Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 439, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520476

RESUMEN

BACKGROUND: Ocimum tenuiflorum L. is a highly traded medicinal with several therapeutic values. Green Tulsi and purple Tulsi are two subtypes in O. tenuiflorum and both have the same medicinal properties. Recent reports have revealed that purple Tulsi contains higher quantities of methyl eugenol (ME), which is moderately toxic and potentially carcinogenic. Therefore, we developed an allele-specific PCR (AS-PCR) method to distinguish the green and purple Tulsi. METHODS AND RESULT: Using the green Tulsi as a reference, 12 single nucleotide polymorphisms (SNPs) and 10 insertions/deletions (InDels) were identified in the chloroplast genome of the purple Tulsi. The C > T SNP at the 1,26,029 position in the ycf1 gene was selected for the development of the AS-PCR method. The primers were designed to amplify 521 bp and 291 bp fragments specific to green and purple Tulsi, respectively. This AS-PCR method was validated in 10 accessions from each subtype and subsequently verified using Sanger sequencing. Subsequently, 30 Tulsi powder samples collected from the market were subjected to molecular identification by AS-PCR. The results showed that 80% of the samples were purple Tulsi, and only 3.5% were green Tulsi. About 10% of the samples were a mixture of both green and purple Tulsi. Two samples (6.5%) did not contain O. tenuiflorum and were identified as O. gratissimum. CONCLUSION: The market samples of Tulsi were predominantly derived from purple Tulsi. The AS-PCR method will be helpful for quality control and market surveillance of Tulsi herbal powders.


Asunto(s)
Eugenol/análogos & derivados , Ocimum sanctum , Ocimum , Extractos Vegetales , Ocimum sanctum/genética , Ocimum/genética , Alelos , Reacción en Cadena de la Polimerasa
2.
Gene ; 896: 148041, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036074

RESUMEN

The newly released interspecific hybrid variety CIM-Shishir, resulting from a cross between Ocimum basilicum and Ocimum kilimandscharicum claims to be a multicut, lodging resistant, cold tolerant, high essential oil yielding with linalool rich variety. It has a purple-green stem and has a unique feature and advantage of better survival in the winter season than other O. basilicum varieties, illustrating its physiological mechanisms for cold tolerance. In this study, we subjected both the CIM-Shishir variety and a control plant to cold stress to investigate the impact of low temperatures on various physiological, trichome developments, secondary metabolite constitution aspects related to essential oil production, and gene expression. The analysis revealed a significantly higher density and altered morphology of trichomes on the leaf surface of the variety subjected to low temperatures, indicating its adaptation to cold conditions. Furthermore, when comparing the treated plants under low-temperature stress, it was observed that the relative electrolyte leakage and Malondialdehyde (MDA) contents substantially increased in the control in contrast to the CIM-Shishir variety. This finding suggests that CIM-Shishir exhibits superior cold tolerance. Additionally, an increase in proline content was noted in the variety exposed to low temperatures compared to the control. Moreover, the chlorophyll and anthocyanin content gradually increased with prolonged exposure to low-temperature stress in the newly developed variety, indicating its ability to maintain photosynthetic capacity and adapt to cold conditions. The activities of superoxide dismutase (SOD) also increased under low-temperature conditions in the CIM-Shishir variety, further highlighting its cold tolerance behaviour. In our research, we investigated the comprehensive molecular mechanisms of cold response in Ocimum. We analyzed the expression of key genes associated with cold tolerance in two plant groups: the newly developed hybrid variety known as CIM-Shishir Ocimum, which exhibits cold tolerance, and the control plants susceptible to cold climates that include WRKY53, ICE1, HOS1, COR47, LOS15, DREB5, CBF4, LTI6, KIN, and ERD2. These genes exhibited significantly higher expression levels in the CIM-Shishir variety compared to the control, shedding light on the genetic basis of its cold tolerance. The need for climate-smart, resilient high-yielding genotype is of high importance due to varied climatic conditions as this will hit the yield drastically and further to the economic sectors including farmers and many industries that are dependent on the bioactive constituents of Ocimum.


Asunto(s)
Ocimum basilicum , Ocimum , Aceites Volátiles , Resiliencia Psicológica , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Temperatura , Ocimum/genética , Ocimum/metabolismo , Aceites Volátiles/análisis , Aceites Volátiles/metabolismo , Percepción , Frío
3.
Mol Biotechnol ; 63(5): 446-457, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33754283

RESUMEN

Studies on genetic diversity could enhance taxonomic authentication and evolutionary relationship among the species of Ocimum. Therefore, diversity among 36 Ocimum accessions representing species from different regions of world were analyzed using Start Codon-Targeted Polymorphism (SCoT) and inter-simple sequences repeat (ISSR) marker. Marker systems used in this study was potentially targeted the different regions of the genome and included 18 SCoT and 15 ISSR primers, which showed successful amplification profile for Ocimum. Between these two, SCoT revealed the highest mean value of percentage of Polymorphism (84.6%), polymorphic information content (PIC, 0.65), and resolving power (Rp, 8.80), which were higher than ISSR. A total of 140 and 111 amplicons were obtained with SCoT and ISSR marker. The Mantel test indicted a significant correlation (r2 = 0.44) between ISSR and SCoT, which suggested a common genetical background among the accessions. The principal coordinate study showed the selection of different Ocimum genotypes by the cluster analysis. This study will help and support identification, genetic mapping, and molecular ecology to enhance the breeding program's efficiency for developing elite varieties to meet industrial demand globally. The present study is the first report of the genetic diversity, and relationship determination with SCoT-based molecular marker among Ocimum accessions.


Asunto(s)
Codón Iniciador/genética , Dermatoglifia del ADN , Ecotipo , Repeticiones de Microsatélite/genética , Ocimum/genética , Polimorfismo Genético , ADN de Plantas/genética , Marcadores Genéticos , Geografía , Ocimum/anatomía & histología , Filogenia , Análisis de Componente Principal , Estándares de Referencia , Especificidad de la Especie
4.
Int J Biol Macromol ; 181: 202-210, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33774069

RESUMEN

Plant 4-coumarate-CoA ligase (4CL) catalyzes the ligation of CoA to cinnamic acid and its derivatives. Activated CoA esters are utilized for the biosynthesis of phenolic metabolites and lignin that play essential function in plants. Here, we characterize the diversity of Ocimum kilimandscharicum 4CLs (Ok4CLs). Phylogenetic analysis suggest that Ok4CLs could be grouped into three classes, class I - enzymes mostly involved in lignin biosynthesis, class II - non-structural phenylpropanoid biosynthesis and class III - yet to be characterized for specific role(s). We selected two Ok4CLs namely Ok4CL7 and Ok4CL15 for further characterization. Gene expression analysis suggested that Ok4CL7 is highly expressed in leaf trichomes, whereas Ok4CL15 is abundant in the roots. The recombinant Ok4CL7 and Ok4CL15 had optimal enzyme activities at 40 °C in pH 8 and 7, respectively. Ok4CL7 showed substrate preference towards p-coumaric acid, ferulic acid and caffeic acid. While, Ok4CL15 preferred p-coumaric acid, ferulic acid and sinapic acid. Feruloyl adenylate showed higher number of contacts and lowers binding energy with Ok4CL7 and 15 compared to cinnamoyl adenylate. Based on root-specific expression and preference for sinapic acid, Ok4CL15 might be involved in lignin biosynthesis. Further exploration is needed to unravel the role of diverse Ok4CLs in O. kilimandscharicum.


Asunto(s)
Vías Biosintéticas , Coenzima A Ligasas/metabolismo , Ocimum/enzimología , Proteínas de Plantas/metabolismo , Propanoles/metabolismo , Sitios de Unión , Vías Biosintéticas/genética , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ocimum/genética , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
5.
Planta ; 253(1): 20, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398404

RESUMEN

MAIN CONCLUSION: The recombinant caffeic acid 3-O-methyltransferase gene has been cloned and characterized from Neem. The gene is involved in ferulic acid biosynthesis, a key intermediate component of lignin biosynthesis. Azadirachta indica (Neem) is a highly reputed traditional medicinal plant and is phytochemically well-known for its limonoids. Besides limonoids, phenolics are also distinctively present, which add more medicinal attributes to Neem. Caffeic acid is one of such phenolic compound and it can be converted enzymatically into another bioactive phytomolecule, ferulic acid. This conversion requires transfer of a methyl group from a donor to caffeic acid under the catalytic action of an appropriate methyltransferase. In this study, caffeic acid 3-O-methyltransferase gene from Neem (NCOMT) fruits has been isolated and heterologously expressed in E. coli. The recombinant NCOMT enzyme was purified, which exhibited efficient catalytic conversion of caffeic acid into ferulic acid, a highly potential pharmaceutical compound. The purified recombinant enzyme was physico-kinetically characterized for its catalysis. The analysis of tissue-wide expression of NCOMT gene revealed interesting pattern of transcript abundance reflecting its role in the development of fruit tissues. Further, NCOMT was heterologously overexpressed in Withania somnifera and Ocimum species, to analyze its role in ferulic acid biosynthesis in planta. Thus, the study provides insight for the endogenous role of NCOMT in ferulic acid biosynthesis en route to lignin, an important structural component. To the best of our knowledge, NCOMT pertains to be the first enzyme of the secondary metabolism that has been purified and kinetically characterized from Neem. This study may also have important prospects of applications as the observation on heterologous expression of NCOMT showed its involvement in the maintenance of the in vivo pool of ferulic acid in the plants. Thus, the study involving NCOMT opens up new dimensions of metabolic engineering approaches for the biosynthesis of potential therapeutically important phytomolecules in heterologous systems.


Asunto(s)
Azadirachta , Frutas , Metiltransferasas , Ocimum , Proteínas Recombinantes , Withania , Azadirachta/enzimología , Escherichia coli/genética , Frutas/enzimología , Frutas/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ocimum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Withania/genética
6.
Mol Biol Rep ; 47(9): 6587-6598, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32860161

RESUMEN

Genus Ocimum is known to have species possessing important therapeutic essential oil. The major phytoconstituents of essential oil in Ocimum species are phenylpropanoids and terpenoids. The essential oil is accumulated in the trichomes; the specialized structures predominantly found on leaves and other tissues. The development of trichome is integrated with development of plant and leaf and also tightly coordinated with the primary and secondary metabolic pathways producing essential oil constituents. In continuation to our studies on elucidating/understanding the mechanism of biosynthesis of  essential oil pathways in Ocimum species, we have performed comparative transcriptome analysis to investigate the role of trichome-related gene expression in the regulation of biosynthetic pathways of essential oil. The essential oil biogenesis is tightly integrated with primary metabolic activities, the analysis for the expression pattern of genes related to primary metabolism and its relationship with secondary metabolism was evaluated in comparative manner. Physiological parameters in relation to primary metabolism such as photosynthetic pigment content, soluble sugar content, and invertase enzymes along with morphological parameters were analysed in O. basilicum and O. sanctum. Differential expression profiling uncovered about 8116 and 2810 differentially expressed transcripts in O. basilicum and O. sanctum, respectively. Enrichment of differentially expressed genes were analysed in relation to metabolic pathways, primary metabolism and secondary metabolism. Trichome related genes identified from the Ocimum species vis-à-vis their expression profiles suggested higher expression in O. basilicum. The findings in this study provide interesting insights into the role of trichome-related transcripts in relation to essential oil content in Ocimum species. The study is valuable as this is the first study on revealing the transcripts and their role in trichome development and essential oil biogenesis in two major species of Ocimum.


Asunto(s)
Ocimum/química , Ocimum/metabolismo , Aceites Volátiles/metabolismo , Transcriptoma/genética , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Ocimum/enzimología , Ocimum/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundario/genética , Metabolismo Secundario/fisiología , Terpenos/metabolismo , Tricomas/química , Tricomas/genética
7.
Sci Rep ; 10(1): 5234, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251340

RESUMEN

Ocimum is one of the most revered medicinally useful plants which have various species. Each of the species is distinct in terms of metabolite composition as well as the medicinal property. Some basil types are used more often as an aromatic and flavoring ingredient. It would be informative to know relatedness among the species which though belong to the same genera while exclusively different in terms of metabolic composition and the operating pathways. In the present investigation the similar effort has been made in order to differentiate three commonly occurring Ocimum species having the high medicinal value, these are Ocimum sanctum, O. gratissimum and O. kilimandscharicum. The parameters for the comparative analysis of these three Ocimum species comprised of temporal changes in number leaf trichomes, essential oil composition, phenylpropanoid pathway genes expression and the activity of important enzymes. O. gratissimum was found to be richest in phenylpropanoid accumulation as well as their gene expression when compared to O. sanctum while O. kilimandscharicum was found to be accumulating terpenoid. In order to get an overview of this qualitative and quantitative regulation of terpenes and phenylpropenes, the expression pattern of some important transcription factors involved in secondary metabolism were also studied.


Asunto(s)
Metabolómica/métodos , Ocimum/metabolismo , Aceites Volátiles/química , Proteínas de Plantas/genética , Plantas Medicinales/metabolismo , Antocianinas/análisis , Antocianinas/metabolismo , Clorofila/análisis , Clorofila/metabolismo , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ocimum/química , Ocimum/genética , Aceites Volátiles/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinales/química , Metabolismo Secundario , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tricomas/química , Tricomas/metabolismo
8.
Protoplasma ; 256(4): 893-907, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30656458

RESUMEN

Ocimum species commonly referred to as "Tulsi" are well-known for their distinct medicinal and aromatic properties. The characteristic aroma of Ocimum species and cultivars is attributed to their specific combination of volatile phytochemicals mainly belonging to terpenoid and/or phenylpropanoid classes in their essential oils. The essential oil constituents are synthesized and sequestered in specialized epidermal secretory structures called as glandular trichomes. In this comparative study, inter- and intra-species diversity in structural attributes and profiles of expression of selected genes related to terpenoid and phenylpropanoid biosynthetic pathways have been investigated. This is performed to seek relationship of variations in the yield and phytochemical composition of the essential oils. Microscopic analysis of trichomes of O. basilicum, O. gratissimum, O. kilimandscharicum, and O. tenuiflorum (green and purple cultivars) revealed substantial variations in density, size, and relative proportions of peltate and capitate trichomes among them. The essential oil yield has been observed to be controlled by the population, dominance, and size of peltate and capitate glandular trichomes. The essential oil sequestration in leaf is controlled by the dominance of peltate glandular trichome size over its number and is also affected by the capitate glandular trichome size/number with variations in leaf area albeit at lower proportions. Comprehension and comparison of results of GC-MS analysis of essential oils showed that most of the Ocimum (O. basilicum, O. tenuiflorum, and O. gratissimum) species produce phenylpropanoids (eugenol, methyl chavicol) as major volatiles except O. kilimandscharicum, which is discrete in being monoterpenoid-rich species. Among the phenylpropanoid-enriched Ocimum (O. basilicum, O. gratissimum, O. tenuiflorum purple, O. tenuiflorum green) as well, terpenoids were important constituents in imparting characteristic aroma. Further, comparative abundance of transcripts of key genes of phenylpropanoid (PAL, C4H, 4CL, CAD, COMT, and ES) and terpenoid (DXS and HMGR) biosynthetic pathways was evaluated vis-à-vis volatile oil constituents. Transcript abundance demonstrated that richness of their essential oils with specific constituent(s) of a chemical group/subgroup was manifested by the predominant upregulation of phenylpropanoid/terpenoid pathway genes. The study provides trichomes as well as biosynthetic pathway-based knowledge for genetic improvement in Ocimum species for essential oil yield and quality.


Asunto(s)
Ocimum/metabolismo , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Tricomas/metabolismo , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Monoterpenos/metabolismo , Ocimum/genética , Hojas de la Planta/anatomía & histología , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tricomas/fisiología , Tricomas/ultraestructura
9.
BMC Plant Biol ; 18(1): 69, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29685108

RESUMEN

BACKGROUND: The basil (Ocimum spp.) genus maintains a rich diversity of phenotypes and aromatic volatiles through natural and artificial outcrossing. Characterization of population structure and genetic diversity among a representative sample of this genus is severely lacking. Absence of such information has slowed breeding efforts and the development of sweet basil (Ocimum basilicum L.) with resistance to the worldwide downy mildew epidemic, caused by the obligate oomycete Peronospora belbahrii. In an effort to improve classification of relationships 20 EST-SSR markers with species-level transferability were developed and used to resolve relationships among a diverse panel of 180 Ocimum spp. accessions with varying response to downy mildew. RESULTS: Results obtained from nested Bayesian model-based clustering, analysis of molecular variance and unweighted pair group method using arithmetic average (UPGMA) analyses were synergized to provide an updated phylogeny of the Ocimum genus. Three (major) and seven (sub) population (cluster) models were identified and well-supported (P < 0.001) by PhiPT (ΦPT) values of 0.433 and 0.344, respectively. Allelic frequency among clusters supported previously developed hypotheses of allopolyploid genome structure. Evidence of cryptic population structure was demonstrated for the k1 O. basilicum cluster suggesting prevalence of gene flow. UPGMA analysis provided best resolution for the 36-accession, DM resistant k3 cluster with consistently strong bootstrap support. Although the k3 cluster is a rich source of DM resistance introgression of resistance into the commercially important k1 accessions is impeded by reproductive barriers as demonstrated by multiple sterile F1 hybrids. The k2 cluster located between k1 and k3, represents a source of transferrable tolerance evidenced by fertile backcross progeny. The 90-accession k1 cluster was largely susceptible to downy mildew with accession 'MRI' representing the only source of DM resistance. CONCLUSIONS: High levels of genetic diversity support the observed phenotypic diversity among Ocimum spp. accessions. EST-SSRs provided a robust evaluation of molecular diversity and can be used for additional studies to increase resolution of genetic relationships in the Ocimum genus. Elucidation of population structure and genetic relationships among Ocimum spp. germplasm provide the foundation for improved DM resistance breeding strategies and more rapid response to future disease outbreaks.


Asunto(s)
Resistencia a la Enfermedad/genética , Ocimum/genética , Peronospora , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/inmunología , Genes de Plantas/genética , Variación Genética/genética , Variación Genética/inmunología , Ocimum/inmunología , Ocimum basilicum/genética , Ocimum basilicum/inmunología , Filogenia , Filogeografía , Enfermedades de las Plantas/microbiología , Ploidias
10.
Sci Rep ; 8(1): 3547, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476116

RESUMEN

Ocimum kilimandscharicum is unique in possessing terpenoids whereas other Ocimum species are renowned for phenylpropanoids as major constituents of essential oil. The key enzyme of MVA/terpenoid metabolic pathway viz 3-hydroxy-3-methylglutaryl Co-A reductase (OkHMGR) of 1.7-Kb ORF encoding ~60-kDa protein was cloned from O. kilimandscharicum and its kinetic characteristics revealed the availability of HMG-CoA as a control point of MVA-pathway. Transcript profiling of the OkHMGR elucidated tissue-specific functions of the gene in flower and leaf tissues in accumulation of terpenoidal essential oil. OkHMGR was differentially regulated in response to exposure to methyl-jasmonate, salicylic-acid, and stress conditions such-as salt and temperature stress, demonstrating its key role in managing signaling and stress-responses. To elucidate its functional role, OkHMGR was transiently over-expressed in homologous and heterologous plants such as O. sanctum, O. basilicum, O. gratissimum, Withania somnifera and Artemisia annua. The over-expression and inhibition dual strategy revealed that the additional OkHMGR in-planta could afford endogenous flow of isoprenoid units towards synthesis of terpenoids. The present study provides in-depth insight of OkHMGR in regulation of biosynthesis of non-plastidal isoprenoids. This is first report on any gene of MVA/isoprenoid pathway from under-explored Camphor Tulsi belonging to genus Ocimum. Studies also suggested that OkHMGR could be a potential tool for attempting metabolic engineering for enhancing medicinally important terpenoidal metabolites in plants.


Asunto(s)
Acilcoenzima A/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Ocimum/genética , Terpenos/metabolismo , Acetatos/metabolismo , Acilcoenzima A/genética , Artemisia annua/genética , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Ocimum/química , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/farmacología , Estrés Salino/genética , Withania/genética , Withania/metabolismo
11.
Phytopathology ; 108(1): 114-123, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29083273

RESUMEN

Sweet basil (Ocimum basilicum) is susceptible to downy mildew caused by the oomycete foliar pathogen Peronospora belbahrii. No resistant varieties of sweet basil are commercially available. Here, we report on the transfer of resistance gene Pb1 from the highly resistant tetraploid wild basil O. americanum var. americanum (PI 500945, 2n = 4x = 48) to the tetraploid susceptible O. basilicum 'Sweet basil' (2n = 4x = 48). F1 progeny plants derived from the interspecific hybridization PI 500945 × Sweet basil were resistant, indicating that the gene controlling resistance (Pb1) is dominant, but sterile due to the genetic distance between the parents. Despite their sterility, F1 plants were pollinated with the susceptible parent and 115 first backcross generation to the susceptible parent (BCs1) embryos were rescued in vitro. The emerging BCs1 plants segregated, upon inoculation, 5:1 resistant/susceptible, suggesting that resistance in F1 was controlled by a pair of dominant genes (Pb1A and Pb1A'). Thirty-one partially fertile BCs1 plants were self-pollinated to obtain BCs1-F2 or were backcrossed to Sweet basil to obtain the second backcross generation to the susceptible parent (BCs2). In total, 1 BCs1-F2 and 22 BCs2 progenies were obtained. The BCs1-F2 progeny segregated 35:1 resistant/susceptible, as expected from a tetraploid parent with two dominant resistant genes. The 22 BCs2 progenies segregated 1:1 resistant/susceptible (for a BCs1 parent that carried one dominant gene for resistance) or 5:1 (for a BCs1 parent that carried two dominant genes for resistance) at a ratio of 4:1. The data suggest that a pair of dominant genes (Pb1A and Pb1A') residing on a two homeologous chromosomes is responsible for resistance of PI 500945 against P. belbahrii.


Asunto(s)
Resistencia a la Enfermedad/genética , Ocimum basilicum/genética , Ocimum/genética , Peronospora/fisiología , Enfermedades de las Plantas/inmunología , Ocimum/inmunología , Ocimum/microbiología , Ocimum basilicum/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología
12.
Biochim Biophys Acta ; 1864(11): 1539-47, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27519164

RESUMEN

Isoprenoids and phenylpropanoids are the major secondary metabolite constituents in Ocimum genus. Though enzymes from phenylpropanoid pathway have been characterized from few plants, limited information exists on how they modulate levels of secondary metabolites. Here, we performed phenylpropanoid profiling in different tissues from five Ocimum species, which revealed significant variations in secondary metabolites including eugenol, eugenol methyl ether, estragole and methyl cinnamate levels. Expression analysis of eugenol synthase (EGS) gene showed higher transcript levels especially in young leaves and inflorescence; and were positively correlated with eugenol contents. Additionally, transcript levels of coniferyl alcohol acyl transferase, a key enzyme diverting pool of substrate to phenylpropanoids, were in accordance with their abundance in respective species. In particular, eugenol methyl transferase expression positively correlated with higher levels of eugenol methyl ether in Ocimum tenuiflorum. Further, EGSs were functionally characterized from four Ocimum species varying in their eugenol contents. Kinetic and expression analyses indicated, higher enzyme turnover and transcripts levels, in species accumulating more eugenol. Moreover, biochemical and bioinformatics studies demonstrated that coniferyl acetate was the preferred substrate over coumaryl acetate when used, individually or together, in the enzyme assay. Overall, this study revealed the preliminary evidence for varied accumulation of eugenol and its abundance over chavicol in these Ocimum species. Current findings could potentially provide novel insights for metabolic modulations in medicinal and aromatic plants.


Asunto(s)
Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas , Ocimum/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Compuestos Alílicos/aislamiento & purificación , Compuestos Alílicos/metabolismo , Derivados de Alilbenceno , Secuencia de Aminoácidos , Anisoles/aislamiento & purificación , Anisoles/metabolismo , Cinamatos/aislamiento & purificación , Cinamatos/metabolismo , Secuencia Conservada , Pruebas de Enzimas , Eugenol/análogos & derivados , Eugenol/aislamiento & purificación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ocimum/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fenoles/aislamiento & purificación , Fenoles/metabolismo , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Aceites de Plantas/química , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metabolismo Secundario , Alineación de Secuencia , Especificidad por Sustrato
13.
BMC Genomics ; 17: 209, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26955811

RESUMEN

BACKGROUND: Ocimum americanum var. pilosum is a chilling-sensitive, widely distributed plant that is consumed as a vegetable in central and southern China. To increase our understanding of cold stress responses in this species, we performed de novo transcriptome assembly for O. americanum var. pilosum and compared the transcriptomes of plants grown under normal and low temperatures. RESULTS: A total of 115,022,842 high quality, clean reads were obtained from four libraries (two replicates of control samples and two replicates of chilling-treated samples) and were used to perform de novo transcriptome assembly. After isoforms were considered, 42,816 unigenes were generated, 30,748 of which were similar to known proteins as determined by a BLASTx search (E-value < =1.0E-05) against NCBI non-redundant, Swiss-Prot, Gene Ontology, KEGG, and Cluster of COG databases. Comparative analysis of transcriptomes revealed that 5179 unigenes were differentially expressed (with at least 2-fold changes, FDR < 0.01) in chilling-treated samples, and that 2344 and 2835 unigenes were up- and down-regulated by chilling stress, respectively. Expression of the 10 most up-regulated and the five most down-regulated unigenes was validated by qRT-PCR. To increase our understanding of these differentially expressed unigenes, we performed Gene ontology and KEGG pathway enrichment analyses. The CBF-mediated transcriptional cascade, a well-known cold tolerance pathway, was reconstructed using our de novo assembled transcriptome. CONCLUSION: Our study has generated a genome-wide transcript profile of O. americanum var. pilosum and a de novo assembled transcriptome, which can be used to characterize genes related to diverse biological processes. This is the first study to assess the cold-responsive transcriptome in an Ocimum species. Our results suggest that cold temperature significantly affects genes related to protein translation and cellular metabolism in this chilling sensitive species. Although most of the CBF pathway genes have orthologs in O. americanum var. pilosum, none of the identified cold responsive (COR) gene orthologs was induced by cold, which is consistent with the lack of cold tolerance in this plant.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Ocimum/genética , Transcriptoma , Respuesta al Choque por Frío/genética , Anotación de Secuencia Molecular , ARN de Planta/genética , Análisis de Secuencia de ARN , Estrés Fisiológico
14.
Biochem Biophys Res Commun ; 473(1): 265-271, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27005818

RESUMEN

The genus Ocimum has a unique blend of diverse secondary metabolites, with major proportion of terpenoids including mono- and sesquiterpenes. Although, ß-Caryophyllene, bicyclic sesquiterpene, is one of the major terpene found in Ocimum species and known to possess several biological activities, not much is known about its biosynthesis in Ocimum. Here, we describe isolation and characterization of ß-caryophyllene synthase gene from Ocimum kilimandscharicum Gürke (OkBCS- GenBank accession no. KP226502). The open reading frame of 1629 bp encoded a protein of 542 amino acids with molecular mass of 63.6 kDa and pI value of 5.66. The deduced amino acid sequence revealed 50-70% similarity with known sesquiterpene synthases from angiosperms. Recombinant OkBCS converted farnesyl diphosphate to ß-caryophyllene as a major product (94%) and 6% α-humulene. Expression variation of OkBCS well corroborated with ß-caryophyllene levels in different tissues from five Ocimum species. OkBCS transcript revealed higher expression in leaves and flowers. Further, agro-infiltration based transient expression manipulation with OkBCS over-expression and silencing confirmed its role in ß-caryophyllene biosynthesis. These findings may potentially be further utilized to improve plant defense against insect pests.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Ocimum/enzimología , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Agrobacterium/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica , Silenciador del Gen , Magnoliopsida/metabolismo , Datos de Secuencia Molecular , Sesquiterpenos Monocíclicos , Ocimum/genética , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Sesquiterpenos Policíclicos , Fosfatos de Poliisoprenilo/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
15.
Protoplasma ; 253(3): 845-855, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26156173

RESUMEN

Ocimum (Lamiaceae) is an important source of essential oils and aroma chemicals especially eugenol, methyl eugenol, linalool, methyl chavicol etc. An elite evergreen hybrid has been developed from Ocimum kilimandscharicum and Ocimum basilicum, which demonstrated adaptive behavior towards cold stress. A comparative molecular analysis has been done through RAPD, AFLP, and ISSR among O. basilicum and O. kilimandscharicum and their evergreen cold-tolerant hybrid. The RAPD and AFLP analyses demonstrated similar results, i.e., the hybrid of O. basilicum and O. kilimandscharicum shares the same cluster with O. kilimandscharicum, while O. basilicum behaves as an outgroup, whereas in ISSR analysis, the hybrid genotype grouped in the same cluster with O. basilicum. Ocimum genotypes were analyzed and compared for their trichome density. There were distinct differences on morphology, distribution, and structure between the two kinds of trichomes, i.e., glandular and non-glandular. Glandular trichomes contain essential oils, polyphenols, flavonoids, and acid polysaccharides. Hair-like trichomes, i.e., non-glandular trichomes, help in keeping the frost away from the living surface cells. O. basilicum showed less number of non-glandular trichomes on leaves compared to O. kilimandscharicum and the evergreen cold-tolerant hybrid. Trichomes were analyzed in O. kilimandscharicum, O. basilicum, and their hybrid. An increased proline content at the biochemical level represents a higher potential to survive in a stress condition like cold stress. In our analysis, the proline content is quite higher in tolerant variety O. kilimandscharicum, low in susceptible variety O. basilicum, and intermediate in the hybrid. Gene expression analysis was done in O. basilicum, O. kilimandscharicum and their hybrid for TTG1, GTL1, and STICHEL gene locus which regulates trichome development and its formation and transcription factors WRKY and MPS involved in the regulation of plant responses to freezing and cold. The analysis showed that O. kilimandscharicum and the hybrid were very close to each other but O. basilicum was more distinct in all respects. The overexpression of the WRKY coding gene showed high expression in the hybrid as compared to O. kilimandscharicum and O. basilicum and the transcription factor microspore-specific (MPS) promoter has also shown overexpression in the hybrid for its response against cold stress. The developed evergreen interspecific hybrid may thus provide a base to various industries which are dependent upon the bioactive constituents of Ocimum species.


Asunto(s)
Ocimum/fisiología , Tricomas/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Quimera , Frío , Regulación de la Expresión Génica de las Plantas , Repeticiones de Microsatélite , Ocimum/genética , Ocimum basilicum/genética , Ocimum basilicum/fisiología , Aceites Volátiles/metabolismo , Hojas de la Planta/genética , Prolina/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , Estrés Fisiológico/genética , Tricomas/anatomía & histología , Tricomas/genética
16.
BMC Plant Biol ; 15: 212, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26315624

RESUMEN

BACKGROUND: Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is 'Tulsi' (or 'Tulasi' or 'Thulasi') and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties. RESULTS: The pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry. CONCLUSIONS: The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Ocimum/genética , India , Ocimum/metabolismo , Hojas de la Planta/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
17.
BMC Genomics ; 16: 413, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26017011

RESUMEN

BACKGROUND: Ocimum sanctum L. (O. tenuiflorum) family-Lamiaceae is an important component of Indian tradition of medicine as well as culture around the world, and hence is known as "Holy basil" in India. This plant is mentioned in the ancient texts of Ayurveda as an "elixir of life" (life saving) herb and worshipped for over 3000 years due to its healing properties. Although used in various ailments, validation of molecules for differential activities is yet to be fully analyzed, as about 80 % of the patents on this plant are on extracts or the plant parts, and mainly focussed on essential oil components. With a view to understand the full metabolic potential of this plant whole nuclear and chloroplast genomes were sequenced for the first time combining the sequence data from 4 libraries and three NGS platforms. RESULTS: The saturated draft assembly of the genome was about 386 Mb, along with the plastid genome of 142,245 bp, turning out to be the smallest in Lamiaceae. In addition to SSR markers, 136 proteins were identified as homologous to five important plant genomes. Pathway analysis indicated an abundance of phenylpropanoids in O. sanctum. Phylogenetic analysis for chloroplast proteome placed Salvia miltiorrhiza as the nearest neighbor. Comparison of the chemical compounds and genes availability in O. sanctum and S. miltiorrhiza indicated the potential for the discovery of new active molecules. CONCLUSION: The genome sequence and annotation of O. sanctum provides new insights into the function of genes and the medicinal nature of the metabolites synthesized in this plant. This information is highly beneficial for mining biosynthetic pathways for important metabolites in related species.


Asunto(s)
Genoma de Planta , Ocimum/genética , Proteínas de Plantas/genética , Genoma del Cloroplasto , Medicina Ayurvédica , Repeticiones de Microsatélite , Ocimum/química , Filogenia , Propanoles/química , Análisis de Secuencia de ADN
18.
Phytopathology ; 105(6): 778-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25844828

RESUMEN

Downy mildew, caused by the oomycete Peronospora belbahrii, is a devastating disease of sweet basil. In this study, 113 accessions of Ocimum species (83 Plant Introduction entries and 30 commercial entries) were tested for resistance against downy mildew at the seedling stage in growth chambers, and during three seasons, in the field. Most entries belonging to O. basilicum were highly susceptible whereas most entries belonging to O. americanum, O. kilimanadascharicum, O. gratissimum, O. campechianum, or O. tenuiflorum were highly resistant at both the seedling stage and the field. Twenty-seven highly resistant individual plants were each crossed with the susceptible sweet basil 'Peri', and the F1 progeny plants were examined for disease resistance. The F1 plants of two crosses were highly resistant, F1 plants of 24 crosses were moderately resistant, and F1 plants of one cross were susceptible, suggesting full, partial, or no dominance of the resistance gene(s), respectively. These data confirm the feasibility of producing downy mildew-resistant cultivars of sweet basil by crossing with wild Ocimum species.


Asunto(s)
Resistencia a la Enfermedad , Ocimum/fisiología , Peronospora/fisiología , Enfermedades de las Plantas/inmunología , Quimera , Ocimum/genética , Ocimum/microbiología , Ocimum basilicum/genética , Ocimum basilicum/microbiología , Ocimum basilicum/fisiología , Plantones/genética , Plantones/microbiología , Plantones/fisiología
19.
BMC Genomics ; 15: 588, 2014 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-25015319

RESUMEN

BACKGROUND: Ocimum L. of family Lamiaceae is a well known genus for its ethnobotanical, medicinal and aromatic properties, which are attributed to innumerable phenylpropanoid and terpenoid compounds produced by the plant. To enrich genomic resources for understanding various pathways, de novo transcriptome sequencing of two important species, O. sanctum and O. basilicum, was carried out by Illumina paired-end sequencing. RESULTS: The sequence assembly resulted in 69117 and 130043 transcripts with an average length of 1646 ± 1210.1 bp and 1363 ± 1139.3 bp for O. sanctum and O. basilicum, respectively. Out of the total transcripts, 59648 (86.30%) and 105470 (81.10%) from O. sanctum and O. basilicum, and respectively were annotated by uniprot blastx against Arabidopsis, rice and lamiaceae. KEGG analysis identified 501 and 952 transcripts from O. sanctum and O. basilicum, respectively, related to secondary metabolism with higher percentage of transcripts for biosynthesis of terpenoids in O. sanctum and phenylpropanoids in O. basilicum. Higher digital gene expression in O. basilicum was validated through qPCR and correlated to higher essential oil content and chromosome number (O. sanctum, 2n = 16; and O. basilicum, 2n = 48). Several CYP450 (26) and TF (40) families were identified having probable roles in primary and secondary metabolism. Also SSR and SNP markers were identified in the transcriptomes of both species with many SSRs linked to phenylpropanoid and terpenoid pathway genes. CONCLUSION: This is the first report of a comparative transcriptome analysis of Ocimum species and can be utilized to characterize genes related to secondary metabolism, their regulation, and breeding special chemotypes with unique essential oil composition in Ocimum.


Asunto(s)
Ocimum/genética , Transcriptoma , Hibridación Genómica Comparativa , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Bases de Datos Genéticas , Genoma de Planta , Redes y Vías Metabólicas/genética , Ácido Mevalónico/química , Ácido Mevalónico/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Terpenos/química , Terpenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Mol Biol Rep ; 41(3): 1857-70, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24420851

RESUMEN

Eugenol-O-methyltransferase (EOMT) catalyzes the conversion of eugenol to methyleugenol in one of the final steps of phenylpropanoid pathway. There are no comprehensive reports on comparative EOMT gene expression and developmental stage specific accumulation of phenylpropenes in Ocimum tenuiflorum. Seven chemotypes, rich in eugenol and methyleugenol, were selected by assessment of volatile metabolites through multivariate data analysis. Isoeugenol accumulated in higher levels during juvenile stage (36.86 ng g(-1)), but reduced sharply during preflowering (8.04 ng g(-1)), flowering (2.29 ng g(-1)) and postflowering stages (0.17 ng g(-1)), whereas methyleugenol content gradually increased from juvenile (12.25 ng g(-1)) up to preflowering (16.35 ng g(-1)) and then decreased at flowering (7.13 ng g(-1)) and post flowering (5.95 ng g(-1)) from fresh tissue. Extreme variations of free intracellular and alkali hydrolysable cell wall released phenylpropanoid compounds were observed at different developmental stages. Analyses of EOMT genomic and cDNA sequences revealed a 843 bp open reading frame and the presence of a 90 bp intron. The translated proteins had eight catalytic domains, the major two being dimerisation superfamily and methyltransferase_2 superfamily. A validated 3D structure of EOMT protein was also determined. The chemotype Ot7 had a reduced reading frame that lacked both dimerisation domains and one of the two protein-kinase-phosphorylation sites; this was also reflected in reduced accumulation of methyleugenol compared to other chemotypes. EOMT transcripts showed enhanced expression in juvenile stage that increased further during preflowering but decreased at flowering and further at postflowering. The expression patterns may possibly be compared and correlated to the amounts of eugenol/isoeugenol and methyleugenol in different developmental stages of all chemotypes.


Asunto(s)
Flores/genética , Metiltransferasas/biosíntesis , Metiltransferasas/metabolismo , Ocimum/genética , ADN Complementario/genética , Eugenol/análogos & derivados , Eugenol/metabolismo , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/genética , Ocimum/enzimología , Ocimum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...