterase activity and acts inhibitory on the inflammatory transcription factor NF-κB, which may be harnessed in treatment of Alzheimer's Disease. With its blood-brain barrier traversing features and versatile actions, noscapine may be a promising agent in the armamentarium against neurodegenerative and psychiatric diseases.


Asunto(s)
Agentes Inmunomoduladores/farmacología , Fármacos Neuroprotectores/farmacología , Noscapina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Bradiquinina/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología , Humanos , Canales Iónicos/efectos de los fármacos , Trastornos Mentales/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Noscapina/administración & dosificación , Noscapina/sangre , Oligodendroglía/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico
17.
Comput Biol Med ; 139: 104996, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34753081

RESUMEN

To strategically design and frame the novel 9-Br-Trimethoxybenzyl noscapine (BTN) with rigorous binding affinity with tubulin, the structure of noscapine (an antitussive plant alkaloid) was amended with a 3,4,5-trimethoxybenzyl group linked at the seventh position on the lower isobenzofuran unit. Molecular modelling and cellular studies were used to assess the single and combined effects of BTN and docetaxel (DOX). Based on MM-GBSA, the individual calculated free energies of binding (ΔGbind, pred) for BTN and DOX with tubulin was found to be -25.69 and -38.17 kcal/mol, respectively, and -29.11 and -36.60 kcal/mol based on MM-PBSA. Furthermore, the ΔGbind,pred of BTN was dramatically reduced (-30.02 and -33.54 kcal/mol using MM-GBSA and MM-PBSA) in presence of DOX on its binding pocket. Parenthetically, the ΔGbind,pred of DOX was substantially decreased (-39.17 and -35.80 kcal/mol using MM-GBSA and MM-PBSA) in the presence of BTN on its binding pocket. The synergistic activity of both compounds on tubulin dimmer was also analysed using purified tubulin, where a combined regimen of BTN and DOX attenuated tubulin intensity to a higher value (50%) particularly in comparison to the single regimen. In comparison to the single regimen, the combination of BTN and DOX effectively prevents cell cycle progression during the G2/M phase and induces breast cancer cell death. Female athymic nude mice were xenografted with MCF-7 cells and the efficacy of (150 mg/kg/day), DOX (1.5 mg/kg/week, i.v.), or in combination (BTN 300 mg/kg/day + DOX 1.0 mg/kg/week, i.v) were evaluated.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Noscapina , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Docetaxel/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Noscapina/farmacología , Tubulina (Proteína)
18.
Biofactors ; 47(6): 975-991, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34534373

RESUMEN

Noscapine has been mentioned as one of the effective drugs with potential therapeutic applications. With few side effects and amazing capabilities, noscapine can be considered different from other opioids-like structure compounds. Since 1930, extensive studies have been conducted in the field of pharmacological treatments from against malaria to control cough and cancer treatment. Furthermore, recent studies have shown that noscapine and some analogues, like 9-bromonoscapine, amino noscapine, and 9-nitronoscapine, can be used to treat polycystic ovaries syndrome, stroke, and other diseases. Given the numerous results presented in this field and the role of different receptors in the therapeutic effects of noscapine, we aimed to review the properties, therapeutic effects, and the role of receptors in the treatment of noscapine.


Asunto(s)
Antiinflamatorios/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Antitusígenos/farmacología , Noscapina/química , Noscapina/farmacología , Animales , Antiinflamatorios/química , Antimaláricos/química , Antineoplásicos/química , Antitusígenos/química , Apoptosis/efectos de los fármacos , Femenino , Humanos , Ratones , Noscapina/análogos & derivados
19.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361780

RESUMEN

Parkinson's disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.


Asunto(s)
Autofagia/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Noscapina/farmacología , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/genética , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Catalasa/genética , Catalasa/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Rotenona/toxicidad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069423

RESUMEN

Endometrosis is a reproductive pathology that is responsible for mare infertility. Our recent studies have focused on the involvement of neutrophil extracellular traps enzymes, such as elastase (ELA), in the development of equine endometrosis. Noscapine (NOSC) is an alkaloid derived from poppy opium with anticough, antistroke, anticancer, and antifibrotic properties. The present work investigates the putative inhibitory in vitro effect of NOSC on collagen type I alpha 2 chain (COL1A2) mRNA and COL1 protein relative abundance induced by ELA in endometrial explants of mares in the follicular or mid-luteal phases at 24 or 48 h of treatment. The COL1A2 mRNA was evaluated by qPCR and COL1 protein relative abundance by Western blot. In equine endometrial explants, ELA increased COL 1 expression, while NOSC inhibited it at both estrous cycle phases and treatment times. These findings contribute to the future development of new endometrosis treatment approaches. Noscapine could be a drug capable of preventing collagen synthesis in mare's endometrium and facilitate the therapeutic approach.


Asunto(s)
Colágeno Tipo I/metabolismo , Endometriosis/metabolismo , Noscapina/farmacología , Animales , Colágeno/metabolismo , Colágeno Tipo I/efectos de los fármacos , Colágeno Tipo I/genética , Endometriosis/tratamiento farmacológico , Endometriosis/veterinaria , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Ciclo Estral , Trampas Extracelulares/metabolismo , Femenino , Fibrosis , Enfermedades de los Caballos/patología , Caballos , Noscapina/metabolismo , Elastasa Pancreática/metabolismo , Inhibidores de Proteasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...