Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141015, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615986

RESUMEN

The bifunctional enzyme, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) is involved in catalyzing penultimate and final steps of purine de novo biosynthetic pathway crucial for the survival of organisms. The present study reports the characterization of ATIC from Candidatus Liberibacer asiaticus (CLasATIC) along with the identification of potential inhibitor molecules and evaluation of cell proliferative activity. CLasATIC showed both the AICAR Transformylase (AICAR TFase) activity for substrates, 10-f-THF (Km, 146.6 µM and Vmax, 0.95 µmol/min/mg) and AICAR (Km, 34.81 µM and Vmax, 0.56 µmol/min/mg) and IMP cyclohydrolase (IMPCHase) activitiy (Km, 1.81 µM and Vmax, 2.87 µmol/min/mg). The optimum pH and temperature were also identified for the enzyme activity. In-silico study has been conducted to identify potential inhibitor molecules through virtual screening and MD simulations. Out of many compounds, HNBSA, diosbulbin A and lepidine D emerged as lead compounds, exhibiting higher binding energy and stability for CLasATIC than AICAR. ITC study reports higher binding affinities for HNBSA and diosbulbin A (Kd, 12.3 µM and 34.2 µM, respectively) compared to AICAR (Kd, 83.4 µM). Likewise, DSC studies showed enhanced thermal stability for CLasATIC in the presence of inhibitors. CD and Fluorescence studies revealed significant conformational changes in CLasATIC upon binding of the inhibitors. CLasATIC demonstrated potent cell proliferative, wound healing and ROS scavenging properties evaluated by cell-based bioassays using CHO cells. This study highlights CLasATIC as a promising drug target with potential inhibitors for managing CLas and its unique cell protective, wound-healing properties for future biotechnological applications.


Asunto(s)
Aminoimidazol Carboxamida , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/química , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacología , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/metabolismo , Fosforribosilaminoimidazolcarboxamida-Formiltransferasa/química , Simulación del Acoplamiento Molecular , Ribonucleótidos/metabolismo , Ribonucleótidos/química , Cinética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Nucleótido Desaminasas/metabolismo , Nucleótido Desaminasas/química , Nucleótido Desaminasas/genética , Especificidad por Sustrato , Proliferación Celular/efectos de los fármacos , Transferasas de Hidroximetilo y Formilo/metabolismo , Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/antagonistas & inhibidores , Complejos Multienzimáticos
2.
Biochem Biophys Res Commun ; 503(1): 195-201, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29864427

RESUMEN

Archaeal/fungal Rib7 and eubacterial RibG possess a reductase domain for ribosyl reduction in the second and third steps, respectively, of riboflavin biosynthesis. These enzymes are specific for an amino and a carbonyl group of the pyrimidine ring, respectively. Here, several crystal structures of Methanosarcina mazei Rib7 are reported at 2.27-1.95 Šresolution, which are the first archaeal dimeric Rib7 structures. Mutational analysis displayed that no detectable activity was observed for the Bacillus subtilis RibG K151A, K151D, and K151E mutants, and the M. mazei Rib7 D33N, D33K, and E156Q variants, while 0.1-0.6% of the activity was detected for the M. mazei Rib7 N9A, S29A, D33A, and D57N variants. Our results suggest that Lys151 in B. subtilis RibG, while Asp33 together with Arg36 in M. mazei Rib7, ensure the specific substrate recognition. Unexpectedly, an endogenous NADPH cofactor is observed in M. mazei Rib7, in which the 2'-phosphate group interacts with Ser88, and Arg91. Replacement of Ser88 with glutamate eliminates the endogenous NADPH binding and switches preference to NADH. The lower melting temperature of ∼10 °C for the S88E and R91A mutants suggests that nature had evolved a tightly bound NADPH to greatly enhance the structural stability of archaeal Rib7.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Nucleótido Desaminasas/metabolismo , Oxidorreductasas/metabolismo , Riboflavina/biosíntesis , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Estabilidad de Enzimas , Evolución Molecular , Methanosarcina/enzimología , Methanosarcina/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , NAD/metabolismo , NADP/metabolismo , Nucleótido Desaminasas/química , Nucleótido Desaminasas/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética
3.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 254-263, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29042184

RESUMEN

Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to block the IMPCH active site allowing investigation of the effects of mutation on ligand binding in the AICARFT active site. The majority of nucleotide ligands bind selectively at one of the two active sites with the exception of xanthosine monophosphate, XMP, which, in addition to binding in both AICARFT and IMPCH active sites, shows evidence for cooperative binding with communication between symmetrically-related active sites in the two IMPCH domains. The AICARFT site is capable of independently binding both nucleotide and folate substrates with high affinity however no evidence for positive cooperativity in binding could be detected using the model ligands employed in this study.


Asunto(s)
Transferasas de Hidroximetilo y Formilo/química , Modelos Moleculares , Complejos Multienzimáticos/química , Nucleótido Desaminasas/química , Nucleótidos/química , Dominio Catalítico , Humanos , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/metabolismo , Nucleótidos/genética , Nucleótidos/metabolismo , Unión Proteica , Especificidad por Sustrato/fisiología
4.
FEBS J ; 284(24): 4233-4261, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29063699

RESUMEN

The 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) catalyzes final two steps of purine nucleotide de novo biosynthetic pathway. This study reports the characterization of ATIC from Staphylococcus lugdunensis (SlugATIC). Apart from kinetic analysis and a detailed biophysical characterization of SlugATIC, the role of ATIC in cell proliferation has been demonstrated for the first time. The purified recombinant SlugATIC and its truncated domains exist mainly in dimeric form was revealed in gel-filtration and glutaraldehyde cross-linking studies. The two activities reside on separate domains was demonstrated in kinetic analysis of SlugATIC and reconstituted truncated N-terminal IMP cyclohydrolase (IMPCHase) and C-terminal AICAR transformylase (AICAR TFase) domains. Site-directed mutagenesis showed that Lys255 and His256 are the key catalytic residues, while Asn415 substantially contributes to AICAR TFase activity in SlugATIC. The differential scanning calorimetry (DSC) analysis revealed a molten globule-like structure for independent N-terminal domain as compared with a relatively stable conformational state in full-length SlugATIC signifying the importance of covalently linked domains. Unlike reported crystal structures, the DSC studies revealed significant conformational changes on binding of leading ligand to AICAR TFase domain in SlugATIC. The cell proliferation activity of SlugATIC was observed where it promoted proliferation and viability of NIH 3T3 and RIN-5F cells, exhibited in vitro wound healing in NIH 3T3 fibroblast cells, and rescued RIN-5F cells from the cytotoxic effects of palmitic acid and high glucose. The results suggest that ATIC, an important drug target, can also be exploited for its cell proliferative properties.


Asunto(s)
Proteínas Bacterianas/fisiología , Transferasas de Hidroximetilo y Formilo/fisiología , Complejos Multienzimáticos/fisiología , Nucleótido Desaminasas/fisiología , Staphylococcus lugdunensis/enzimología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Rastreo Diferencial de Calorimetría , División Celular/efectos de los fármacos , Glucosa/toxicidad , Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/aislamiento & purificación , Inosina Monofosfato/farmacología , Ratones , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Mutación , Células 3T3 NIH , Nucleótido Desaminasas/química , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/aislamiento & purificación , Ácido Palmítico/toxicidad , Conformación Proteica , Dominios Proteicos , Ratas , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleótidos/farmacología , Staphylococcus lugdunensis/genética , Cicatrización de Heridas/efectos de los fármacos
5.
Biochemistry ; 55(7): 1107-19, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26848874

RESUMEN

Mycobacterium tuberculosis (Mtb) Rv2671 is annotated as a 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate (AROPP) reductase (RibD) in the riboflavin biosynthetic pathway. Recently, a strain of Mtb with a mutation in the 5' untranslated region of Rv2671, which resulted in its overexpression, was found to be resistant to dihydrofolate reductase (DHFR) inhibitors including the anti-Mtb drug para-aminosalicylic acid (PAS). In this study, a biochemical analysis of Rv2671 showed that it was able to catalyze the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), which explained why the overexpression of Rv2671 was sufficient to confer PAS resistance. We solved the structure of Rv2671 in complex with the NADP(+) and tetrahydrofolate (THF), which revealed the structural basis for the DHFR activity. The structures of Rv2671 complexed with two DHFR inhibitors, trimethoprim and trimetrexate, provided additional details of the substrate binding pocket and elucidated the differences between their inhibitory activities. Finally, Rv2671 was unable to catalyze the reduction of AROPP, which indicated that Rv2671 and its closely related orthologues are not involved in riboflavin biosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , NADP/química , Nucleótido Desaminasas/química , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolatos/química , Ácido Aminosalicílico/farmacología , Antituberculosos/química , Antituberculosos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/farmacología , Cinética , Ligandos , Conformación Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , NADP/metabolismo , Nucleótido Desaminasas/antagonistas & inhibidores , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolatos/metabolismo , Trimetoprim/química , Trimetoprim/metabolismo , Trimetoprim/farmacología , Trimetrexato/química , Trimetrexato/metabolismo , Trimetrexato/farmacología
6.
Biophys J ; 109(10): 2182-94, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26588576

RESUMEN

Subcellular compartmentalization of biomolecules and their reactions is common in biology and provides a general strategy for improving and/or controlling kinetics in metabolic pathways that contain multiple sequential enzymes. Enzymes can be colocalized in multiprotein complexes, on scaffolds or inside subcellular organelles. Liquid organelles formed by intracellular phase coexistence could provide an additional means of sequential enzyme colocalization. Here we use experiment and computation to explore the kinetic consequences of sequential enzyme compartmentalization into model liquid organelles in a crowded polymer solution. Two proteins of the de novo purine biosynthesis pathway, ASL (adenylosuccinate lyase, Step 8) and ATIC (5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase, Steps 9 and 10), were studied in a polyethylene glycol/dextran aqueous two-phase system. Dextran-rich phase droplets served as model liquid compartments for enzyme colocalization. In this system, which lacks any specific binding interactions between the phase-forming polymers and the enzymes, we did not observe significant rate enhancements from colocalization for the overall reaction under our experimental conditions. The experimental results were used to adapt a mathematical model to quantitatively describe the kinetics. The mathematical model was then used to explore additional, experimentally inaccessible conditions to predict when increased local concentrations of enzymes and substrates can (or cannot) be expected to yield increased rates of product formation. Our findings indicate that colocalization within these simplified model liquid organelles can lead to enhanced metabolic rates under some conditions, but that very strong partitioning into the phase that serves as the compartment is necessary. In vivo, this could be provided by specific binding affinities between components of the liquid compartment and the molecules to be localized within it.


Asunto(s)
Adenilosuccinato Liasa/metabolismo , Compartimento Celular , Transferasas de Hidroximetilo y Formilo/metabolismo , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Nucleótido Desaminasas/metabolismo , Adenilosuccinato Liasa/química , Humanos , Transferasas de Hidroximetilo y Formilo/química , Liposomas/química , Complejos Multienzimáticos/química , Nucleótido Desaminasas/química
7.
Appl Environ Microbiol ; 81(10): 3395-404, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25746996

RESUMEN

Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Citosina/metabolismo , DCMP Desaminasa/metabolismo , Desoxirribonucleótidos/metabolismo , Nucleótidos de Desoxiuracil/biosíntesis , Nucleótido Desaminasas/metabolismo , Secuencia de Aminoácidos , Bacillus/química , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vías Biosintéticas , Cristalografía por Rayos X , DCMP Desaminasa/química , DCMP Desaminasa/genética , Cinética , Datos de Secuencia Molecular , Nucleótido Desaminasas/química , Nucleótido Desaminasas/genética , Especificidad por Sustrato
8.
Artículo en Inglés | MEDLINE | ID: mdl-23722836

RESUMEN

The bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase (RibD) represents a potential antibacterial drug target. The structure of recombinant Acinetobacter baumannii RibD is reported in orthorhombic and tetragonal crystal forms at 2.2 and 2.0 Å resolution, respectively. Comparisons with orthologous structures in the Protein Data Bank indicated close similarities. The tetragonal crystal form was obtained in the presence of guanosine monophosphate, which surprisingly was observed to occupy the adenine-binding site of the reductase domain.


Asunto(s)
Acinetobacter baumannii/enzimología , Nucleótido Desaminasas/química , Oxidorreductasas/química , Uracilo/química , Acinetobacter baumannii/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Nucleótido Desaminasas/genética , Oxidorreductasas/genética , Estructura Secundaria de Proteína
9.
J Biol Chem ; 286(47): 40706-16, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21956117

RESUMEN

Enzymes of the de novo purine biosynthetic pathway have been identified as essential for the growth and survival of Mycobacterium tuberculosis and thus have potential for the development of anti-tuberculosis drugs. The final two steps of this pathway are carried out by the bifunctional enzyme 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC), also known as PurH. This enzyme has already been the target of anti-cancer drug development. We have determined the crystal structures of the M. tuberculosis ATIC (Rv0957) both with and without the substrate 5-aminoimidazole-4-carboxamide ribonucleotide, at resolutions of 2.5 and 2.2 Å, respectively. As for other ATIC enzymes, the protein is folded into two domains, the N-terminal domain (residues 1-212) containing the cyclohydrolase active site and the C-terminal domain (residues 222-523) containing the formyltransferase active site. An adventitiously bound nucleotide was found in the cyclohydrolase active site in both structures and was identified by NMR and mass spectral analysis as a novel 5-formyl derivative of an earlier intermediate in the biosynthetic pathway 4-carboxy-5-aminoimidazole ribonucleotide. This result and other studies suggest that this novel nucleotide is a cyclohydrolase inhibitor. The dimer formed by M. tuberculosis ATIC is different from those seen for human and avian ATICs, but it has a similar ∼50-Å separation of the two active sites of the bifunctional enzyme. Evidence in M. tuberculosis ATIC for reactivity of half-the-sites in the cyclohydrolase domains can be attributed to ligand-induced movements that propagate across the dimer interface and may be a common feature of ATIC enzymes.


Asunto(s)
Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimología , Nucleótido Desaminasas/química , Nucleótido Desaminasas/metabolismo , Nucleótidos de Purina/biosíntesis , Nucleótidos de Purina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Multimerización de Proteína , Ribonucleótidos/metabolismo
10.
Biochemistry ; 50(25): 5780-9, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21595445

RESUMEN

Allosteric feedback inhibition is the mechanism by which metabolic end products regulate their own biosynthesis by binding to an upstream enzyme. Despite its importance in controlling metabolism, there are relatively few allosteric mechanisms understood in detail. This is because allostery does not have an identifiable structural motif, making the discovery of new allosteric enzymes a difficult process. The lack of a conserved motif implies that the evolution of each allosteric mechanism is unique. Here we describe an atypical allosteric mechanism in human UDP-α-d-glucose 6-dehydrogenase (hUGDH) based on an easily acquired and identifiable structural attribute: packing defects in the protein core. In contrast to classic allostery, the active and allosteric sites in hUGDH are present as a single, bifunctional site. Using two new crystal structures, we show that binding of the feedback inhibitor, UDP-α-d-xylose, elicits a distinct induced-fit response; a buried loop translates ∼4 Å along and rotates ∼180° about the main chain axis, requiring surrounding side chains to repack. This allosteric transition is facilitated by packing defects, which negate the steric conformational restraints normally imposed by the protein core. Sedimentation velocity studies show that this repacking favors the formation of an inactive hexameric complex with unusual symmetry. We present evidence that hUGDH and the unrelated enzyme dCTP deaminase have converged to very similar atypical allosteric mechanisms using the same adaptive strategy, the selection for packing defects. Thus, the selection for packing defects is a robust mechanism for the evolution of allostery and induced fit.


Asunto(s)
Evolución Molecular , Uridina Difosfato Glucosa Deshidrogenasa/química , Sitio Alostérico , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Retroalimentación Fisiológica , Humanos , Datos de Secuencia Molecular , Nucleótido Desaminasas/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato
11.
Arch Biochem Biophys ; 490(1): 42-9, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19683509

RESUMEN

Two mutant dCTP deaminase-dUTPases from Methanocaldococcus jannaschii were crystallised and the crystal structures were solved: E145A in complex with the substrate analogue alpha,beta-imido-dUTP and E145Q in complex with diphosphate. Both mutant enzymes were defect in the deaminase reaction and had reduced dUTPase activity. In the structure of E145Q in complex with diphosphate, the diphosphate occupied the same position as the beta- and gamma-phosphoryls of the nucleotide analogue in the E145A complex. The C-terminal region that is unresolved in the apo-form of the enzyme was ordered in both complexes and closed over the active site by interacting with the phosphate backbone of the nucleotide or with the diphosphate. A magnesium ion was readily observed to complex with all three phosphoryls in the nucleotide complex or with the diphosphate. A water molecule that is likely to be involved in the nucleotidyl diphosphorylase reaction was observed in the E145A:alpha,beta-imido-dUTP complex and positioned similarly as in the monofunctional trimeric dUTPase. A comparison of the active sites of the bifunctional enzyme and the monofunctional family members, dCTP deaminase and dUTPase, suggests similar reaction mechanisms. The similar side chain conformations in the deaminase site between the nucleotide and diphosphate complexes indicated a concerted re-arrangement, or induced fit, of the whole active site promoted by enzyme and nucleotide phosphoryl interactions. A pre-steady state kinetic analysis of the bifunctional reaction and the dUTPase half-reaction supported a conformational change upon substrate binding in both reactions and a concerted catalytic step for the bifunctional reaction.


Asunto(s)
Methanococcaceae/metabolismo , Nucleótido Desaminasas/química , Nucleótido Desaminasas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Sitios de Unión/genética , Cinética , Magnesio/química , Magnesio/metabolismo , Methanococcaceae/genética , Modelos Biológicos , Modelos Moleculares , Mutación , Nucleótido Desaminasas/genética , Fosfatos/química , Fosfatos/metabolismo , Unión Proteica/genética , Conformación Proteica , Estructura Secundaria de Proteína , Pirofosfatasas/genética , Especificidad por Sustrato/genética
12.
J Biol Chem ; 284(3): 1725-31, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18986985

RESUMEN

Bacterial RibG is a potent target for antimicrobial agents, because it catalyzes consecutive deamination and reduction steps in the riboflavin biosynthesis. In the N-terminal deaminase domain of Bacillus subtilis RibG, structure-based mutational analyses demonstrated that Glu51 and Lys79 are essential for the deaminase activity. In the C-terminal reductase domain, the complex structure with the substrate at 2.56-A resolution unexpectedly showed a ribitylimino intermediate bound at the active site, and hence suggested that the ribosyl reduction occurs through a Schiff base pathway. Lys151 seems to have evolved to ensure specific recognition of the deaminase product rather than the substrate. Glu290, instead of the previously proposed Asp199, would seem to assist in the proton transfer in the reduction reaction. A detailed comparison reveals that the reductase and the pharmaceutically important enzyme, dihydrofolate reductase involved in the riboflavin and folate biosyntheses, share strong conservation of the core structure, cofactor binding, catalytic mechanism, even the substrate binding architecture.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Nucleótido Desaminasas/química , Riboflavina/química , Deshidrogenasas del Alcohol de Azúcar/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Cristalografía por Rayos X , Mutación , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/metabolismo , Oxidación-Reducción , Estructura Terciaria de Proteína/fisiología , Riboflavina/biosíntesis , Riboflavina/genética , Relación Estructura-Actividad , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
13.
Biochemistry ; 47(24): 6499-507, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18500821

RESUMEN

Riboflavin is biosynthesized by most microorganisms and plants, while mammals depend entirely on the absorption of this vitamin from the diet to meet their metabolic needs. Therefore, riboflavin biosynthesis appears to be an attractive target for drug design, since appropriate inhibitors of the pathway would selectively target the microorganism. We have cloned and solubly expressed the bifunctional ribD gene from Escherichia coli, whose three-dimensional structure was recently determined. We have demonstrated that the rate of deamination (370 min (-1)) exceeds the rate of reduction (19 min (-1)), suggesting no channeling between the two active sites. The reductive ring opening reaction occurs via a hydride transfer from the C 4- pro-R hydrogen of NADPH to C'-1 of ribose and is the rate-limiting step in the overall reaction, exhibiting a primary kinetic isotope effect ( (D) V) of 2.2. We also show that the INH-NADP adduct, one of the active forms of the anti-TB drug isoniazid, inhibits the E. coli RibD. On the basis of the observed patterns of inhibition versus the two substrates, we propose that the RibD-catalyzed reduction step follows a kinetic scheme similar to that of its structural homologue, DHFR.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Nucleótido Desaminasas/química , Riboflavina/biosíntesis , Riboflavina/química , Deshidrogenasas del Alcohol de Azúcar/química , Catálisis , Desaminación , Medición de Intercambio de Deuterio , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , NADP/química , NADP/metabolismo , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/metabolismo , Oxidación-Reducción , Pentosafosfatos/química , Pentosafosfatos/metabolismo , Estructura Terciaria de Proteína/genética , Bases de Schiff , Solventes , Especificidad por Sustrato/genética , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
15.
J Mol Biol ; 376(2): 554-69, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18164314

RESUMEN

Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme to be characterised and provides evidence for bifunctionality of dCTP deaminase occurring outside the Archaea kingdom. A steady-state kinetic analysis revealed that the affinity for dCTP and deoxyuridine triphosphate as substrates for the synthesis of deoxyuridine monophosphate were very similar, a result that contrasts that obtained previously for the archaean Methanocaldococcus jannaschii enzyme, which showed approximately 10-fold lower affinity for deoxyuridine triphosphate than for dCTP. The crystal structures of the enzyme in complex with the inhibitor, thymidine triphosphate, and the apo form have been solved. Comparison of the two shows that upon binding of thymidine triphosphate, the disordered C-terminal arranges as a lid covering the active site, and the enzyme adapts an inactive conformation as a result of structural changes in the active site. In the inactive conformation dephosphorylation cannot take place due to the absence of a water molecule otherwise hydrogen-bonded to O2 of the alpha-phosphate.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Nucleótido Desaminasas/antagonistas & inhibidores , Pirofosfatasas/antagonistas & inhibidores , Nucleótidos de Timina/metabolismo , Secuencia de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Secuencia de Bases , Sitios de Unión , Catálisis , Cristalografía por Rayos X , ADN Bacteriano/genética , Desaminación , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Genes Bacterianos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nucleótido Desaminasas/química , Nucleótido Desaminasas/aislamiento & purificación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Pirofosfatasas/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Nucleótidos de Timina/farmacología
16.
Arch Biochem Biophys ; 470(1): 20-6, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17996716

RESUMEN

In Escherichia coli and Salmonella typhimurium about 80% of the dUMP used for dTMP synthesis is derived from deamination of dCTP. The dCTP deaminase produces dUTP that subsequently is hydrolyzed by dUTPase to dUMP and diphosphate. The dCTP deaminase is regulated by dTTP that inhibits the enzyme by binding to the active site and induces an inactive conformation of the trimeric enzyme. We have analyzed the role of residues previously suggested to play a role in catalysis. The mutant enzymes R115Q, S111C, S111T and E138D were all purified and analyzed for activity. Only S111T and E138D displayed detectable activity with a 30- and 140-fold reduction in k(cat), respectively. Furthermore, S111T and E138D both showed altered dTTP inhibition compared to wild-type enzyme. S111T was almost insensitive to the presence of dTTP. With the E138D enzyme the dTTP dependent increase in cooperativity of dCTP saturation was absent, although the dTTP inhibition itself was still cooperative. Modeling of the active site of the S111T enzyme indicated that this enzyme is restricted in forming the inactive dTTP binding conformer due to steric hindrance by the additional methyl group in threonine. The crystal structure of E138D in complex with dUTP showed a hydrogen bonding network in the active site similar to wild-type enzyme. However, changes in the hydrogen bond lengths between the carboxylate and a catalytic water molecule as well as a slightly different orientation of the pyrimidine ring of the bound nucleotide may provide an explanation for the reduced activity.


Asunto(s)
Escherichia coli/enzimología , Modelos Químicos , Modelos Moleculares , Nucleótido Desaminasas/química , Nucleótido Desaminasas/ultraestructura , Sitios de Unión , Simulación por Computador , Activación Enzimática , Mutagénesis Sitio-Dirigida , Nucleótido Desaminasas/genética , Unión Proteica
17.
J Mol Biol ; 373(1): 48-64, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17765262

RESUMEN

We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Nucleótido Desaminasas/química , Nucleótido Desaminasas/metabolismo , Estructura Terciaria de Proteína , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Modelos Moleculares , Estructura Molecular , NADP/química , NADP/metabolismo , Nucleótido Desaminasas/genética , Oxidación-Reducción , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Deshidrogenasas del Alcohol de Azúcar/genética
18.
FEBS J ; 274(16): 4188-98, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17651436

RESUMEN

The trimeric dCTP deaminase produces dUTP that is hydrolysed to dUMP by the structurally closely related dUTPase. This pathway provides 70-80% of the total dUMP as a precursor for dTTP. Accordingly, dCTP deaminase is regulated by dTTP, which increases the substrate concentration for half-maximal activity and the cooperativity of dCTP saturation. Likewise, increasing concentrations of dCTP increase the cooperativity of dTTP inhibition. Previous structural studies showed that the complexes of inactive mutant protein, E138A, with dUTP or dCTP bound, and wild-type enzyme with dUTP bound were all highly similar and characterized by having an ordered C-terminal. When comparing with a new structure in which dTTP is bound to the active site of E138A, the region between Val120 and His125 was found to be in a new conformation. This and the previous conformation were mutually exclusive within the trimer. Also, the dCTP complex of the inactive H121A was found to have residues 120-125 in this new conformation, indicating that it renders the enzyme inactive. The C-terminal fold was found to be disordered for both new complexes. We suggest that the cooperative kinetics are imposed by a dTTP-dependent lag of product formation observed in presteady-state kinetics. This lag may be derived from a slow equilibration between an inactive and an active conformation of dCTP deaminase represented by the dTTP complex and the dUTP/dCTP complex, respectively. The dCTP deaminase then resembles a simple concerted system subjected to effector binding, but without the use of an allosteric site.


Asunto(s)
Proteínas de Escherichia coli/química , Nucleótido Desaminasas/química , Nucleótidos de Timina/química , Algoritmos , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , Catálisis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Nucleótidos de Timina/metabolismo
19.
Biochemistry ; 46(17): 5050-62, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17407260

RESUMEN

Inosine 5'-monophosphate (IMP) cyclohydrolase catalyzes the cyclization of 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) to IMP in the final step of de novo purine biosynthesis. Two major types of this enzyme have been discovered to date: PurH in Bacteria and Eukarya and PurO in Archaea. The structure of the MTH1020 gene product from Methanothermobacter thermoautotrophicus was previously solved without functional annotation but shows high amino acid sequence similarity to other PurOs. We determined the crystal structure of the MTH1020 gene product in complex with either IMP or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) at 2.0 and 2.6 A resolution, respectively. On the basis of the sequence analysis, ligand-bound structures, and biochemical data, MTH1020 is confirmed as an archaeal IMP cyclohydrolase, thus designated as MthPurO. MthPurO has a four-layered alphabeta betaalpha core structure, showing an N-terminal nucleophile (NTN) hydrolase fold. The active site is located at the deep pocket between two central beta-sheets and contains residues strictly conserved within PurOs. Comparisons of the two types of IMP cyclohydrolase, PurO and PurH, revealed that there are no similarities in sequence, structure, or the active site architecture, suggesting that they are evolutionarily not related to each other. The MjR31K mutant of PurO from Methanocaldococcus jannaschii showed 76% decreased activity and the MjE102Q mutation completely abolished enzymatic activity, suggesting that these highly conserved residues play critical roles in catalysis. Interestingly, green fluorescent protein (GFP), which has no structural homology to either PurO or PurH but catalyzes a similar intramolecular cyclohydrolase reaction required for chromophore maturation, utilizes Arg96 and Glu222 in a mechanism analogous to that of PurO.


Asunto(s)
Transferasas de Hidroximetilo y Formilo/metabolismo , Methanobacteriaceae/enzimología , Complejos Multienzimáticos/metabolismo , Nucleótido Desaminasas/metabolismo , Secuencia de Aminoácidos , Cromatografía en Gel , Clonación Molecular , Cristalografía por Rayos X , Transferasas de Hidroximetilo y Formilo/química , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/aislamiento & purificación , Nucleótido Desaminasas/química , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/aislamiento & purificación , Conformación Proteica , Homología de Secuencia de Aminoácido
20.
J Biol Chem ; 281(11): 7605-13, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16308316

RESUMEN

Bacterial RibG is an attractive candidate for development of antimicrobial drugs because of its involvement in the riboflavin biosynthesis. The crystal structure of Bacillus subtilis RibG at 2.41-A resolution displayed a tetrameric ring-like structure with an extensive interface of approximately 2400 A(2)/monomer. The N-terminal deaminase domain belongs to the cytidine deaminase superfamily. A structure-based sequence alignment of a variety of nucleotide deaminases reveals not only the unique signatures in each family member for gene annotation but also putative substrate-interacting residues for RNA-editing deaminases. The strong structural conservation between the C-terminal reductase domain and the pharmaceutically important dihydrofolate reductase suggests that the two reductases involved in the riboflavin and folate biosyntheses evolved from a single ancestral gene. Together with the binding of the essential cofactors, zinc ion and NADPH, the structural comparison assists substrate modeling into the active-site cavities allowing identification of specific substrate recognition. Finally, the present structure reveals that the deaminase and the reductase are separate functional domains and that domain fusion is crucial for the enzyme activities through formation of a stable tetrameric structure.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Nucleótido Desaminasas/química , Deshidrogenasas del Alcohol de Azúcar/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Iones , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , NADP/química , Nucleótido Desaminasas/metabolismo , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Riboflavina/química , Homología de Secuencia de Aminoácido , Estereoisomerismo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...