Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.918
Filtrar
1.
Luminescence ; 39(6): e4792, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845344

RESUMEN

Favipiravir (FVP) is an oral antiviral drug approved in 2021 for the treatment of COVID-19. It is a pyrazine derivative that can be integrated into anti-viral RNA products to inhibit viral replication. While, adenine is a purine nucleobase that is found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) to generate genetic information. For the first time, the binding mechanism between FVP and adenine was determined using different techniques, including UV-visible spectrophotometry, spectrofluorimetry, synchronous fluorescence (SF) spectroscopy, Fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET), and metal ion complexation. The fluorescence spectra indicated that FVP is bound to adenine via Van der Waals forces and hydrogen bonding through a spontaneous binding process (ΔGο < 0). The quenching mechanism was found to be static. Various temperature settings were used to investigate thermodynamic characteristics, such as binding forces, binding constants, and the number of binding sites. The reaction parameters, including the enthalpy change (ΔHο) and entropy change (ΔSο), were calculated using Van't Hoff's equation. The findings demonstrated that the adenine-FVP binding was endothermic. Furthermore, the results of the experiments revealed that some metal ions (K+, Ca+2, Co+2, Cu+2, and Al+3) might facilitate the binding interaction between FVP and adenine. Slight changes are observed in the FTIR spectra of adenine, indicating the binding interaction between adenine and FVP. This study may be useful in understanding the pharmacokinetic characteristics of FVP and how the drug binds to adenine to prevent any side effects.


Asunto(s)
Nucleótidos de Adenina , Amidas , Antivirales , Pirazinas , Termodinámica , Pirazinas/química , Pirazinas/metabolismo , Amidas/química , Amidas/metabolismo , Nucleótidos de Adenina/química , Nucleótidos de Adenina/metabolismo , Antivirales/química , Antivirales/farmacología , Antivirales/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Espectrofotometría Ultravioleta , Sitios de Unión , Adenina/química , Adenina/metabolismo
2.
Eur J Med Res ; 29(1): 199, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528586

RESUMEN

BACKGROUND: Lipid metabolism changes occur in early Alzheimer's disease (AD) patients. Yet little is known about metabolic gene changes in early AD cortex. METHODS: The lipid metabolic genes selected from two datasets (GSE39420 and GSE118553) were analyzed with enrichment analysis. Protein-protein interaction network construction and correlation analyses were used to screen core genes. Literature analysis and molecular docking were applied to explore potential therapeutic drugs. RESULTS: 60 lipid metabolic genes differentially expressed in early AD patients' cortex were screened. Bioinformatics analyses revealed that up-regulated genes were mainly focused on mitochondrial fatty acid oxidation and mediating the activation of long-chain fatty acids, phosphoproteins, and cholesterol metabolism. Down-regulated genes were mainly focused on lipid transport, carboxylic acid metabolic process, and neuron apoptotic process. Literature reviews and molecular docking results indicated that ACSL1, ACSBG2, ACAA2, FABP3, ALDH5A1, and FFAR4 were core targets for lipid metabolism disorder and had a high binding affinity with compounds including adenosine phosphate, oxidized Photinus luciferin, BMS-488043, and candidate therapeutic drugs especially bisphenol A, benzo(a)pyrene, ethinyl estradiol. CONCLUSIONS: AD cortical lipid metabolism disorder was associated with the dysregulation of the PPAR signaling pathway, glycerophospholipid metabolism, adipocytokine signaling pathway, fatty acid biosynthesis, fatty acid degradation, ferroptosis, biosynthesis of unsaturated fatty acids, and fatty acid elongation. Candidate drugs including bisphenol A, benzo(a)pyrene, ethinyl estradiol, and active compounds including adenosine phosphate, oxidized Photinus luciferin, and BMS-488043 have potential therapeutic effects on cortical lipid metabolism disorder of early AD.


Asunto(s)
Enfermedad de Alzheimer , Compuestos de Bencidrilo , Indoles , Trastornos del Metabolismo de los Lípidos , Fenoles , Piperazinas , Ácido Pirúvico , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Simulación del Acoplamiento Molecular , Benzo(a)pireno , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Etinilestradiol , Nucleótidos de Adenina/metabolismo , Luciferinas
3.
Br J Haematol ; 204(5): 1888-1893, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501389

RESUMEN

Over 50% of patients with systemic LCH are not cured with front-line therapies, and data to guide salvage options are limited. We describe 58 patients with LCH who were treated with clofarabine. Clofarabine monotherapy was active against LCH in this cohort, including heavily pretreated patients with a systemic objective response rate of 92.6%, higher in children (93.8%) than adults (83.3%). BRAFV600E+ variant allele frequency in peripheral blood is correlated with clinical responses. Prospective multicentre trials are warranted to determine optimal dosing, long-term efficacy, late toxicities, relative cost and patient-reported outcomes of clofarabine compared to alternative LCH salvage therapy strategies.


Asunto(s)
Clofarabina , Histiocitosis de Células de Langerhans , Humanos , Clofarabina/uso terapéutico , Clofarabina/administración & dosificación , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Masculino , Femenino , Adulto , Adolescente , Niño , Persona de Mediana Edad , Preescolar , Adulto Joven , Anciano , Recurrencia , Proteínas Proto-Oncogénicas B-raf/genética , Lactante , Resultado del Tratamiento , Terapia Recuperativa , Nucleótidos de Adenina/uso terapéutico , Nucleótidos de Adenina/administración & dosificación , Nucleótidos de Adenina/efectos adversos , Arabinonucleósidos/uso terapéutico , Arabinonucleósidos/administración & dosificación , Arabinonucleósidos/efectos adversos
4.
Cell Rep ; 43(4): 113998, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551960

RESUMEN

RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.


Asunto(s)
Endorribonucleasas , Inmunidad Innata , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Humanos , Nucleótidos de Adenina/metabolismo , Oligorribonucleótidos/metabolismo , Animales , Estrés Fisiológico , Transcriptoma/genética , ARN Bicatenario/metabolismo
5.
Nucleic Acids Res ; 52(6): 2761-2775, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471818

RESUMEN

CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.


Many anti-viral defence systems generate a cyclic nucleotide signal that activates cellular defences in response to infection. Type III CRISPR systems use a specialised polymerase to make cyclic oligoadenylate (cOA) molecules from ATP. These can bind and activate a range of effector proteins that slow down viral replication. In this study, we focussed on the Csx23 effector from the human pathogen Vibrio cholerae ­ a trans-membrane protein that binds a cOA molecule, leading to anti-viral immunity. Structural studies revealed a new class of nucleotide recognition domain, where cOA binding is transmitted to changes in the trans-membrane domain, most likely resulting in membrane depolarisation. This study highlights the diversity of mechanisms for anti-viral defence via nucleotide signalling.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Vibrio cholerae , Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos , Sistemas de Mensajero Secundario , Proteínas Bacterianas/metabolismo , Vibrio cholerae/metabolismo
7.
Mol Carcinog ; 63(5): 938-950, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353288

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive cancer with a poor prognosis and a 5-year survival rate of less than 11%. As a member of the CAP superfamily of proteins, the role of peptidase inhibitor 16 (Pi16) in tumor progression is still unclear. Immunohistochemistry and quantitative RT-PCR methods were used to detect the expression levels of Pi16 protein and mRNA in PDAC patients. CRISPR/Cas9 technology was used to knock out the expression of Pi16 in PDAC cell lines. In vivo and in vitro experiments were used to verify the effect of Pi16 on PDAC proliferation ability. By RNA sequencing, we found that oligoadenylate synthetase L (OASL) can serve as a potential downstream target of Pi16. The expression of Pi16 was higher in PDAC tissues than in matched adjacent tissues. High expression of Pi16 was associated with PDAC progression and poor prognosis. Overexpression of Pi16 could promote the proliferation of PDAC cells in vitro and in vivo. Bioinformatics analysis and coimmunoprecipitation assays showed that Pi16 could bind to OASL. Moreover, the functional recovery test confirmed that Pi16 could promote the proliferation of PDAC via OASL. Our present study demonstrates that Pi16 might participate in the occurrence and development of PDAC by regulating cell proliferation by binding to OASL, indicating that Pi16 might be a promising novel therapeutic target for PDAC.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Nucleótidos de Adenina , Carcinoma Ductal Pancreático , Glicoproteínas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Glicoproteínas/metabolismo , Proteínas Portadoras/metabolismo , 2',5'-Oligoadenilato Sintetasa/metabolismo
8.
Immunity ; 57(3): 446-461.e7, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38423012

RESUMEN

In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNß. This binding leads to the sequestration of IFNß mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.


Asunto(s)
Interferones , Oligorribonucleótidos , Virosis , Animales , Humanos , Ratones , Nucleótidos de Adenina , Antivirales/farmacología , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo
9.
Med Princ Pract ; 33(1): 74-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38016428

RESUMEN

OBJECTIVE: Several studies have shown that mitochondrial metabolism may be disrupted if the rate of the specific 4,977 bp deletion of mitochondrial DNA (mtDNA) reaches a threshold. This study aimed to investigate the possible associations between the mtDNA4977 deletion load and obesity-related metabolic abnormalities in the adipose tissue. METHODS: The study included thirty obese individuals, who underwent bariatric surgery, and twelve control subjects. mtDNA4977 deletion, adenine nucleotides, and lactate levels, which show the bioenergetic status were evaluated in visceral adipose tissues. Fourier transform infrared (FTIR) spectroscopy was used to investigate the structural variations and composition of adipose tissues in the context of deletion load. RESULTS: There were no differences between the two groups in terms of mtDNA4977 deletion, adenine nucleotides, and lactate levels. The FTIR spectra indicated a few obesity-related alterations in adipose tissues that were not related to the mtDNA deletion load. Also, statistical analysis showed a correlation between the deletion load and a band shift of 1,744 cm-1, which assigns C = O stretching of the carbonyl group of the ester group in triglycerides and other esterified fatty acids, although it is not associated with obesity. CONCLUSIONS: Our data suggest that the mtDNA4977 deletion in visceral adipose tissues of obese individuals do not have a significant impact on the bioenergetic status. However, the increased accumulation of deletion may be associated with a specific change in the ester bond, indicating structural differences in the lipids. These findings shed light on our understanding of the tissue-specific distribution of mtDNA deletions and obesity-related adipose tissue pathogeneses.


Asunto(s)
ADN Mitocondrial , Obesidad , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Triglicéridos , Obesidad/genética , ADN Mitocondrial/genética , Nucleótidos de Adenina , Tejido Adiposo/metabolismo , Ésteres , Lactatos
10.
Front Immunol ; 14: 1250762, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799723

RESUMEN

Adenine nucleotides (AN) are ubiquitous metabolites that regulate cellular energy metabolism and modulate cell communication and inflammation. To understand how disturbances in AN balance arise and affect cellular function, robust quantification techniques for these metabolites are crucial. However, due to their hydrophilicity, simultaneous quantification of AN across various biological samples has been challenging. Here we present a hydrophilic interaction high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) based method for the quantification of 26 adenosine nucleotides and precursors as well as metabolic products of nicotinamide adenine dinucleotide (NAD) in plasma, liver, and adipose tissue samples as well as cell culture supernatants and cells. Method validation was performed with regard to linearity, accuracy, precision, matrix effects, and carryover. Finally, analysis of cell culture supernatants derived from intestinal organoids and RAW 264.7 cells illustrates that the here described method is a reliable and easy-to-use tool to quantify AN and opens up new avenues to understand the role of AN generation and breakdown for cellular functions.


Asunto(s)
NAD , Nucleótidos , NAD/metabolismo , Nucleótidos/metabolismo , Espectrometría de Masas en Tándem/métodos , Adenosina , Cromatografía Liquida/métodos , Nucleótidos de Adenina
11.
J Mol Biol ; 435(21): 168282, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37730083

RESUMEN

Polymorphic toxins (PTs) are a broad family of toxins involved in interbacterial competition and pathogenesis. PTs are modular proteins that are comprised of a conserved N-terminal domain responsible for its transport, and a variable C-terminal domain bearing toxic activity. Although the mode of transport has yet to be elucidated, a new family of putative PTs containing an N-terminal MuF domain, resembling the Mu coliphage F protein, was identified in prophage genetic elements. The C-terminal toxin domains of these MuF PTs are predicted to bear nuclease, metallopeptidase, ADP-ribosyl transferase and RelA_SpoT activities. In this study, we characterized the MuF-RelA_SpoT toxin associated with the temperate phage of Streptococcus pneumoniae SPNA45. We show that the RelA_SpoT domain has (p)ppApp synthetase activity, which is bactericidal under our experimental conditions. We further determine that the two genes located downstream encode two immunity proteins, one binding to and inactivating the toxin and the other detoxifying the cell via a pppApp hydrolase activity. Finally, based on protein sequence alignments, we propose a signature for (p)ppApp synthetases that distinguishes them from (p)ppGpp synthetases.


Asunto(s)
Ligasas , Fagos de Streptococcus , Toxinas Biológicas , Ligasas/química , Ligasas/metabolismo , Alineación de Secuencia , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Streptococcus pneumoniae/virología , Fagos de Streptococcus/enzimología , Escherichia coli , Dominios Proteicos , Nucleótidos de Adenina/biosíntesis
12.
J Interferon Cytokine Res ; 43(11): 487-494, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751211

RESUMEN

2'-5' Oligoadenylate synthetases (OAS) are interferon-stimulated genes that are most well-known to protect hosts from viral infections. They are evolutionarily related to an ancient family of Nucleotidyltransferases, which are primarily involved in pathogen-sensing and innate immune response. Classical function of OAS proteins involves double-stranded RNA-stimulated polymerization of adenosine triphosphate in 2'-5' oligoadenylates (2-5A), which can activate the latent RNase (RNase L) to degrade RNA. However, accumulated evidence over the years have suggested alternative mode of antiviral function of several OAS family proteins. Furthermore, recent studies have connected some OAS proteins with wider function beyond viral infection. Here, we review some of the canonical and noncanonical functions of OAS proteins and their mechanisms.


Asunto(s)
ARN Bicatenario , Virosis , Humanos , Interferones/genética , Nucleótidos de Adenina , Oligorribonucleótidos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo
13.
Anal Chem ; 95(36): 13708-13715, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37625083

RESUMEN

Physiological function analysis of terminal deoxynucleotidyl transferase (TdT) in clinical medicine and hematopathology highlights its significance to be extensively utilized as a diagnostic biomarker for leukemia diagnosis. Herein, taking advantage of the spatial-confinement effect on a three-dimensional (3D) DNA nanoarchitecture, we reported a target-triggered intramolecular accelerated molecular beacon (MB) assembly for rapid and real-time analysis of TdT activity. In this strategy, the 3D DNA nanoarchitecture is first engineered via a cross-linking network hybridization chain reaction (HCR). A number of MBs, which were designed with a polythymine (poly-T) loop, were then conjugated on the scaffold DNA nanoarchitecture, allowing the obtained MB-DNA nanoarchitecture to contain lots of free 3'-hydroxyl (OH) termini inside or outside the super DNA nanostructure. Moreover, the distance between different MBs is closed, and the local concentration of MB is significantly improved owing to the confinement of MBs on this DNA nanoarchitecture. Once encountered with target TdT, the free -OH groups can be recognized by TdT immediately to catalyze the template-independent incorporation of adenine nucleotides, which results in the generation of multiple poly-A chains that rapidly react with many MBs via an intramolecular accelerated assembly process. The time-dependent substantial enhancement of the fluorescence from MBs can thus be applied for robustly analyzing TdT. Our observations suggest that the DNA nanostructure-based spatial confinement effect enables a high molecular collision frequency to accelerate the reaction kinetics, and the super DNA nanoarchitecture exhibits a better nuclease resistance to maintain signal stability. With these advantages, TdT can be rapidly detected with high sensitivity, specificity, and biostability.


Asunto(s)
ADN Nucleotidilexotransferasa , ADN Polimerasa Dirigida por ADN , Nucleótidos de Adenina , Catálisis , Colorantes
14.
Transgenic Res;32(5):487-496,2023
en Inglés | MEDLINE | ID: mdl-937540410

RESUMEN

β1,3-galactose is the component of outer-chain elongation of complex N-glycans that, together with α1,4-fucose, forms Lewis a structures in plants. Previous studies have revealed that N-glycan maturation is mediated by sequential attachment of β1,3-galactose and α1,4-fucose by individual β1,3-galactosyltransferase (GalT) and α1,4-fucosyltransferase (1,4-FucT), respectively. Although GalT from several species has been studied, little information about GalT from rice is available. I therefore characterized three GalT candidate genes on different chromosomes in Oryza sativa. Seeds of rice lines that had T-DNA insertions in regions corresponding to individual putative GalT genes were obtained from a Rice Functional Genomic Express Database and plants grown until maturity. Homozygotes were selected from the next generation by genotyping PCR, and used for callus induction. Callus extracts of two independent T-DNA mutant rice which have T-DNA insertions at the same gene on chromosome 6 but in different exons showed highly reduced band intensity on a western blots using an anti-Lewis a antibody. Cell extracts and cultured media from suspension culture of the one of these mutant rice were further analysed by N-glycan profiling using matrix-associated laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). Identified N-glycan species containing β1,3-galactose from both cell extracts and cultured media of knock-out mutant were less than 0.5% of total N-glycans while that of WT cells were 9.8% and 49.1%, respectively. This suggests that GalT located on rice chromosome 6 plays a major role in N-glycan galactosylation, and mutations within it lead to blockage of Lewis a epitope formation.


Asunto(s)
Radiación no IonizanteNucleótidos de Adenina , 5643 , Enfermedades de los Bovinos , Ácido FormiminoglutámicoNucleótidos de Adenina , 6801 , Radiación no IonizanteNucleótidos de Adenina , Cromatografía en Agarosa , Percepción de Forma , 11134Nucleótidos de Adenina
15.
Org Biomol Chem ; 21(26): 5433-5439, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37335076

RESUMEN

An analogue of a toxic moiety (TM84) of natural product agrocin 84 containing threonine amide instead of 2,3-dihydroxy-4-methylpentanamide was prepared and evaluated as a putative Plasmodium falciparum threonyl t-RNA synthetase (PfThrRS) inhibitor. This TM84 analogue features submicromolar inhibitory potency (IC50 = 440 nM) comparable to that of borrelidin (IC50 = 43 nM) and therefore complements chemotypes known to inhibit malarial PfThrRS, which are currently limited to borrelidin and its analogues. The crystal structure of the inhibitor in complex with the E. coli homologue enzyme (EcThrRS) was obtained, revealing crucial ligand-protein interactions that will pave the way for the design of novel ThrRS inhibitors.


Asunto(s)
Treonina-ARNt Ligasa , Escherichia coli , Nucleótidos de Adenina
16.
J Autoimmun ; 139: 103085, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354689

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by genetic heterogeneity and an interferon (IFN) signature. The overall landscapes of the heritability of SLE remains unclear. OBJECTIVES: To identify and elucidate the biological functions of rare variants underlying SLE, we conducted analyses of patient-derived induced pluripotent stem cells (iPSCs) in combination with genetic analysis. METHODS: Two familial SLE patient- and two healthy donor (HD)-derived iPSCs were established. Type 1 IFN-secreting dendritic cells (DCs) were differentiated from iPSCs. Genetic analyses of SLE-iPSCs, and 117 SLE patients and 107 HDs in the ImmuNexUT database were performed independently. Genome editing of the variants on iPSCs was performed with the CRISPR/Cas9 system. RESULTS: Type 1 IFN secretion was significantly increased in DCs differentiated from SLE-iPSCs compared to HD-iPSCs. Genetic analyses revealed a rare variant in the 2'-5'-Oligoadenylate Synthetase Like (OASL) shared between SLE-iPSCs and another independent SLE patient, and significant accumulation of OASL variants among SLE patients (HD 0.93%, SLE 6.84%, OR 8.387) in the database. Genome editing of mutated OASL 202Q to wild-type 202 R or wild-type OASL 202 R to mutated 202Q resulted in reduced or enhanced Type 1 IFN secretion of DCs. Three other OASL variants (R60W, T261S and A447V) accumulated in SLE patients had also capacities to enhance Type 1 IFN secretion in response to dsRNA. CONCLUSIONS: We established a patient-derived iPSC-based strategy to investigate the linkage of genotype and phenotype in autoimmune diseases. Detailed case-based investigations using patient-derived iPSCs provide information to unveil the heritability of the pathogenesis of autoimmune diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lupus Eritematoso Sistémico , Humanos , Interferones , Nucleótidos de Adenina , Lupus Eritematoso Sistémico/genética
17.
FASEB J ; 37(6): e22953, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224026

RESUMEN

Adenine nucleotide translocases (ANTs) are central to mitochondrial integrity and bioenergetic metabolism. This review aims to integrate the progresses and knowledge on ANTs over the last few years, contributing to a potential implication of ANTs for various diseases. Structures, functions, modifications, regulators and pathological implications of ANTs for human diseases are intensively demonstrated here. ANTs have four isoforms (ANT1-4), responsible for exchanging ATP/ADP, possibly composing of pro-apoptotic mPTP as a major component, and mediating FA-dependent uncoupling of proton efflux. ANT can be modified by methylation, nitrosylation and nitroalkylation, acetylation, glutathionylation, phosphorylation, carbonylation and hydroxynonenal-induced modifications. Compounds, including bongkrekic acid, atractyloside calcium, carbon monoxide, minocycline, 4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid, cardiolipin, free long-chain fatty acids, agaric acid, long chain acyl-coenzyme A esters, all have an ability to regulate ANT activities. ANT impairment leads to bioenergetic failure and mitochondrial dysfunction, contributing to pathogenesis of diseases, such as diabetes (deficiency), heart disease (deficiency), Parkinson's disease (reduction), Sengers Syndrome (decrease), cancer (isoform shifting), Alzheimer's Disease (coaggregation with Tau), Progressive External Opthalmoplegia (mutation), and Fascioscapulohumeral muscular dystrophy (overexpression). This review improves the understanding of the mechanism of ANT in pathogenesis of human diseases, and opens a window for novel therapeutic strategies targeted on ANT in diseases.


Asunto(s)
Nucleótidos de Adenina , Procesamiento Proteico-Postraduccional , Humanos , Fosforilación , Acetilación , Acilcoenzima A
18.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982634

RESUMEN

Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.


Asunto(s)
Nucleótidos de Adenina , Adenilato Quinasa , Animales , Humanos , Nucleótidos de Adenina/metabolismo , Adenilato Quinasa/metabolismo , Nucleótidos , Adenina , Isoenzimas/genética , Isoenzimas/metabolismo , Adenosina Monofosfato , Adenosina Trifosfato/metabolismo
19.
Genes (Basel) ; 14(2)2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36833454

RESUMEN

Recently, several studies have highlighted a skewed prevalence of infectious diseases within the African continent. Furthermore, a growing number of studies have demonstrated unique genetic variants found within the African genome are one of the contributing factors to the disease severity of infectious diseases within Africa. Understanding the host genetic mechanisms that offer protection against infectious diseases provides an opportunity to develop unique therapeutic interventions. Over the past two decades, several studies have linked the 2'-5'-oligoadenylate synthetase (OAS) family with a range of infectious diseases. More recently, the OAS-1 gene has also been associated with disease severity caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a global pandemic. The OAS family serves as an antiviral factor through the interaction with Ribonuclease-Latent (RNase-L). This review explores the genetic variants observed within the OAS genes and the associations with various viral infections and how previously reported ethnic-specific polymorphisms drive clinical significance. This review provides an overview of OAS genetic association studies with a particular focus on viral diseases affecting individuals of African descent.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Nucleótidos de Adenina , Oligorribonucleótidos
20.
Mol Ther ; 31(4): 1167-1176, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36733252

RESUMEN

Imperfect -gRNA (igRNA) provides a simple strategy for single-base editing of a base editor. However, a significant number of igRNAs need to be generated and tested for each target locus to achieve efficient single-base reversion of pathogenic single nucleotide variations (SNVs), which hinders the direct application of this technology. To provide ready-to-use igRNAs for single-base and bystander-less correction of all the adenine base editor (ABE)-reversible pathogenic SNVs, we employed a high-throughput method to edit all 5,253 known ABE-reversible pathogenic SNVs, each with multiple systematically designed igRNAs, and two libraries of 96,000 igRNAs were tested. A total of 1,988 SNV loci could be single-base reversed by igRNA with a >30% efficiency. Among these 1,988 loci, 378 SNV loci exhibited an efficiency of more than 90%. At the same time, the bystander editing efficiency of 76.62% of the SNV loci was reduced to 0%, while remaining below 1% for another 18.93% of the loci. These ready-to-use igRNAs provided the best solutions for a substantial portion of the 4,657 pathogenic/likely pathogenic SNVs. In this work, we overcame one of the most significant obstacles of base editors and provide a ready-to-use platform for the genetic treatment of diseases caused by ABE-reversible SNVs.


Asunto(s)
Nucleótidos de Adenina , Edición Génica , Ensayos Analíticos de Alto Rendimiento , Sistemas CRISPR-Cas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...