Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
1.
PLoS One ; 19(5): e0302638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718016

RESUMEN

Hydroponics offers a promising approach to help alleviate pressure on food security for urban residents. It requires minimal space and uses less resources, but management can be complex. Microscale Smart Hydroponics (MSH) systems leverage IoT systems to simplify hydroponics management for home users. Previous work in nutrient management has produced systems that use expensive sensing methods or utilized lower cost methods at the expense of accuracy. This study presents a novel inexpensive nutrient management system for MSH applications that utilises a novel waterproofed, IoT spectroscopy sensor (AS7265x) in a transflective application. The sensor is submerged in a hydroponic solution to monitor the nutrients and MSH system predicts the of nutrients in the hydroponic solution and recommends an adjustment quantity in mL. A three-phase model building process was carried out resulting in significant MLR models for predicting the mL, with an R2 of 0.997. An experiment evaluated the system's performance using the trained models with a 30-day grow of lettuce in a real-world setting, comparing the results of the management system to a control group. The sensor system successfully adjusted and maintained nutrient levels, resulting in plant growth that outperformed the control group. The results of the models in actual deployment showed a strong, significant correlation of 0.77 with the traditional method of measuring the electrical conductivity of nutrients. This novel nutrient management system has the potential to transform the way nutrients are monitored in hydroponics. By simplifying nutrient management, this system can encourage the adoption of hydroponics, contributing to food security and environmental sustainability.


Asunto(s)
Hidroponía , Nutrientes , Hidroponía/métodos , Nutrientes/análisis , Análisis Espectral/métodos , Lactuca/crecimiento & desarrollo , Seguridad Alimentaria
2.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733446

RESUMEN

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Asunto(s)
Monitoreo del Ambiente , Fósforo , Agua de Mar , Oligoelementos , Contaminantes Químicos del Agua , Mar del Norte , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Fósforo/análisis , Nutrientes/análisis , Nitrógeno/análisis , Metales/análisis , Eutrofización
3.
J Diabetes ; 16(5): e13555, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721664

RESUMEN

BACKGROUND: The association between macronutrient intake and diabetes is unclear. We used data from the China Health and Nutrition Survey to explore the association between macronutrient intake trajectories and diabetes risk in this study. METHODS: We included 6755 participants who did not have diabetes at baseline and participated in at least three surveys. The energy supply ratio of carbohydrate, protein, and fat was further calculated from dietary data; different macronutrient trajectories were determined using multitrajectory models; and multiple Cox regression models were used to evaluate the association between these trajectories and diabetes. RESULTS: We found three multitrajectories: decreased low carbohydrate-increased moderate protein-increased high fat (DLC-IMP-IHF), decreased high carbohydrate-moderate protein-increased low fat (DHC-MP-ILF), and balanced-macronutrients (BM). Compared to the BM trajectory, DHC-MP-ILF trajectories were significantly associated with increased risk of diabetes (hazard ratio [HR]: 3.228, 95% confidence interval [CI]: 1.571-6.632), whereas no association between DLC-IMP-IHF trajectories and diabetes was found in our study (HR: 0.699, 95% CI: 0.351-1.392). CONCLUSIONS: The downward trend of high carbohydrate and the increasing trend of low fat increased the risk of diabetes in Chinese adults.


Asunto(s)
Carbohidratos de la Dieta , Nutrientes , Humanos , Femenino , Masculino , China/epidemiología , Persona de Mediana Edad , Adulto , Nutrientes/análisis , Carbohidratos de la Dieta/efectos adversos , Carbohidratos de la Dieta/administración & dosificación , Factores de Riesgo , Encuestas Nutricionales , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/administración & dosificación , Diabetes Mellitus/epidemiología , Ingestión de Energía , Proteínas en la Dieta/administración & dosificación , Dieta/efectos adversos , Dieta/estadística & datos numéricos , Pueblos del Este de Asia
4.
Food Res Int ; 186: 114363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729725

RESUMEN

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Asunto(s)
Antioxidantes , Digestión , Manipulación de Alimentos , Gadus morhua , Valor Nutritivo , Alimentos Marinos , Gadus morhua/metabolismo , Animales , Alimentos Marinos/análisis , Antioxidantes/análisis , Antioxidantes/química , Manipulación de Alimentos/métodos , Fenoles/análisis , Ondas Ultrasónicas , Flavonoides/análisis , Nutrientes/análisis , Gusto , Color
5.
Food Res Int ; 187: 114460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763688

RESUMEN

In order to fully understand the nutritional heterogeneity of plant-based meat analogues and real meat, this review summarized their similarities and differences in terms of ingredients, nutrient contents, bioavailability and health impacts. Plant-based meat analogues have some similarities to real meat. However, plant-based meat analogues are lower in protein, cholesterol and VB12 but higher in dietary fiber, carbohydrates, sugar, salt and various food additives than real meat. Moreover, some nutrients in plant-based meat analogues, such as protein and iron, are less bioavailable. There is insufficient evidence that plant-based meat analogues are healthier, which may be related to the specific attributes of these products such as formulation and degree of processing. As things stand, it is necessary to provide comprehensive nutrition information on plant-based meat products so that consumers can make informed choices based on their nutritional needs.


Asunto(s)
Disponibilidad Biológica , Productos de la Carne , Valor Nutritivo , Humanos , Productos de la Carne/análisis , Animales , Nutrientes/análisis , Dieta Vegetariana , Ingredientes Alimentarios/análisis , Carne/análisis , Sustitutos de la Carne
6.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732541

RESUMEN

Nuts are nutrient-dense foods and can be incorporated into a healthy diet. Artificial intelligence-powered diet-tracking apps may promote nut consumption by providing real-time, accurate nutrition information but depend on data and model availability. Our team developed a dataset comprising 1380 photographs, each in RGB color format and with a resolution of 4032 × 3024 pixels. These images feature 11 types of nuts that are commonly consumed. Each photo includes three nut types; each type consists of 2-4 nuts, so 6-9 nuts are in each image. Rectangular bounding boxes were drawn using a visual geometry group (VGG) image annotator to facilitate the identification of each nut, delineating their locations within the images. This approach renders the dataset an excellent resource for training models capable of multi-label classification and object detection, as it was meticulously divided into training, validation, and test subsets. Utilizing transfer learning in Python with the IceVision framework, deep neural network models were adeptly trained to recognize and pinpoint the nuts depicted in the photographs. The ultimate model exhibited a mean average precision of 0.7596 in identifying various nut types within the validation subset and demonstrated a 97.9% accuracy rate in determining the number and kinds of nuts present in the test subset. By integrating specific nutritional data for each type of nut, the model can precisely (with error margins ranging from 0.8 to 2.6%) calculate the combined nutritional content-encompassing total energy, proteins, carbohydrates, fats (total and saturated), fiber, vitamin E, and essential minerals like magnesium, phosphorus, copper, manganese, and selenium-of the nuts shown in a photograph. Both the dataset and the model have been made publicly available to foster data exchange and the spread of knowledge. Our research underscores the potential of leveraging photographs for automated nut calorie and nutritional content estimation, paving the way for the creation of dietary tracking applications that offer real-time, precise nutritional insights to encourage nut consumption.


Asunto(s)
Redes Neurales de la Computación , Valor Nutritivo , Nueces , Fotograbar , Humanos , Aprendizaje Profundo , Nutrientes/análisis
7.
Trop Anim Health Prod ; 56(4): 156, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727858

RESUMEN

The current study aimed to determine the polyphenol compounds in Nigella sativa (NS) and Eruca sativa (ES) seeds, and evaluate the impact of their addition either as a sole additive or in combination on the growth performance, digestibility, some rumen and blood parameters and antioxidative status of Barki lambs. Forty-eight male lambs (27.18 ± 0.22 kg, 5-6 months), were divided into 4 balanced groups. The experimental diets were randomly distributed to the control group (CON); fed alfalfa hay plus concentrate feed mixture at a ratio of 30:70% without additives, while, NSD, ESD, and NESD groups: fed CON diet plus 2% NS, 2% ES or 1% NS + 1% ES, respectively as a ratio from total mixed ration (TMR). Results indicated that rutin and catechin were the most phenolic compounds observed either in NS or ES seeds. The NS and ES-supplemented groups recorded the highest (P < 0.05) values for dry matter digestibility, nutritive values, average daily gain, and the best feed conversion ratio. However, growth performance, nutritive value, and all nutrient digestibility except for dry matter were not significantly altered with the NESD group. Concentrations of ruminal NH3-N and TVFA were significantly (P < 0.05) reduced with the NESD group, with no significant differences in pH values among different groups. Values of blood parameters showed significant increases in WBCs, PCV, and T-AOC, and decreases in cholesterol, triglycerides, and MDA with the addition of NS and ES seeds or both. Therefore, the addition of NS and ES seeds is recommended to improve lambs' health and antioxidant status.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Antioxidantes , Dieta , Suplementos Dietéticos , Digestión , Nigella sativa , Semillas , Oveja Doméstica , Animales , Nigella sativa/química , Alimentación Animal/análisis , Masculino , Semillas/química , Antioxidantes/metabolismo , Antioxidantes/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Digestión/efectos de los fármacos , Oveja Doméstica/crecimiento & desarrollo , Oveja Doméstica/fisiología , Rumen/metabolismo , Brassicaceae/química , Distribución Aleatoria , Nutrientes/análisis , Nutrientes/metabolismo
8.
Sci Total Environ ; 931: 172997, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38714256

RESUMEN

Diatoms and dinoflagellates are two typical functional groups of phytoplankton, playing important roles in ecosystem processes and biogeochemical cycles. Changes in diatoms and dinoflagellates are thought to be one of the possible mechanisms for the increase in harmful algal blooms (HABs), due to changing hydrological conditions associated with climate change and human activities. However, little is known about their ability to adapt to changing ocean environments, thus making it difficult to know whether and how they are adapting. By analyzing a 44-year monitoring dataset in the central Bohai Sea during 1978-2021, we found that the abundance ratio of diatoms to dinoflagellates showed a decreasing trend seasonally and ecologically, indicating that the phytoplankton community underwent distinct successional processes from diatom dominance to diatom-dinoflagellate co-dominance. These processes exhibited varying responses to temperature, nutrient concentrations and ratios, and their interactions, of which temperature primarily drove the seasonal succession whereas nutrients were responsible for the ecological succession. Specifically, diatoms showed a preference for lower temperatures and higher DIP concentrations, and were able to tolerate lower DIN at lower temperatures. In contrast, dinoflagellates tended to prevail at conditions of warming and high N/P ratios. These different traits of diatoms and dinoflagellates reflected the fact that warming as a result of rising temperature and eutrophication as a consequence of nutrient input would favor dinoflagellates over diatoms. Moreover, the increasing dominance of dinoflagellates indicated that dinoflagellate blooms were likely to become more frequent and intense in the central Bohai Sea.


Asunto(s)
Cambio Climático , Diatomeas , Dinoflagelados , Eutrofización , Temperatura , Fitoplancton , Nutrientes/análisis , Monitoreo del Ambiente , China , Floraciones de Algas Nocivas , Ecosistema , Estaciones del Año
9.
Sci Total Environ ; 931: 173024, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38719048

RESUMEN

Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. ß-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on ß-cyclocitral levels in water. Here, we conducted a study on the ß-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), ß-cyclocitral in the water (Wcyc), ß-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, ß-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of ß-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit ß-cyclocitral, the release of ß-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of ß-cyclocitral.


Asunto(s)
Eutrofización , Odorantes , Contaminantes Químicos del Agua , Odorantes/análisis , Contaminantes Químicos del Agua/análisis , Aldehídos/análisis , Plantas , Nutrientes/análisis , Monitoreo del Ambiente , Diterpenos
10.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700640

RESUMEN

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Suelo , Triticum , Suelo/química , Nitrógeno/análisis , Fósforo/análisis , Fertilizantes/análisis , Agricultura/métodos , Nutrientes/análisis , Carbono/análisis
11.
Environ Monit Assess ; 196(6): 517, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710902

RESUMEN

Nowadays, the introduction of nutrients caused by human activities is considered an environmental issue and a significant problem in river basins and coastal ecosystems. In this study, the concentration of nutrients ( NO 3 - and PO 4 3 - ) in the surface water sources of the Maroon-Jarahi watershed in the southwest of Iran was determined, and the pollution status and health risk assessment were done. The average concentration of nitrate and phosphate in Ludab, Maroon, Zard, Allah, Jarahi rivers, and Shadegan wetland were obtained at 2.25-0.59, 4.59-1.84, 4.07-2.02, 5.40-2.81, 11.51-4.67, 21.63 and 6.20 (mg/l), respectively. A comparison of the results with the World Health Organization (WHO) limit showed that nitrate was lower than in all stations, but phosphate was higher than the limit in some stations of the Maroon, Allah, Jarahi rivers, and Shadegan wetland. Calculation of linear regression analysis showed significant positive relationships between nitrate and phosphate in all surface water sources (except Ludab) and based on the N/P ratio, nitrogen was estimated as the limiting factor in phytoplankton growth (N/P < 16). The evaluation of the status of the Nutrient pollution index (NPI) was observed as: Shadegan > Jarahi > Allah > Maroon > Zard > Ludab that the Jarahi River and Shadegan wetland were in the medium pollution class (1 < NPI ≤ 3) and other waterbodies were in the non-polluted to low pollution state (NPI < 1). Calculation of the chronic daily intake (CDI) showed that water body nutrients cause more non-carcinogenic health risks through the oral route than dermal exposure, and according to HI, children's health is more at risk than adults. Findings showed that surface water resources especially downstream of the Maroon-Jarahi watershed are at eutrophication risk, and to control the nearby human activities and as a result increase the nutrients in these water resources, measures should be taken.


Asunto(s)
Monitoreo del Ambiente , Nitratos , Ríos , Contaminantes Químicos del Agua , Irán , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos , Ríos/química , Nitratos/análisis , Fosfatos/análisis , Humedales , Contaminación Química del Agua/estadística & datos numéricos , Nutrientes/análisis , Recursos Hídricos
12.
Sci Rep ; 14(1): 10097, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698154

RESUMEN

To explore the impacts of continuous Ganoderma lucidum cultivation on soil physicochemical factors, soil enzyme activity, and the metabolome of Ganoderma lucidum fruiting bodies, this study conducted two consecutive years of cultivation on the same plot of land. Soil physicochemical factors and enzyme activity were assessed, alongside non-targeted metabolomic analysis of the Ganoderma lucidum fruiting bodies under continuous cultivation. The findings unveiled that in the surface soil layer (0-15 cm), there was a declining trend in organic matter, ammonium nitrogen, available phosphorus, available potassium, pH, polyphenol oxidase, peroxidase, alkaline phosphatase, and sucrase, whereas nitrate nitrogen, electrical conductivity (EC), and salt content exhibited an upward trend. Conversely, in the deeper soil layer (15-30 cm), organic matter, ammonium nitrogen, available potassium, alkaline phosphatase, and sucrase demonstrated a decreasing trend, while nitrate nitrogen, available phosphorus, pH, EC, salt content, polyphenol oxidase, and soil peroxidase showed an increasing trend. Metabolomic analysis of Ganoderma lucidum fruiting bodies distinguished 64 significantly different metabolites between the GCK and GT groups, with 39 components having markedly higher relative contents in GCK and 25 components having significantly lower relative contents in GCK compared to GT. Moreover, among these metabolites, there were more types with higher contents in the fruiting bodies harvested in the first year (GCK) compared to those harvested in the second year (GT), with pronounced differences. KEGG pathway analysis revealed that GCK exhibited more complex metabolic pathways compared to GT. The metabolites of Ganoderma lucidum fruiting bodies were predominantly influenced by soil physicochemical factors and soil enzyme activity. In the surface soil layer (0-15 cm), the metabolome was significantly affected by soil pH, soil organic matter, available phosphorus, and soil alkaline phosphatase, while in the deeper soil layer (15-30 cm), differences in the Ganoderma lucidum metabolome were more influenced by soil alkaline phosphatase, soil catalase, pH, nitrate nitrogen, and soil sucrase.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Reishi , Suelo , Reishi/metabolismo , Reishi/crecimiento & desarrollo , Suelo/química , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Nitrógeno/metabolismo , Nitrógeno/análisis , Fósforo/metabolismo , Fósforo/análisis , Nutrientes/metabolismo , Nutrientes/análisis , Metaboloma , Metabolómica/métodos , Concentración de Iones de Hidrógeno
13.
Environ Monit Assess ; 196(5): 490, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691199

RESUMEN

Forest-savanna transition zones of West Africa are uniquely characterized by forest groves, forest patches, or forest islands, the importance of which for sustainable resource management and their potential for carbon sequestration and nutrient cycling is often underrated. Our study conducted a comparative analysis of the soil organic carbon and nutrient characteristics of the Anogeissus groves in the old Opara forest reserve and their adjoining arable lands. We established 30 sampling frames of 100 m × 100 m plots with 15 frames per land use type. For each sampling frame, six observation points were randomly selected, and composite soil samples were collected at soil depths of 0-20 cm and 20-50 cm per observation point. Our results showed Anogeissus groves and their adjoining arable lands to exist on similar landscapes while the groves have enriched soil morphological characteristics (e.g., soil color), higher soil organic carbon (SOC), and better nutrient characteristics. There were strong positive relationships between SOC, effective cation exchange capacity, total nitrogen, calcium, magnesium and calcium, zinc, electrical conductivity, and copper. The significant soil organic matter accumulation in the groves accounts for the overall improved soil characteristics over the adjoining arable lands. Preserving the groves and similar African ecosystems may be important in climate regulation, resources and biodiversity conservation, and ethnopharmacology for rural communities. Thus, a question arises: should more land be set aside for ecological conservation or for agricultural productivity?


Asunto(s)
Carbono , Monitoreo del Ambiente , Bosques , Nitrógeno , Suelo , Suelo/química , Nigeria , Carbono/análisis , Nitrógeno/análisis , Conservación de los Recursos Naturales , Nutrientes/análisis , Agricultura
14.
Sci Total Environ ; 927: 172338, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608897

RESUMEN

Algal blooms in lakes have been a challenging environmental issue globally under the dual influence of human activity and climate change. Considerable progress has been made in the study of phytoplankton dynamics in lakes; The long-term in situ evolution of dominant bloom-forming cyanobacteria in meso-eutrophic plateau lakes, however, lacks systematic research. Here, the monthly parameters from 12 sampling sites during the period of 1997-2022 were utilized to investigate the underlying mechanisms driving the superiority of bloom-forming cyanobacteria in Erhai, a representative meso-eutrophic plateau lake. The findings indicate that global warming will intensify the risk of cynaobacteria blooms, prolong Microcystis blooms in autumn to winter or even into the following year, and increase the superiority of filamentous Planktothrix and Cylindrospermum in summer and autumn. High RUETN (1.52 Biomass/TN, 0.95-3.04 times higher than other species) under N limitation (TN < 0.5 mg/L, TN/TP < 22.6) in the meso-eutrophic Lake Erhai facilitates the superiority of Dolichospermum. High RUETP (43.8 Biomass/TP, 2.1-10.2 times higher than others) in TP of 0.03-0.05 mg/L promotes the superiority of Planktothrix and Cylindrospermum. We provided a novel insight into the formation of Planktothrix and Cylindrospermum superiority in meso-eutrophic plateau lake with low TP (0.005-0.07 mg/L), which is mainly influenced by warming, high RUETP and their vertical migration characteristics. Therefore, we posit that although the obvious improvement of lake water quality is not directly proportional to the control efficacy of cyanobacterial blooms, the evolutionary shift in cyanobacteria population structure from Microcystis, which thrives under high nitrogen and phosphorus conditions, to filamentous cyanobacteria adapted to low nitrogen and phosphorus levels may serve as a significant indicator of water quality amelioration. Therefore, we suggest that the risk of filamentous cyanobacteria blooms in the meso-eutrophic plateau lake should be given attention, particularly in light of improving water quality and global warming, to ensure drinking water safety.


Asunto(s)
Cianobacterias , Eutrofización , Lagos , Temperatura , Lagos/microbiología , Lagos/química , China , Monitoreo del Ambiente , Nitrógeno/análisis , Fitoplancton , Cambio Climático , Estaciones del Año , Fósforo/análisis , Nutrientes/análisis , Calentamiento Global
15.
Ying Yong Sheng Tai Xue Bao ; 35(3): 639-647, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646751

RESUMEN

Vegetation restoration can effectively enhance soil quality and soil organic carbon (SOC) sequestration. In this study, the distribution characteristics of soil nutrients and SOC along soil profile (0-100 cm), and their responses to restoration years (16, 28, 38 years) were studied in Caragana korshinskii plantations in the southern mountainous area of Ningxia, compared with cropland and natural grassland. The results showed that: 1) the contents of SOC, soil total nitrogen (TN), total phosphorus (TP), particulate organic carbon (POC), mineral-associated organic carbon (MAOC) and the proportion of particulate organic carbon to total organic carbon (POC/SOC) all decreased with increasing soil depth. The ratio of mineral-associated organic carbon to total organic carbon (MAOC/SOC) exhibited an opposite trend. 2) The contents of SOC, TN, TP, C:P, N:P, POC and MAOC gra-dually decreased as the restoration years increased. However, the C:N ratio showed no significant change. The POC/SOC ratio initially increased and then decreased, while the MAOC/SOC ratio decreased initially and then increased. 3) In three different types of vegetation, POC, MAOC, and SOC showed a highly significant positive linear correlation, with the increase in SOC mainly depended on the increase in MAOC. The SOC, TN, TP, POC and MAOC contents in natural grassland and C. korshinskii plantations were significantly higher than those in cropland. In conclusion, soil nutrients and POC and MAOC contents of C. korshinskii plantations gradually decreased with the increases in restoration years. However, when compared with cropland, natural grassland and C. korshinskii plantations demonstrated a greater capacity to maintain and enhance soil nutrient and carbon storage.


Asunto(s)
Caragana , Carbono , Bosques , Nitrógeno , Compuestos Orgánicos , Fósforo , Suelo , China , Suelo/química , Carbono/análisis , Caragana/crecimiento & desarrollo , Nitrógeno/análisis , Fósforo/análisis , Compuestos Orgánicos/análisis , Nutrientes/análisis , Restauración y Remediación Ambiental/métodos , Secuestro de Carbono , Ecosistema
16.
Sci Total Environ ; 927: 172167, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580118

RESUMEN

The improvement of food security and nutrition has attracted wide attention, and microalgae as the most promising food source are being further explored. This paper comprehensively introduces basic and functional nutrients rich in microalgae by elaborated tables incorporating a wide variety of studies and summarizes factors influencing their accumulation effects. Subsequently, multiple comparisons of nutrients were conducted, indicating that microalgae have a high protein content. Moreover, controllable production costs and environmental friendliness prompt microalgae into the list that contains more promising and reliable future food. However, microalgae and -based foods approved and sold are limited strictly, showing that safety is a key factor affecting dietary consideration. Notably, sensory profiles and ingredient clarity play an important role in improving the acceptance of microalgae-based foods. Finally, based on the bottleneck in the microalgae food industry, suggestions for its future development were discussed.


Asunto(s)
Microalgas , Inocuidad de los Alimentos , Nutrientes/análisis , Valor Nutritivo
17.
Sci Total Environ ; 930: 172835, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688375

RESUMEN

The knowledge of nutrient flow in dairy farms has to be explored to find optimized strategies for efficient nutrient conversion to milk. This study aims to improve the understanding of variances in nitrogen and phosphorus balance and efficiency indicators between dairy farm systems. The study analyzed 67 dairy cattle farms located in the watershed Lajeado Tacongava, Rio Grande do Sul State, Brazil. Selected dairy farms represented three production systems: confined (3 farms); semi-confined (7 farms); pasture-based (57 farms). Input-output nutrient balances were calculated at the dairy system level for nitrogen and phosphorus over a year. Inputs are feed and fertilizer and outputs are milk and meat. The main nitrogen and phosphorus input on the all farms resulted from the feed. The average N and P surplus on pasture-based farms were 352 and 49 kg ha-1 year-1, respectively. In semi-confined systems were 508 and 63 kg ha-1 year-1 and in confined systems were 786 and 70 kg ha-1 year-1. When considering the monetary value of the total N surplus, the averages were US$ 2.615, 4.950, and 12.171 for pasture-based, semi-confined and confined systems respectively. Monetary values of P surplus were US$ 346, 588, and 1119 for pasture-based, semi-confined and confined. The productive aspects that most determined the values of N and P surplus were the total number of lactating cows and the farm area. Results indicate that surplus can partially replace chemical nitrogen fertilizer, except in the confined system, and fully replace phosphorus fertilizer. Confined farms presented values to use surplus as fertilizer greater than the crop demand. For the other production systems, it happens only for phosphorus. Large variability between dairy farms of the same production system and between different production systems was observed. It reflects the inherent productive, economic, and environmental conditions of each farm and system.


Asunto(s)
Industria Lechera , Fertilizantes , Nitrógeno , Fósforo , Fósforo/análisis , Nitrógeno/análisis , Animales , Bovinos , Brasil , Fertilizantes/análisis , Nutrientes/análisis , Leche , Alimentación Animal/análisis
18.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656670

RESUMEN

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Asunto(s)
Alimentación Animal , Lactancia , Metano , Leche , Animales , Bovinos/fisiología , Metano/análisis , Metano/metabolismo , Femenino , Lactancia/fisiología , Leche/química , Leche/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Crianza de Animales Domésticos/métodos , Ensilaje/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Brachiaria , Nitrógeno/metabolismo , Nitrógeno/análisis , Nutrientes/análisis , Nutrientes/metabolismo , Fabaceae/química
19.
Nutrients ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674821

RESUMEN

Understanding the nutritional content of protein supplements is crucial for optimal nutritional planning among athletes and other people. Distribution of macronutrients and aminograms in the main products available in the national Chilean market remains unknown. A descriptive cross-sectional study was conducted to identify the main protein supplements available in the Chilean market. Information on macronutrients and aminograms from the nutritional labels of each product was extracted. The analysis considered the content per portion and per 100 g. Cluster analysis models and graphical representations were explored. Eighty protein shakes were assessed in the Santiago de Chile market. The median protein dosage was 32 g (range from 25 to 52), and the median energy value stood at 390 kcal (range from 312 to 514). The median protein content per 100 g of product was found to be 75 g (range from 42.5 to 97.2). The combined median concentration of amino acids was 4749.75 mg. Among these, the essential amino acid L-Tryptophan exhibited the lowest concentration at 1591.50 mg, while the conditional amino acid L-Glutamine had the highest median concentration at 17,336 mg. There was a significant prevalence of animal-derived products, placing specific emphasis on protein supplements that feature elevated levels of the amino acids L-Glutamine and L-Leucine.


Asunto(s)
Proteínas en la Dieta , Suplementos Dietéticos , Valor Nutritivo , Chile , Estudios Transversales , Proteínas en la Dieta/análisis , Humanos , Aminoácidos/análisis , Etiquetado de Alimentos , Triptófano/análisis , Nutrientes/análisis , Leucina/análisis , Ingestión de Energía , Glutamina/análisis
20.
Nutrients ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38674848

RESUMEN

There is an increasing interest in plant-based diets and higher levels of plant proteins due to rising concerns around health and environmental sustainability issues. We determined the effects of increasing quartiles of plant protein in the diet on nutrient adequacy using a large nationally representative observational dataset. Twenty-four-hour dietary-recall data from NHANES 2013-2018 from 19,493 participants aged 9+ years were used to assess nutrient intakes. Nutritional adequacy was assessed by estimating the percentage of the population with intakes below the EAR or above the AI. A quartile trend was assessed using regression and the significance was set at Pquartile trend < 0.05. With increasing quartiles of plant protein, the adequacy decreased for calcium, potassium, and vitamin D and increased for copper and magnesium for adolescents. Among the adults aged 19-50 years, the adequacy decreased for protein, choline, selenium, vitamin B12, and zinc and increased for copper, folate, iron, magnesium, thiamin, and vitamin C with increasing quartiles of plant protein. The adequacy for calcium, vitamin A, and zinc decreased and it increased for copper, folate, magnesium, thiamin, and vitamin C with increasing quartiles of plant protein among adults aged 51+ years. The results indicate that diets of mixed protein sources (from both animals and plants) are the most nutritionally adequate.


Asunto(s)
Encuestas Nutricionales , Humanos , Adulto , Persona de Mediana Edad , Adulto Joven , Adolescente , Masculino , Femenino , Estados Unidos , Niño , Estado Nutricional , Proteínas de Plantas/administración & dosificación , Dieta/estadística & datos numéricos , Valor Nutritivo , Anciano , Nutrientes/administración & dosificación , Nutrientes/análisis , Micronutrientes/administración & dosificación , Micronutrientes/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...