Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Trends Genet ; 38(11): 1147-1169, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35853769

RESUMEN

Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Nucleósido Desaminasas , Sistemas CRISPR-Cas/genética , ADN/genética , Roturas del ADN de Doble Cadena , Edición Génica/métodos , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , Nucleótidos , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/metabolismo
2.
Nat Chem Biol ; 17(12): 1262-1270, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663942

RESUMEN

DNA deaminase enzymes play key roles in immunity and have recently been harnessed for their biotechnological applications. In base editors (BEs), the combination of DNA deaminase mutator activity with CRISPR-Cas localization confers the powerful ability to directly convert one target DNA base into another. While efforts have been made to improve targeting efficiency and precision, all BEs so far use a constitutively active DNA deaminase. The absence of regulatory control over promiscuous deaminase activity remains a major limitation to accessing the widespread potential of BEs. Here, we reveal sites that permit splitting of DNA cytosine deaminases into two inactive fragments, whose reapproximation reconstitutes activity. These findings allow for the development of split-engineered BEs (seBEs), which newly enable small-molecule control over targeted mutator activity. We show that the seBE strategy facilitates robust regulated editing with BE scaffolds containing diverse deaminases, offering a generalizable solution for temporally controlling precision genome editing.


Asunto(s)
Nucleósido Desaminasas/química , Biotecnología , Sistemas CRISPR-Cas , Citosina/química , ADN/química , Roturas del ADN de Doble Cadena , Escherichia coli , Edición Génica , Conformación de Ácido Nucleico , Nucleósido Desaminasas/genética , Sirolimus/química
3.
Nature ; 571(7764): 275-278, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181567

RESUMEN

Recently developed DNA base editing methods enable the direct generation of desired point mutations in genomic DNA without generating any double-strand breaks1-3, but the issue of off-target edits has limited the application of these methods. Although several previous studies have evaluated off-target mutations in genomic DNA4-8, it is now clear that the deaminases that are integral to commonly used DNA base editors often bind to RNA9-13. For example, the cytosine deaminase APOBEC1-which is used in cytosine base editors (CBEs)-targets both DNA and RNA12, and the adenine deaminase TadA-which is used in adenine base editors (ABEs)-induces site-specific inosine formation on RNA9,11. However, any potential RNA mutations caused by DNA base editors have not been evaluated. Adeno-associated viruses are the most common delivery system for gene therapies that involve DNA editing; these viruses can sustain long-term gene expression in vivo, so the extent of potential RNA mutations induced by DNA base editors is of great concern14-16. Here we quantitatively evaluated RNA single nucleotide variations (SNVs) that were induced by CBEs or ABEs. Both the cytosine base editor BE3 and the adenine base editor ABE7.10 generated tens of thousands of off-target RNA SNVs. Subsequently, by engineering deaminases, we found that three CBE variants and one ABE variant showed a reduction in off-target RNA SNVs to the baseline while maintaining efficient DNA on-target activity. This study reveals a previously overlooked aspect of off-target effects in DNA editing and also demonstrates that such effects can be eliminated by engineering deaminases.


Asunto(s)
ADN/genética , Edición Génica/métodos , Mutagénesis , Mutación , Nucleósido Desaminasas/genética , Ingeniería de Proteínas , ARN/genética , Adenina/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Citosina/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Células HEK293 , Humanos , Nucleósido Desaminasas/metabolismo , Especificidad por Sustrato , Transfección
4.
BMC Cancer ; 19(1): 197, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30832616

RESUMEN

BACKGROUND: The cytosine deaminase (CD)/5-fluorocytosine (5-FC) system is among the best explored enzyme/prodrug systems in the field of the suicide gene therapy. Recently, by the screening of the environmental metagenomic libraries we identified a novel isocytosine deaminase (ICD), termed Vcz, which is able of specifically converting a prodrug 5-fluoroisocytosine (5-FIC) into toxic drug 5-fluorouracil (5-FU). The aim of this study is to test the applicability of the ICD Vcz / 5-FIC pair as a potential suicide gene therapy tool. METHODS: Vcz-expressing human glioblastoma U87 and epithelial colorectal adenocarcinoma Caco-2 cells were treated with 5-FIC, and the Vcz-mediated cytotoxicity was evaluated by performing an MTT assay. In order to examine anti-tumor effects of the Vcz/5-FIC system in vivo, murine bone marrow-derived mesenchymal stem cells (MSC) were transduced with the Vcz-coding lentivirus and co-injected with 5-FIC or control reagents into subcutaneous GL261 tumors evoked in C57/BL6 mice. RESULTS: 5-FIC alone showed no significant toxic effects on U87 and Caco-2 cells at 100 µM concentration, whereas the number of cells of both cell lines that express Vcz cytosine deaminase gene decreased by approximately 60% in the presence of 5-FIC. The cytotoxic effects on cells were also induced by media collected from Vcz-expressing cells pre-treated with 5-FIC. The co-injection of the Vcz-transduced mesenchymal stem cells and 5-FIC have been shown to augment tumor necrosis and increase longevity of tumorized mice by 50% in comparison with control group animals. CONCLUSIONS: We have confirmed that the novel ICD Vcz together with the non-toxic prodrug 5-FIC has a potential of being a new enzyme/prodrug system for suicide gene therapy.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Flucitosina/análogos & derivados , Fluorouracilo/farmacología , Genes Transgénicos Suicidas , Profármacos/farmacología , Adenocarcinoma , Animales , Antimetabolitos Antineoplásicos/metabolismo , Neoplasias Encefálicas , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales , Citosina/análogos & derivados , Citosina/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Flucitosina/metabolismo , Flucitosina/farmacología , Fluorouracilo/metabolismo , Terapia Genética , Vectores Genéticos , Glioblastoma , Humanos , Lentivirus , Células Madre Mesenquimatosas , Ratones , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , Profármacos/metabolismo
5.
Plant Cell ; 31(3): 734-751, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787180

RESUMEN

Plants can fully catabolize purine nucleotides. A firmly established central intermediate is the purine base xanthine. In the current widely accepted model of plant purine nucleotide catabolism, xanthine can be generated in various ways involving either inosine and hypoxanthine or guanosine and xanthosine as intermediates. In a comprehensive mutant analysis involving single and multiple mutants of urate oxidase, xanthine dehydrogenase, nucleoside hydrolases, guanosine deaminase, and hypoxanthine guanine phosphoribosyltransferase, we demonstrate that purine nucleotide catabolism in Arabidopsis (Arabidopsis thaliana) mainly generates xanthosine, but not inosine and hypoxanthine, and that xanthosine is derived from guanosine deamination and a second source, likely xanthosine monophosphate dephosphorylation. Nucleoside hydrolase 1 (NSH1) is known to be essential for xanthosine hydrolysis, but the in vivo function of a second cytosolic nucleoside hydrolase, NSH2, is unclear. We demonstrate that NSH1 activates NSH2 in vitro and in vivo, forming a complex with almost two orders of magnitude higher catalytic efficiency for xanthosine hydrolysis than observed for NSH1 alone. Remarkably, an inactive NSH1 point mutant can activate NSH2 in vivo, fully preventing purine nucleoside accumulation in nsh1 background. Our data lead to an altered model of purine nucleotide catabolism that includes an NSH heterocomplex as a central component.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Guanosina Monofosfato/metabolismo , Ribonucleósidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutación , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , Plantas Modificadas Genéticamente , Xantinas
6.
Alcohol Clin Exp Res ; 41(7): 1271-1279, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28449374

RESUMEN

BACKGROUND: A substantial part of the risk for alcohol use disorder is determined by genetic factors. We previously used chromosome substitution (CSS) mice, to identify a quantitative trait loci (QTL) for alcohol preference on mouse chromosome 2. The aim of this study was to identify candidate genes within this QTL that confer the risk for alcohol preference. METHODS: In order to delineate the neurobiological underpinnings of alcohol consumption, we expanded on the QTL approach to identify candidate genes for high alcohol preference in mice. We narrowed down a QTL for alcohol preference on mouse chromosome 2, that we previously identified using CSS mice, to 4 candidate genes in silico. Expression levels of these candidate genes in prefrontal cortex, amygdala, and nucleus accumbens-brain regions implicated in reward and addiction-were subsequently compared for the CSS-2 and the C57BL/6J host strain. RESULTS: We observed increased expression of adenosine deaminase-like (Adal) in all 3 regions in CSS-2 mice. Moreover, we found that the adenosine deaminase inhibitor EHNA reduced the difference in alcohol preference between CSS-2 and C57BL/6J mice. CONCLUSIONS: This study identifies Adal as a genetically protective factor against alcohol consumption in mice, in which elevated Adal levels contribute to low alcohol preference.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Nucleósido Desaminasas/genética , Animales , Encéfalo/metabolismo , Masculino , Ratones Endogámicos C57BL , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Receptores Colinérgicos/metabolismo
7.
Sci Rep ; 6: 38133, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924834

RESUMEN

Follicular lymphoma (FL) is an uncurable cancer characterized by progressive severity of relapses. We analyzed sequence context specificity of mutations in the B cells from a large cohort of FL patients. We revealed substantial excess of mutations within a novel hybrid nucleotide motif: the signature of somatic hypermutation (SHM) enzyme, Activation Induced Deaminase (AID), which overlaps the CpG methylation site. This finding implies that in FL the SHM machinery acts at genomic sites containing methylated cytosine. We identified the prevalence of this hybrid mutational signature in many other types of human cancer, suggesting that AID-mediated, CpG-methylation dependent mutagenesis is a common feature of tumorigenesis.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Linfoma Folicular/genética , Mutación/genética , Nucleósido Desaminasas/genética , Linfocitos B/metabolismo , Carcinogénesis/genética , Citosina/metabolismo , Humanos , Mutagénesis/genética , Nucleótidos/genética
8.
J Bacteriol ; 196(11): 1950-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24633874

RESUMEN

We show here that deoxycytidine deaminase (DCD)-deficient mutants of Escherichia coli are hypersensitive to killing by exogenous cytidine, adenosine, or guanosine, whereas wild-type cells are not. This hypersensitivity is reversed by exogenous thymidine. The mechanism likely involves the allosteric regulation of ribonucleotide reductase and severe limitations of the dTTP pools, resulting in thymineless death, the phenomenon of cell death due to thymidine starvation. We also report here that DCD-deficient mutants of E. coli are more sensitive to a series of different antibiotics, including vancomycin, and we show synergistic killing with the combination of vancomycin and cytidine. One possibility is that a very low, subinhibitory concentration of vancomycin enters Gram-negative cells and that this concentration is potentiated by chromosomal lesions resulting from the thymineless state. A second possibility is that the metabolic imbalance resulting from DCD deficiency affects the assembly of the outer membrane, which normally presents a barrier to drugs such as vancomycin. We consider these findings with regard to ideas of rendering Gram-negative bacteria sensitive to drugs such as vancomycin.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Nucleósido Desaminasas/metabolismo , Vancomicina/farmacología , Adenosina/farmacología , Citidina/farmacología , Citidina Desaminasa , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Eliminación de Gen , Guanosina/farmacología , Nucleósido Desaminasas/genética
9.
J Agric Food Chem ; 62(8): 1796-801, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24475736

RESUMEN

Brassica oleracea deoxycytidine deaminase (BoDCD), a deoxycytidine deaminase (DCD, EC 3.5.4.14) enzyme, is known to play an important role in the Trichoderma harzianum ETS 323 mediated resistance mechanism in young leaves of B. oleracea var. capitata during Rhizoctonia solani infection. BoDCD potentially neutralizes cytotoxic products of host lipoxygenase activity, and thereby BoDCD restricts the hypersensitivity-related programmed cell death induced in plants during the initial stages of infection. To determine the biochemical characteristics and to partially elucidate the designated functional properties of BoDCD, the enzyme was cloned into an Escherichia coli expression system, and its potential to neutralize the toxic analogues of 2'-deoxycytidine (dC) was examined. BoDCD transformants of E. coli cells were found to be resistant to 2'-deoxycytidine analogues at all of the concentrations tested. The BoDCD enzyme was also overexpressed as a histidine-tagged protein and purified using nickel chelating affinity chromatography. The molecular weight of BoDCD was determined to be 20.8 kDa as visualized by SDS-PAGE. The substrate specificity and other kinetic properties show that BoDCD is more active in neutralizing cytotoxic cytosine ß-d-arabinofuranoside than in deaminating 2'-deoxycytinde to 2'-deoxyuridine in nucleic acids or in metabolizing cytidine to uridine. The optimal temperature and pH of the enzyme were 27 °C and 7.5. The Km and Vmax values of BoDCD were, respectively, 91.3 µM and 1.475 mM for its natural substrate 2'-deoxycytidine and 63 µM and 2.072 mM for cytosine ß-d-arabinofuranoside. The phenomenon of neutralization of cytotoxic dC analogues by BoDCD is discussed in detail on the basis of enzyme biochemical properties.


Asunto(s)
Brassica/enzimología , Nucleósido Desaminasas/química , Proteínas de Plantas/química , Brassica/química , Brassica/genética , Citidina/metabolismo , Citidina Desaminasa , Citosina/metabolismo , Cinética , Peso Molecular , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato , Uridina/metabolismo
10.
RNA Biol ; 11(12): 1608-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25625329

RESUMEN

tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.


Asunto(s)
Nucleósido Desaminasas/metabolismo , Subunidades de Proteína/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Sitios de Unión , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleósido Desaminasas/genética , Unión Proteica , Subunidades de Proteína/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/genética
11.
Plant Cell ; 25(10): 4101-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24130159

RESUMEN

Purine nucleotide catabolism is common to most organisms and involves a guanine deaminase to convert guanine to xanthine in animals, invertebrates, and microorganisms. Using metabolomic analysis of mutants, we demonstrate that Arabidopsis thaliana uses an alternative catabolic route employing a highly specific guanosine deaminase (GSDA) not reported from any organism so far. The enzyme is ubiquitously expressed and deaminates exclusively guanosine and 2'-deoxyguanosine but no other aminated purines, pyrimidines, or pterines. GSDA belongs to the cytidine/deoxycytidylate deaminase family of proteins together with a deaminase involved in riboflavin biosynthesis, the chloroplastic tRNA adenosine deaminase Arg and a predicted tRNA-specific adenosine deaminase 2 in A. thaliana. GSDA is conserved in plants, including the moss Physcomitrella patens, but is absent in the algae and outside the plant kingdom. Our data show that xanthosine is exclusively generated through the deamination of guanosine by GSDA in A. thaliana, excluding other possible sources like the dephosphorylation of xanthosine monophosphate. Like the nucleoside hydrolases NUCLEOSIDE HYDROLASE1 (NSH1) and NSH2, GSDA is located in the cytosol, indicating that GMP catabolism to xanthine proceeds in a mostly cytosolic pathway via guanosine and xanthosine. Possible implications for the biosynthetic route of purine alkaloids (caffeine and theobromine) and ureides in other plants are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Nucleósido Desaminasas/metabolismo , Purinas/metabolismo , Ribonucleósidos/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonación Molecular , ADN Bacteriano/genética , Metaboloma , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Nucleósido Desaminasas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Xantinas
12.
Biochemistry ; 52(37): 6525-36, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23972005

RESUMEN

Proteins of unknown function belonging to cog1816 and cog0402 were characterized. Sav2595 from Steptomyces avermitilis MA-4680, Acel0264 from Acidothermus cellulolyticus 11B, Nis0429 from Nitratiruptor sp. SB155-2 and Dr0824 from Deinococcus radiodurans R1 were cloned, purified, and their substrate profiles determined. These enzymes were previously incorrectly annotated as adenosine deaminases or chlorohydrolases. It was shown here that these enzymes actually deaminate 6-aminodeoxyfutalosine. The deamination of 6-aminodeoxyfutalosine is part of an alternative menaquinone biosynthetic pathway that involves the formation of futalosine. 6-Aminodeoxyfutalosine is deaminated by these enzymes with catalytic efficiencies greater than 10(5) M(-1) s(-1), Km values of 0.9-6.0 µM, and kcat values of 1.2-8.6 s(-1). Adenosine, 2'-deoxyadenosine, thiomethyladenosine, and S-adenosylhomocysteine are deaminated at least an order of magnitude slower than 6-aminodeoxyfutalosine. The crystal structure of Nis0429 was determined and the substrate, 6-aminodeoxyfutalosine, was positioned in the active site on the basis of the presence of adventitiously bound benzoic acid. In this model, Ser-145 interacts with the carboxylate moiety of the substrate. The structure of Dr0824 was also determined, but a collapsed active site pocket prevented docking of substrates. A computational model of Sav2595 was built on the basis of the crystal structure of adenosine deaminase and substrates were docked. The model predicted a conserved arginine after ß-strand 1 to be partially responsible for the substrate specificity of Sav2595.


Asunto(s)
Nucleósido Desaminasas/metabolismo , Nucleósidos de Purina/metabolismo , Vitamina K 2/metabolismo , Actinomycetales/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Desaminación , Deinococcus/enzimología , Epsilonproteobacteria/enzimología , Epsilonproteobacteria/genética , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Nucleósido Desaminasas/genética , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato
13.
Anticancer Res ; 33(5): 1899-912, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23645737

RESUMEN

BACKGROUND/AIM: GS 9219 is a double prodrug of antiproliferative nucleotide analog 9-(2-Phosphonylmethoxyethyl)guanine (PMEG), with potent in vivo efficacy against various hematological malignancies. This study investigates the role of adenosine deaminase-like (ADAL) protein in the intracellular activation of GS-9219. MATERIALS AND METHODS: A cell line resistant to 9-(2-Phosphonylmethoxyethyl)-N(6)-cyclopropyl-2,6-diaminopurine (cPrPMEDAP), an intermediate metabolite of GS-9219, was generated and characterized. RESULTS: The resistant cell line was cross-resistant to cPrPMEDAP and GS-9219, due to a defect in the deamination of cPrPMEDAP to PMEG. Mutations in the ADAL gene (H286R and S180N) were identified in the resistant cells that adversely-affected its enzymatic activity. Introduction of the wild-type ADAL gene re-sensitized resistant cells to both cPrPMEDAP and GS-9219. CONCLUSION: The ADAL protein plays an essential role in the intracellular activation of GS-9219 by catalyzing the deamination of cPrPMEDAP metabolite to PMEG. Mutations affecting the activity of ADAL confer resistance to both GS-9219 and its metabolite cPrPMEDAP.


Asunto(s)
Adenina/análogos & derivados , Alanina/análogos & derivados , Resistencia a Antineoplásicos/genética , Mutación/genética , Nucleósido Desaminasas/genética , Purinas/farmacología , Neoplasias del Cuello Uterino/genética , Adenina/farmacología , Alanina/farmacología , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Western Blotting , Femenino , Humanos , Datos de Secuencia Molecular , Nucleósido Desaminasas/química , Nucleósido Desaminasas/metabolismo , Profármacos/farmacología , Conformación Proteica , Homología de Secuencia de Aminoácido , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/tratamiento farmacológico
14.
Angew Chem Int Ed Engl ; 51(44): 11166-9, 2012 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-23038402

RESUMEN

Checking for mistakes: By conjugating a catalytic domain with a guide RNA, deamination activity can be harnessed to repair a specific codon on mRNA. This method can be used for the highly selective repair of point mutations in mRNA by site-selective editing.


Asunto(s)
Nucleósido Desaminasas/química , Mutación Puntual , ARN/química , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Modelos Moleculares , Estructura Molecular , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Agric Food Chem ; 60(43): 10723-32, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23046447

RESUMEN

Plant interactions with microbial biocontrol agents are used as experimental models to understand resistance-related molecular adaptations of plants. In a hydroponic three-way interaction study, a novel Trichoderma harzianum ETS 323 mediated mechanism was found to induce resistance to Rhizoctonia solani infection in Brassica oleracea var. capitata plantlets. The R. solani challenge on leaves initiate an increase in lipoxygenase activity and associated hypersensitive tissue damage with characteristic "programmed cell death" that facilitate the infection. However, B. oleracea plantlets whose roots were briefly (6 h) colonized by T. harzianum ETS 323 developed resistance to R. solani infection through a significant reduction of the host hypersensitive tissue damage. The resistance developed in the distal leaf tissue was associated with the expression of a H(2)O(2)-inducible glutathione S-transferase (BoGST), which scavenges cytotoxic reactive electrophiles, and of a deoxycytidine deaminase (BoDCD), which modulates the host molecular expression and potentially neutralizes the DNA adducts and maintains DNA integrity. The cDNAs of BoGST and BoDCD were cloned and sequenced; their expressions were verified by reverse-transcription polymerase chain reaction analysis and were found to be transcriptionally activated during the three-way interaction.


Asunto(s)
Brassica/enzimología , Glutatión Transferasa/genética , Nucleósido Desaminasas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Rhizoctonia/fisiología , Trichoderma/fisiología , Brassica/genética , Brassica/inmunología , Brassica/microbiología , Citidina Desaminasa , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa/inmunología , Nucleósido Desaminasas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/inmunología , Rhizoctonia/inmunología
16.
Ann N Y Acad Sci ; 1267: 79-85, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22954220

RESUMEN

Organisms minimize genetic damage through complex pathways of DNA repair. Yet a gene family--the AID/APOBECs--has evolved in vertebrates with the sole purpose of producing targeted damage in DNA/RNA molecules through cytosine deamination. They likely originated from deaminases involved in A>I editing in tRNAs. AID, the archetypal AID/APOBEC, is the trigger of the somatic diversification processes of the antibody genes. Its homologs may have been associated with the immune system even before the evolution of the antibody genes. The APOBEC3s, arising from duplication of AID, are involved in the restriction of exogenous/endogenous threats such as retroviruses and mobile elements. Another family member, APOBEC1, has (re)acquired the ability to target RNA while maintaining its ability to act on DNA. The AID/APOBECs have shaped the evolution of vertebrate genomes, but their ability to mutate nucleic acids is a double-edged sword: AID is a key player in lymphoproliferative diseases by triggering mutations and chromosomal translocations in B cells, and there is increasing evidence suggesting that other AID/APOBECs could be involved in cancer development as well.


Asunto(s)
Daño del ADN , Evolución Molecular , Genoma Humano , Nucleósido Desaminasas/fisiología , Animales , Humanos , Inmunoglobulinas/genética , Mutagénesis , Mutación , Neoplasias/genética , Nucleósido Desaminasas/genética , Filogenia , ARN/genética , ARN/metabolismo , Edición de ARN
17.
Curr Gene Ther ; 12(2): 77-91, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22384805

RESUMEN

Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.


Asunto(s)
Enzimas/metabolismo , Terapia Genética/métodos , Neoplasias/terapia , Profármacos/uso terapéutico , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Enzimas/genética , Terapia Genética/tendencias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , Nucleotidasas/genética , Nucleotidasas/metabolismo , Nucleótidos/metabolismo , Profármacos/metabolismo , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo
18.
Invest New Drugs ; 30(3): 1175-83, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21424698

RESUMEN

PURPOSE: Patients with metastatic pancreatic cancer have limited therapeutic options. The role of the Ras-Raf-MAPK pathway and of vascular endothelial growth factor in pancreatic carcinogenesis provided the rational to evaluate the efficacy of sorafenib with or without gemcitabine in a randomized phase II study. METHODS: Patients with metastatic pancreatic cancer were randomized to sorafenib alone (arm A) or sorafenib with gemcitabine (arm B). RESULTS: Arm A was closed to accrual at interim analysis due to the lack of objective response. Median PFS and OS were 2.3 and 4.3 months respectively. There was one partial response among the 37 patients in arm B. Median PFS and OS were 2.9 and 6.5 months respectively. There were more grade 3 and 4 toxicities in arm B with the most common being neutropenia (17%), thrombocytopenia (8%), alkaline phosphatase elevation (14%), venous thromboembolism (8%), diarrhea, hypokalemia and ALT elevation (5%) each. Several associations were noted between single nucleotide polymorphisms in ribonucleotide reductase, Cox-2, vascular endothelial growth factor and survival in patients treated with gemcitabine and sorafenib. CONCLUSIONS: Neither sorafenib alone or sorafenib in combination with gemcitabine manifested promising activity in metastatic pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclooxigenasa 2/genética , Nucleósido Desaminasas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Supresoras de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bencenosulfonatos/administración & dosificación , Bencenosulfonatos/efectos adversos , Citidina Desaminasa , Desoxicitidina/administración & dosificación , Desoxicitidina/efectos adversos , Desoxicitidina/análogos & derivados , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Niacinamida/análogos & derivados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Compuestos de Fenilurea , Polimorfismo de Nucleótido Simple , Piridinas/administración & dosificación , Piridinas/efectos adversos , Ribonucleósido Difosfato Reductasa , Sorafenib , Gemcitabina
19.
J Med Chem ; 54(16): 5902-14, 2011 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-21755941

RESUMEN

Human N(6)-methyl-AMP/dAMP aminohydrolase has been shown to be involved in metabolism of pharmacologically important N(6)-substituted purine nucleosides and 5'-monophosphate prodrugs thereof. This enzyme was cloned and expressed in E. coli, and mass spectroscopic analysis followed by amino acid sequence analyses indicated that the protein was adenosine deaminase-like protein isoform 1 (ADAL1). An extensive structure-activity relationship study showed that ADAL1 was able to catalyze removal of different alkyl groups not only from N(6)-substituted purine or 2-aminopurine nucleoside monophosphates but also from O(6)-substituted compounds. The ADAL1 activity was susceptible to modifications in the phosphate moiety but not to changes in the sugar moiety. Overall, our data indicated that ADAL1 specifically acts at the 6-position of purine and 2-aminopurine nucleoside monophosphates. Our results may help designing of new therapeutic nucleoside/nucleotide prodrugs with desired metabolic profiles. Furthermore, amino acid sequence analysis in conjunction with crystallographic data and metal analysis suggested that ADAL1 contains a catalytic zinc ion. Finally, a potential physiological role of ADAL1 is discussed.


Asunto(s)
2-Aminopurina/metabolismo , Adenosina Monofosfato/metabolismo , Aminohidrolasas/metabolismo , Nucleósido Desaminasas/metabolismo , Purinas/metabolismo , 2-Aminopurina/química , Adenosina Monofosfato/química , Secuencia de Aminoácidos , Aminohidrolasas/química , Aminohidrolasas/genética , Biocatálisis , Línea Celular Tumoral , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Humanos , Hidrólisis , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Datos de Secuencia Molecular , Estructura Molecular , Peso Molecular , Nucleósido Desaminasas/genética , Fosforilación , Purinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
20.
Genes Cells ; 16(6): 714-27, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21605288

RESUMEN

Defects in the FANCJ/BRIP1 helicase gene are associated with genome instability disorders such as familial breast cancer or Fanconi anemia (FA). Although FANCJ has an in vitro activity to resolve G-quadruplex (G4) structures, and FANCJ ortholog in C. elegans prevents G4-associated deletions during replication, how FANCJ loss affects genome integrity in higher organisms remains unclear. Here, we report that FANCJ, but not other FA genes FANCD2 or FANCC, protected against large-scale genomic deletion that occurred frequently at the rearranged immunoglobulin heavy chain (IgH) locus in chicken DT40 cell line, suggesting that FancJ protects the genome independently of the FA ubiquitination pathway. In a more unbiased approach using array-comparative genomic hybridization, we identified de novo deletions as well as amplifications in fancj cells kept in culture for 2 months. A cluster of G4 sequence motifs was found near the breakpoint of one amplified region, but G4 sequence motifs were not detected at the breakpoints of two deleted regions. These results collectively suggest that, unlike in C. elegans, actions of vertebrate FANCJ to promote genome stability may not be limited to protection against the G4-mediated gene deletions.


Asunto(s)
Proteína del Grupo de Complementación L de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica/genética , ARN Helicasas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Pollos , Hibridación Genómica Comparativa , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación L de la Anemia de Fanconi/genética , G-Cuádruplex , Amplificación de Genes/genética , Conversión Génica/genética , Eliminación de Gen , Orden Génico , Reordenamiento Génico/genética , Marcación de Gen , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/genética , Datos de Secuencia Molecular , Nucleósido Desaminasas/genética , Nucleósido Desaminasas/metabolismo , ARN Helicasas/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...