Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.438
Filtrar
1.
J Mol Biol ; 436(10): 168557, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582148

RESUMEN

Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) in which a pair of viral DNA ends are bridged by a multimer of integrase (IN). Most of the high-resolution structures of HIV-1 intasomes are based on an HIV-1 IN with an Sso7d protein domain fused to the N-terminus. Sso7d-IN aggregates much less than wild-type IN and has been critical for structural studies of HIV-1 intasomes. Unexpectedly, these structures revealed that the common core architecture that mediates catalysis could be assembled in various ways, giving rise to both tetrameric and dodecameric intasomes, together with other less well-characterized species. This differs from related retroviruses that assemble unique multimeric intasomes, although the number of protomers in the intasome varies between viruses. The question of whether the additional Sso7d domain contributes to the heterogeneity of HIV-1 intasomes is therefore raised. We have addressed this by biochemical and structural studies of intasomes assembled with wild-type HIV-1 IN. Negative stain and cryo-EM reveal a similar range of multimeric intasome species as with Sso7d-IN with the same common core architecture. Stacks of intasomes resulting from domain swapping are also seen with both wild-type and Sso7d-IN intasomes. The propensity to assemble multimeric intasome species is, therefore, an intrinsic property of HIV-1 IN and is not conferred by the presence of the Sso7d domain. The recently solved intasome structures of different retroviral species, which have been reported to be tetrameric, octameric, dodecameric, and hexadecameric, highlight how a common intasome core architecture can be assembled in different ways for catalysis.


Asunto(s)
Integrasa de VIH , VIH-1 , Integración Viral , Integrasa de VIH/metabolismo , Integrasa de VIH/química , Integrasa de VIH/genética , VIH-1/genética , VIH-1/enzimología , Humanos , ADN Viral/metabolismo , ADN Viral/genética , Modelos Moleculares , Multimerización de Proteína , Nucleoproteínas/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética
2.
Viruses ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675926

RESUMEN

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Asunto(s)
Virus de la Enfermedad de Newcastle , Proteínas Virales , Replicación Viral , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/metabolismo , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Enfermedad de Newcastle/virología , Enfermedad de Newcastle/metabolismo , Línea Celular , Regulación Viral de la Expresión Génica , ARN Viral/genética , ARN Viral/metabolismo , Pollos , Virulencia , Unión Proteica , Mutación
3.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587456

RESUMEN

Hantaviridae is a family for negative-sense RNA viruses with genomes of about 10.5-14.6 kb. These viruses are maintained in and/or transmitted by fish, reptiles, and mammals. Several orthohantaviruses can infect humans, causing mild, severe, and sometimes-fatal diseases. Hantavirids produce enveloped virions containing three single-stranded RNA segments with open reading frames that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hantaviridae, which is available at ictv.global/report/hantaviridae.


Asunto(s)
Virus ARN , Animales , Humanos , Virus ARN de Sentido Negativo , Virión/genética , Nucleoproteínas , Sistemas de Lectura Abierta , Mamíferos
4.
Proc Natl Acad Sci U S A ; 121(12): e2316491121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466836

RESUMEN

Replication fork reversal is a fundamental process required for resolution of encounters with DNA damage. A key step in the stabilization and eventual resolution of reversed forks is formation of RAD51 nucleoprotein filaments on exposed single strand DNA (ssDNA). To avoid genome instability, RAD51 filaments are tightly controlled by a variety of positive and negative regulators. RADX (RPA-related RAD51-antagonist on the X chromosome) is a recently discovered negative regulator that binds tightly to ssDNA, directly interacts with RAD51, and regulates replication fork reversal and stabilization in a context-dependent manner. Here, we present a structure-based investigation of RADX's mechanism of action. Mass photometry experiments showed that RADX forms multiple oligomeric states in a concentration-dependent manner, with a predominance of trimers in the presence of ssDNA. The structure of RADX, which has no structurally characterized orthologs, was determined ab initio by cryo-electron microscopy (cryo-EM) from maps in the 2 to 4 Å range. The structure reveals the molecular basis for RADX oligomerization and the coupled multi-valent binding of ssDNA binding. The interaction of RADX with RAD51 filaments was imaged by negative stain EM, which showed a RADX oligomer at the end of filaments. Based on these results, we propose a model in which RADX functions by capping and restricting the end of RAD51 filaments.


Asunto(s)
Proteínas de Unión al ADN , Recombinasa Rad51 , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Microscopía por Crioelectrón , Nucleoproteínas/metabolismo , ADN de Cadena Simple , Replicación del ADN
5.
Emerg Infect Dis ; 30(4): 681-690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526081

RESUMEN

Although pigs are naturally susceptible to Reston virus and experimentally to Ebola virus (EBOV), their role in Orthoebolavirus ecology remains unknown. We tested 888 serum samples collected from pigs in Guinea during 2017-2019 (between the 2013-16 epidemic and its resurgence in 2021) by indirect ELISA against the EBOV nucleoprotein. We identified 2 hotspots of possible pig exposure by IgG titer levels: the northern coast had 48.7% of positive serum samples (37/76), and Forest Guinea, bordering Sierra Leone and Liberia, where the virus emerged and reemerged, had 50% of positive serum samples (98/196). The multitarget Luminex approach confirms ELISA results against Ebola nucleoprotein and highlights cross-reactivities to glycoprotein of EBOV, Reston virus, and Bundibugyo virus. Those results are consistent with previous observations of the circulation of Orthoebolavirus species in pig farming regions in Sierra Leone and Ghana, suggesting potential risk for Ebola virus disease in humans, especially in Forest Guinea.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Porcinos , Animales , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/veterinaria , Guinea/epidemiología , Sus scrofa , Sierra Leona/epidemiología , Nucleoproteínas/genética
6.
Viruses ; 16(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543786

RESUMEN

Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.


Asunto(s)
Virus de la Influenza A , Proteínas de la Nucleocápside , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Nucleoproteínas/metabolismo , ARN Viral/metabolismo , Genómica
7.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453949

RESUMEN

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , COVID-19/patología , Inflamasomas/metabolismo , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleoproteínas/metabolismo , SARS-CoV-2/metabolismo
8.
J Virol ; 98(2): e0157123, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38206036

RESUMEN

In pandemic scenarios involving novel human pathogenic viruses, it is highly desirable that vaccines induce strong neutralizing antibodies as quickly as possible. However, current vaccine strategies require multiple immunization doses to produce high titers of neutralizing antibodies and are poorly protective after a single vaccination. We therefore wished to design a vaccine candidate that would induce increased protective immune responses following the first vaccine dose. We hypothesized that antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein could be increased by drawing upon immunity to a previous infection. We generated a fusion protein containing the influenza H1N1 PR8 virus nucleoprotein (NP) and the SARS-CoV-2 spike RBD. Mice with or without preexisting immunity to PR8 were then vaccinated with NP/RBD. We observed significantly increased SARS-CoV-2 neutralizing antibodies in mice with PR8 immunity compared to mice without preexisting PR8 immunity. Vaccination with NP/RBD protected mice from SARS-CoV-2-induced morbidity and mortality after a single dose. Additionally, we compared SARS-CoV-2 virus titers in the lungs and nasal turbinates 4 days post-challenge of mice vaccinated with NP/RBD. SARS-CoV-2 virus was detectable in the lungs and nasal turbinate of mice without preexisting PR8 immunity, while SARS-CoV-2 virus was completely undetectable in mice with preexisting PR8 immunity. We also found that CD4-positive T cells in mice with preexisting immunity to PR8 play an essential role in producing the increased antibody response against RBD. This vaccine strategy potentially can be modified to target other pathogens of concern and offers extra value in future pandemic scenarios.IMPORTANCEIncreased globalization and changes in human interactions with wild animals has increased the likelihood of the emergence of novel viruses with pandemic potential. Vaccines can be effective in preventing severe disease caused by pandemic viruses. However, it takes time to develop protective immunity via prime-boost vaccination. More effective vaccine designs should quickly induce protective immunity. We propose leveraging preexisting immunity to a different pathogen to boost protection against emerging viruses. We targeted SARS-CoV-2 as a representative pandemic virus and generated a fusion protein vaccine that combines the nucleoprotein from influenza A virus and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Our vaccine design significantly increased the production of RBD-specific antibodies in mice that had previously been exposed to influenza virus, compared to those without previous exposure. This enhanced immunity reduced SARS-CoV-2 replication in mice. Our results offer a vaccine design that could be valuable in a future pandemic setting.


Asunto(s)
Vacunas contra la COVID-19 , Vacunas contra la Influenza , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/inmunología , COVID-19/prevención & control , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Nucleoproteínas , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas contra la COVID-19/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control
9.
Nucleic Acids Res ; 52(4): 2045-2065, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281216

RESUMEN

The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.


Asunto(s)
Fagos de Bacillus , Bacillus subtilis , Fagos de Bacillus/genética , Fagos de Bacillus/química , Bacillus subtilis/virología , Replicación del ADN , ADN Viral/genética , Nucleoproteínas/metabolismo , Proteínas Virales/metabolismo
10.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294249

RESUMEN

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Asunto(s)
Caspasas , Citoplasma , Fiebre Hemorrágica Americana , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus Junin , Nucleoproteínas , Biosíntesis de Proteínas , Humanos , Apoptosis , Inhibidores de Caspasas/metabolismo , Caspasas/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Activación Enzimática , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Interferones/genética , Interferones/inmunología , Virus Junin/genética , Virus Junin/metabolismo , Virus Junin/patogenicidad , Nucleoproteínas/biosíntesis , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Replicación Viral
11.
PeerJ ; 12: e16752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223760

RESUMEN

Background: As a component of chromatin remodeling complex, chromatin accessibility complex subunit 1 (CHRAC1) is critical in transcription and DNA replication. However, the significance of CHRAC1 in cancer progression has not been investigated extensively. This research aimed to determine the function of CHRAC1 in breast and cervical cancer and elucidate the molecular mechanism. Methods: The Bio-ID method was used to identify the interactome of transcriptional activator Yes-associated protein (YAP) and the binding between YAP and CHRAC1 was verified by immunofluorescence. CCK8, colony formation and subcutaneous xenograft assays were conducted to explore the function of CHRAC1 in cancer cell proliferation. RNA-seq analysis and RT-PCR were used to analyze the transcription program change after CHRAC1 ablation. The diagnostic value of CHRAC1 was analyzed by TCGA database and further validated by immunohistochemistry staining. Results: In the current study, we found that the chromatin remodeler CHRAC1 was a potential YAP interactor. CHRAC1 depletion suppressed breast and cervical cancer cell proliferation and tumor growth. The potential mechanism may be that CHRAC1 interacts with YAP to facilitate oncogenic transcription of YAP target genes in Hippo pathway, thereby promoting tumorigenesis. CHRAC1 was elevated in cervical and breast cancer biopsies and the upregulation correlated with shorter survival, poor pathological stages and metastasis of cancer patients. Moreover, CHRAC1 expression was statistically associated with YAP in breast and cervical cancer biopsies. Conclusions: These findings highlight that CHRAC1 contributes to cancer progression through regulating the oncogenic transcription of YAP, which makes it a potential therapeutic target for cancer treatment.


Asunto(s)
Proteínas de Unión al ADN , Nucleoproteínas , Neoplasias del Cuello Uterino , Proteínas Señalizadoras YAP , Femenino , Humanos , Proteínas de Unión al ADN/genética , Nucleoproteínas/genética , Neoplasias del Cuello Uterino/genética , Proteínas Señalizadoras YAP/genética
12.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 113-122, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265877

RESUMEN

Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex.


Asunto(s)
Nucleoproteínas , Virus de Nápoles de la Fiebre de la Mosca de los Arenales , Nucleoproteínas/química , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/genética , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/metabolismo , Proteínas de la Nucleocápside/química , Modelos Moleculares , ARN Viral/química , ARN Viral/metabolismo
13.
J Mol Biol ; 436(2): 168369, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977299

RESUMEN

DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.


Asunto(s)
ADN Helicasas , Replicación del ADN , Proteínas de Escherichia coli , Escherichia coli , ADN Helicasas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo
14.
Biotechnol Appl Biochem ; 71(2): 280-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38054375

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is classified among top 10 priority pathogens by World Health Organization. CCHFV belongs to Bunyaviridae family and negative sense ssRNA genome composed of three RNA segments: L, M, and S. RNA viruses show higher mutation rate as compared to DNA viruses. To gain deeper understanding of impact of point mutations in CCHFV M and S segment, mutation profiling, homology modeling, and molecular dynamic (MD) simulation were performed. Structural glycoproteins (glycoprotein C [Gc] and glycoprotein N [Gn]) of CCHFV are important for host-virus interaction and genome packaging, whereas CCHFV nucleoprotein (NP) is crucial for viral replication. Hence, current study is focused on evaluation of eight mutations in structural glycoproteins (Gc: 7 and Gn: 1) of M segment and seven mutations in NP of S segment. All these mutations were highly frequent, with mutation frequency between 0.81 and 1.0 and found to be persistent in the recent strains of CCHFV. Solubility analysis predicted that selected point mutations reduce solubility of Gc protein and increase solubility of Gn and NP proteins. MD simulation study deciphered that A1046V and G1158E in Gc protein, I778T in Gn protein, and H195R in NP protein displayed large deviation and fluctuation, and affected intramolecular interactions. In conclusion, we observed that point mutations could impact structure, stability, and host-virus interaction of protein, and might lead to evolution of new strains for better survival and drug resistance.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Proteínas del Envoltorio Viral , Virus de la Fiebre Hemorrágica de Crimea-Congo/química , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Mutación Puntual , Glicoproteínas/genética , Glicoproteínas/química , ARN
15.
Lancet Infect Dis ; 24(3): 266-274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38043556

RESUMEN

BACKGROUND: The use of specific anti-Ebola virus therapy, especially monoclonal antibodies, has improved survival in patients with Ebola virus disease. We aimed to assess the effect of monoclonal antibodies on anti-Ebola virus antibody responses in survivors of the 2018-20 Ebola outbreak in the Democratic Republic of the Congo. METHODS: In this observational prospective cohort study, participants were enrolled at three Ebola survivor clinics in Beni, Mangina, and Butembo (Democratic Republic of the Congo). Eligible children and adults notified as survivors of Ebola virus disease (ie, who had confirmed Ebola virus disease [RT-PCR positive in blood sample] and were subsequently declared recovered from the virus [RT-PCR negative in blood sample] with a certificate of recovery from Ebola virus disease issued by an Ebola treatment centre) during the 2018-20 Ebola virus disease outbreak were invited to participate in the study. Participants were recruited on discharge from Ebola treatment centres and followed up for 12-18 months depending on recruitment date. Routine follow-up assessments were done at 1, 3, 6, and 12-18 months after inclusion. We collected sociodemographic (age, sex, visit site), clinical (anti-Ebola virus drugs), and laboratory data (RT-PCR and Ct values). The primary outcome was the antibody concentrations against Ebola virus glycoprotein, nucleoprotein, and 40-kDa viral protein antigens over time assessed in all participants. Antibody concentrations were measured by the multiplex immunoassay, and the association between anti-Ebola virus antibody levels and the relevant exposures, such as anti-Ebola virus disease drugs (ansuvimab, REGN-EB3, ZMapp, or remdesivir), was assessed using both linear and logistic mixed regression models. This study is registered at ClinicalTrials.gov, NCT04409405. FINDINGS: Between April 16, 2020, and Oct 18, 2021, 1168 survivors were invited to participate in the Les Vainqueurs d'Ebola cohort study. 787 survivors were included in the study, of whom 358 had data available for antibody responses. 85 (24%) of 358 were seronegative for at least two Ebola virus antigens on discharge from the Ebola treatment centre. The antibody response over time fluctuated but a continuous decrease in an overall linear evolution was observed. Quantitative modelling showed a decrease in nucleoprotein, glycoprotein, and VP-40 antibody concentrations over time (p<0·0001) with the fastest decrease observed for glycoprotein. The probability of being seropositive for at least two antigens after 36 months was 53·6% (95% CI 51·6-55·6) for participants who received ansuvimab, 73·5% (71·5-75·5) for participants who received REGN-EB3, 76·8% (74·8-78·8) for participants who received remdesivir, and 78·5% (76·5-80·5) for participants who received ZMapp. INTERPRETATION: Almost a quarter of survivors were seronegative on discharge from the Ebola treatment centre and antibody concentrations decreased rapidly over time. These results indicate that monoclonal antibodies might negatively affect the production of anti-Ebola virus antibodies in survivors of Ebola virus disease which could increase the risk of reinfection or reactivation. FUNDING: The French National Agency for AIDS Research-Emergent Infectious Diseases-The French National Institute of Health and Medical Research, the French National Research Institute for Development, and the European and Developing Countries Clinical Trials Partnership. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Adulto , Niño , Humanos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/epidemiología , Formación de Anticuerpos , Estudios de Cohortes , Estudios Prospectivos , República Democrática del Congo/epidemiología , Anticuerpos Antivirales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Sobrevivientes , Glicoproteínas , Nucleoproteínas/farmacología , Nucleoproteínas/uso terapéutico
16.
Theriogenology ; 215: 86-94, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016305

RESUMEN

Bovine nucleoprotein transitions (TNPs), specifically TNP1 and TNP2, are essential molecules in sperm nucleus rich in arginine and lysine. These molecules act in the phase between histone expulsion and before incorporation of protamine in the spermatid nucleus. Therefore, this study aimed to analyze genes and protein abundance of TNP1 and TNP2 in sperm to determine the potential as motility markers and correlation with fertility in the field. An objective evaluation method, CASA-Sperm Vision, was used to separate 22 bulls into two groups (mg-A and mg-B) based on their increasing motility. Sperm quality parameters were also examined including velocity, mitochondrial membrane potential (MMP) by the JC-1 method, head defects using William staining, and DNA fragmentation by Halomax. TNPs genes abundance was performed using the RT-qPCR method, and the protein abundance was examined with the EIA approach. The fertility rate was also analyzed based on the conception rate generated from each bull in the field, with the data obtained from iSIKHNAS. The results showed that TNPs genes and protein abundance were significantly higher (P < 0.05) in mg-A compared to mg-B, followed by various sperm quality parameters and fertility rates (P < 0.05). Positive correlations were found in TNPs genes and protein abundance with motility, velocity, MMP, and fertility (P < 0.01). Meanwhile, a negative correlation (P < 0.01) was found between head defects and DNA fragmentation. These results showed the potential of TNPs as sperm motility markers and bull fertility.


Asunto(s)
Semen , Motilidad Espermática , Masculino , Bovinos , Animales , Nucleoproteínas/genética , Espermatozoides , Fertilidad/genética
17.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064269

RESUMEN

Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae.


Asunto(s)
Genoma Viral , Virus ARN , Virus ARN/genética , Virus ARN de Sentido Negativo , Nucleoproteínas/genética , Replicación Viral , Virión/genética
18.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059782

RESUMEN

Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae.


Asunto(s)
Virus ARN , Virus , Virus ARN/genética , Genoma Viral , Virus/genética , Virus ARN de Sentido Negativo , Nucleoproteínas/genética , Replicación Viral , Virión/genética
19.
Sci Adv ; 9(50): eadj9974, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100595

RESUMEN

Influenza virus genome encapsidation is essential for the formation of a helical viral ribonucleoprotein (vRNP) complex composed of nucleoproteins (NP), the trimeric polymerase, and the viral genome. Although low-resolution vRNP structures are available, it remains unclear how the viral RNA is encapsidated and how NPs assemble into the helical filament specific of influenza vRNPs. In this study, we established a biological tool, the RNP-like particles assembled from recombinant influenza A virus NP and synthetic RNA, and we present the first subnanometric cryo-electron microscopy structure of the helical NP-RNA complex (8.7 to 5.3 Å). The helical RNP-like structure reveals a parallel double-stranded conformation, allowing the visualization of NP-NP and NP-RNA interactions. The RNA, located at the interface of neighboring NP protomers, interacts with conserved residues previously described as essential for the NP-RNA interaction. The NP undergoes conformational changes to enable RNA binding and helix formation. Together, our findings provide relevant insights for understanding the mechanism for influenza genome encapsidation.


Asunto(s)
Gripe Humana , Nucleoproteínas , Humanos , Nucleoproteínas/química , Microscopía por Crioelectrón , Ribonucleoproteínas/genética , ARN Viral/metabolismo , Nucleocápside/metabolismo
20.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38112154

RESUMEN

Jingchuvirales is an order of negative-sense RNA viruses with genomes of 9.1-15.3 kb that have been associated with arachnids, barnacles, crustaceans, insects, fish and reptiles in Africa, Asia, Australia, Europe, North America and South America. The jingchuviral genome has two to four open reading frames (ORFs) that encode a glycoprotein (GP), a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and/or proteins of unknown function. Viruses in the order are only known from their genome sequences. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the order Jingchuvirales and on the families Aliusviridae, Chuviridae, Crepuscuviridae, Myriaviridae and Natareviridae, which are available at ictv.global/report/jingchuvirales, ictv.global/report/aliusviridae, ictv.global/report/chuviridae, ictv.global/report/crepuscuviridae, ictv.global/report/myriaviridae and ictv.global/report/natareviridae, respectively.


Asunto(s)
Genoma Viral , Virus ARN , Humanos , Animales , Virus ARN/genética , Filogenia , Nucleoproteínas/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...