Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Sci Rep ; 14(1): 12192, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806592

RESUMEN

Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.


Asunto(s)
Odonata , Estaciones del Año , Transcriptoma , Animales , Odonata/genética , Femenino , Larva/genética , Fenotipo , Diapausa de Insecto/genética , Diapausa/genética , Aptitud Genética
2.
PLoS One ; 19(4): e0301392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578719

RESUMEN

Despite is known to have widespread distribution and the most active species of the family Chlorocyphidae, the molecular data of Rhinocypha fenestrella (Rambur, 1842) are relatively scarce. The present study is the first that examined the genetic diversity and phylogeographic pattern of the peacock jewel-damselfly R. fenestrella by sequencing the cytochrome C oxidase I (cox1) and 16S rRNA gene regions from 147 individuals representing eight populations in Malaysia. A total of 26 and 10 unique haplotypes were revealed by the cox1 and 16S rRNA genes, respectively, and 32 haplotypes were recovered by the concatenated sequences of cox1+16S. Analyses indicated that haplotype AB2 was the most frequent and the most widespread haplotype in Malaysia while haplotype AB1 was suggested as the common ancestor haplotype of the R. fenestrella that may arose from the Negeri Sembilan as discovered from cox1+16S haplotype network analysis. Overall haplotype and nucleotide diversities of the concatenated sequences were Hd = 0.8937 and Pi = 0.0028, respectively, with great genetic differentiation (FST = 0.6387) and low gene flow (Nm = 0.14). Population from Pahang presented the highest genetic diversity (Hd = 0.8889, Pi = 0.0022, Nh = 9), whereas Kedah population demonstrated the lowest diversity (Hd = 0.2842, Pi = 0.0003, Nh = 4). The concatenated sequences of cox1+16S showed genetic divergence ranging from 0.09% to 0.97%, whereas the genetic divergence for cox1 and 16S rRNA genes were 0.16% to 1.63% and 0.01% to 0.75% respectively. This study provides for the first-time insights on the intraspecific genetic diversity, phylogeographic pattern and ancestral haplotype of Rhinocypha fenestrella. The understanding of molecular data especially phylogeographic pattern can enhance the knowledge about insect origin, their diversity, and capability to disperse in particular environments.


Asunto(s)
Variación Genética , Odonata , Humanos , Animales , Filogenia , ARN Ribosómico 16S/genética , Odonata/genética , Filogeografía , Haplotipos , ADN Mitocondrial/genética
3.
BMC Ecol Evol ; 24(1): 19, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308224

RESUMEN

BACKGROUND: Describing geographical variation in morphology of organisms in combination with data on genetic differentiation and biogeography can provide important information on how natural selection shapes such variation. Here we study genetic structure using ddRAD seq and wing shape variation using geometric morphometrics in 14 populations of the damselfly Lestes sponsa along its latitudinal range in Europe. RESULTS: The genetic analysis showed a significant, yet relatively weak population structure with high genetic heterozygosity and low inbreeding coefficients, indicating that neutral processes contributed very little to the observed wing shape differences. The genetic analysis also showed that some regions of the genome (about 10%) are putatively shaped by selection. The phylogenetic analysis showed that the Spanish and French populations were the ancestral ones with northern Swedish and Finnish populations being the most derived ones. We found that wing shape differed significantly among populations and showed a significant quadratic (but weak) relationship with latitude. This latitudinal relationship was largely attributed to allometric effects of wing size, but non-allometric variation also explained a portion of this relationship. However, wing shape showed no phylogenetic signal suggesting that lineage-specific variation did not contribute to the variation along the latitudinal gradient. In contrast, wing size, which is correlated with body size in L. sponsa, had a strong negative correlation with latitude. CONCLUSION: Our results suggest a relatively weak population structure among the sampled populations across Europe, but a clear differentiation between south and north populations. The observed geographic phenotypic variation in wing shape may have been affected by different local selection pressures or environmental effects.


Asunto(s)
Odonata , Animales , Filogeografía , Filogenia , Odonata/genética , Europa (Continente) , Variación Biológica Poblacional
4.
Syst Biol ; 73(2): 290-307, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-38262741

RESUMEN

The processes responsible for the formation of Earth's most conspicuous diversity pattern, the latitudinal diversity gradient (LDG), remain unexplored for many clades in the Tree of Life. Here, we present a densely sampled and dated molecular phylogeny for the most speciose clade of damselflies worldwide (Odonata: Coenagrionoidea) and investigate the role of time, macroevolutionary processes, and biome-shift dynamics in shaping the LDG in this ancient insect superfamily. We used process-based biogeographic models to jointly infer ancestral ranges and speciation times and to characterize within-biome dispersal and biome-shift dynamics across the cosmopolitan distribution of Coenagrionoidea. We also investigated temporal and biome-dependent variation in diversification rates. Our results uncover a tropical origin of pond damselflies and featherlegs ~105 Ma, while highlighting the uncertainty of ancestral ranges within the tropics in deep time. Even though diversification rates have declined since the origin of this clade, global climate change and biome-shifts have slowly increased diversity in warm- and cold-temperate areas, where lineage turnover rates have been relatively higher. This study underscores the importance of biogeographic origin and time to diversify as important drivers of the LDG in pond damselflies and their relatives, while diversification dynamics have instead resulted in the formation of ephemeral species in temperate regions. Biome-shifts, although limited by tropical niche conservatism, have been the main factor reducing the steepness of the LDG in the last 30 Myr. With ongoing climate change and increasing northward range expansions of many damselfly taxa, the LDG may become less pronounced. Our results support recent calls to unify biogeographic and macroevolutionary approaches to improve our understanding of how latitudinal diversity gradients are formed and why they vary across time and among taxa.


Asunto(s)
Odonata , Filogenia , Animales , Odonata/clasificación , Odonata/genética , Clima Tropical , Distribución Animal , Biodiversidad , Filogeografía , Especiación Genética
5.
Nat Ecol Evol ; 8(1): 83-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932383

RESUMEN

Sex-limited morphs can provide profound insights into the evolution and genomic architecture of complex phenotypes. Inter-sexual mimicry is one particular type of sex-limited polymorphism in which a novel morph resembles the opposite sex. While inter-sexual mimics are known in both sexes and a diverse range of animals, their evolutionary origin is poorly understood. Here, we investigated the genomic basis of female-limited morphs and male mimicry in the common bluetail damselfly. Differential gene expression between morphs has been documented in damselflies, but no causal locus has been previously identified. We found that male mimicry originated in an ancestrally sexually dimorphic lineage in association with multiple structural changes, probably driven by transposable element activity. These changes resulted in ~900 kb of novel genomic content that is partly shared by male mimics in a close relative, indicating that male mimicry is a trans-species polymorphism. More recently, a third morph originated following the translocation of part of the male-mimicry sequence into a genomic position ~3.5 mb apart. We provide evidence of balancing selection maintaining male mimicry, in line with previous field population studies. Our results underscore how structural variants affecting a handful of potentially regulatory genes and morph-specific genes can give rise to novel and complex phenotypic polymorphisms.


Asunto(s)
Odonata , Animales , Femenino , Masculino , Odonata/genética , Polimorfismo Genético , Genómica
6.
J Hered ; 115(1): 103-111, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-37988159

RESUMEN

Smoky rubyspot damselflies (Hetaerina titia Drury, 1773) are one of the most commonly encountered odonates along streams and rivers on both slopes of Central America and the Atlantic drainages in the United States and southern Canada. Owing to their highly variable wing pigmentation, they have become a model system for studying sexual selection and interspecific behavioral interference. Here, we sequence and assemble the genome of a female smoky rubyspot. Of the primary assembly (i.e. the principle pseudohaplotype), 98.8% is made up of 12 chromosomal pseudomolecules (2N = 22A + X). There are 75 scaffolds in total, an N50 of 120 Mb, a contig-N50 of 0.64 Mb, and a high arthropod BUSCO score [C: 97.6% (S: 97.3%, D: 0.3%), F: 0.8%, M: 1.6%]. We then compare our assembly to that of the blue-tailed damselfly genome (Ischnura elegans), the most complete damselfly assembly to date, and a recently published assembly for an American rubyspot damselfly (Hetaerina americana). Collectively, these resources make Hetaerina a genome-enabled genus for further studies of the ecological and evolutionary forces shaping biological diversity.


Asunto(s)
Odonata , Animales , Femenino , Odonata/genética , Humo , Evolución Biológica , Pigmentación , Cromosomas/genética
7.
Mol Ecol ; 32(21): 5785-5797, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37787976

RESUMEN

Using recently published chromosome-length genome assemblies of two damselfly species, Ischnura elegans and Platycnemis pennipes, and two dragonfly species, Pantala flavescens and Tanypteryx hageni, we demonstrate that the autosomes of Odonata have undergone few fission, fusion, or inversion events, despite 250 million years of separation. In the four genomes discussed here, our results show that all autosomes have a clear ortholog in the ancestral karyotype. Despite this clear chromosomal orthology, we demonstrate that different factors, including concentration of repeat dynamics, GC content, relative position on the chromosome, and the relative proportion of coding sequence all influence the density of syntenic blocks across chromosomes. However, these factors do not interact to influence synteny the same way in any two pairs of species, nor is any one factor retained in all four species. Furthermore, it was previously unknown whether the micro-chromosomes in Odonata are descended from one ancestral chromosome. Despite structural rearrangements, our evidence suggests that the micro-chromosomes in the sampled Odonata do indeed descend from an ancestral chromosome, and that the micro-chromosome in P. flavescens was lost through fusion with autosomes.


Asunto(s)
Odonata , Animales , Odonata/genética , Genoma , Cariotipo , Cariotipificación , Sintenía
8.
Curr Opin Insect Sci ; 58: 101073, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290694

RESUMEN

Odonata is an order of insects that comprises ∼6500 species. They are among the earliest flying insects, and one of the first diverging lineages in the Pterygota. Odonate evolution has been a topic of research for over 100 years, with studies focusing primarily on their flight behavior, color, vision, and aquatic juvenile lifestyles. Recent genomics studies have provided new interpretations about the evolution of these traits. In this paper, we look at how high-throughput sequence data (i.e. subgenomic and genomic data) have been used to answer long-standing questions in Odonata ranging from evolutionary relationships to vision evolution to flight behavior. Additionally, we evaluate these data at multiple taxonomic levels (i.e. ordinal, familial, generic, and population) and provide comparative analysis of genomes across Odonata, identifying features of these new data. Last, we discuss the next two years of Odonata genomic study, with context about what questions are currently being tackled.


Asunto(s)
Odonata , Animales , Odonata/genética , Genómica , Insectos/genética , Fenotipo , Visión Ocular
9.
J Hered ; 114(4): 385-394, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37195415

RESUMEN

Damselflies and dragonflies (Order: Odonata) play important roles in both aquatic and terrestrial food webs and can serve as sentinels of ecosystem health and predictors of population trends in other taxa. The habitat requirements and limited dispersal of lotic damselflies make them especially sensitive to habitat loss and fragmentation. As such, landscape genomic studies of these taxa can help focus conservation efforts on watersheds with high levels of genetic diversity, local adaptation, and even cryptic endemism. Here, as part of the California Conservation Genomics Project (CCGP), we report the first reference genome for the American rubyspot damselfly, Hetaerina americana, a species associated with springs, streams and rivers throughout California. Following the CCGP assembly pipeline, we produced two de novo genome assemblies. The primary assembly includes 1,630,044,487 base pairs, with a contig N50 of 5.4 Mb, a scaffold N50 of 86.2 Mb, and a BUSCO completeness score of 97.6%. This is the seventh Odonata genome to be made publicly available and the first for the subfamily Hetaerininae. This reference genome fills an important phylogenetic gap in our understanding of Odonata genome evolution, and provides a genomic resource for a host of interesting ecological, evolutionary, and conservation questions for which the rubyspot damselfly genus Hetaerina is an important model system.


Asunto(s)
Odonata , Animales , Odonata/genética , Ecosistema , Filogenia , Genómica , Aclimatación
10.
Mol Phylogenet Evol ; 186: 107831, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257796

RESUMEN

South Pacific islands provide an ideal study system to explore patterns of speciation, specifically examining the role of dispersal versus vicariance. Dispersal is often the suggested mechanism of diversification in the South Pacific, specifically among remote island chains. Here, we provide a phylogeny of several related genera of Coenagrionidae (Odonata: Zygoptera) from the South Pacific, based on five molecular loci, in order to examine patterns of speciation in the region. We used the endemic damselfly genera Nesobasis, Nikoulabasis, and Vanuatubasis found across both Fiji and Vanuatu. Knowledge of the geologic history of the region was used to inform our understanding of the evolution of these genera. Both archipelagos used to be part of the Vitiaz arc which spanned from the Solomon Islands to Tonga and began to break apart 10-12 Ma. Results of our divergence-time estimations and biogeographic reconstructions support that the breakup of this arc acted as a significant vicariance event in the evolution of these taxa. Specifically, it led to the extant generic diversity seen in these damselflies. We find that within the archipelago of Vanuatu, that Espiritu Santo served as an important source for dispersal to other islands with Malekula acting as a stepping stone to Efate.


Asunto(s)
Odonata , Animales , Filogenia , Odonata/genética , Geología , Fiji , Melanesia
11.
Arch Insect Biochem Physiol ; 114(2): 1-14, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37032456

RESUMEN

Ischnura senegalensis Rambur, 1842 is among the most widespread damselfly species in the world. Unlike dragonflies with strong migration abilities, I. senegalensis have limited dispersing abilities. Gene flow among I. senegalensis populations may be greatly influenced by anthropogenic disturbance, fragmented suitable habitats, sea straits, or even global warming. In this study, to investigate the genetic diversity of I. senegalensis populations, we sequenced and collected 498 cytochrome oxidase I sequences across the Old World. Haplotype network analysis showed 51 haplotypes and I. senegalensis could be grouped into four regions (Afrotropical region, Oriental region, main Islands of Japan, and the Ryukyu Islands), each of which contains different dominant haplotypes. Based on molecular variance analysis, we found that populations from the Afrotropical region have quite a low gene flow with the Asian populations (except Yemen). Furthermore, rice cultivation may aid the dispersion of I. senegalensis in the oriental region. Populations from the Ryukyu Islands show the highest genetic diversity, which may be due to the geological separation among islands. Our results prove that I. senegalensis has great genetic diversity among different populations across the world.


Asunto(s)
Genética de Población , Odonata , Animales , Variación Genética , Odonata/genética , Haplotipos , Flujo Génico , Filogenia
12.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807678

RESUMEN

We present a chromosome-length genome assembly and annotation of the Black Petaltail dragonfly (Tanypteryx hageni). This habitat specialist diverged from its sister species over 70 million years ago, and separated from the most closely related Odonata with a reference genome 150 million years ago. Using PacBio HiFi reads and Hi-C data for scaffolding we produce one of the most high-quality Odonata genomes to date. A scaffold N50 of 206.6 Mb and a single copy BUSCO score of 96.2% indicate high contiguity and completeness.


Asunto(s)
Odonata , Animales , Odonata/genética , Cromosomas , Genoma
13.
J Evol Biol ; 36(2): 368-380, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36571263

RESUMEN

The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.


Asunto(s)
Adaptación Fisiológica , Odonata , Animales , Adaptación Fisiológica/fisiología , Flujo Genético , Europa (Continente) , Temperatura , Alas de Animales , Odonata/genética
14.
Proc Biol Sci ; 289(1979): 20220968, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35855603

RESUMEN

Contemporary hybrid zones act as natural laboratories for the investigation of species boundaries and may shed light on the little understood roles of sex chromosomes in species divergence. Sex chromosomes are considered to function as a hotspot of genetic divergence between species; indicated by less genomic introgression compared to autosomes during hybridization. Moreover, they are thought to contribute to Haldane's rule, which states that hybrids of the heterogametic sex are more likely to be inviable or sterile. To test these hypotheses, we used contemporary hybrid zones of Ischnura elegans, a damselfly species that has been expanding its range into the northern and western regions of Spain, leading to chronic hybridization with its sister species Ischnura graellsii. We analysed genome-wide SNPs in the Spanish I. elegans and I. graellsii hybrid zone and found (i) that the X chromosome shows less genomic introgression compared to autosomes, and (ii) that males are underrepresented among admixed individuals, as predicted by Haldane's rule. This is the first study in Odonata that suggests a role of the X chromosome in reproductive isolation. Moreover, our data add to the few studies on species with X0 sex determination system and contradict the hypothesis that the absence of a Y chromosome causes exceptions to Haldane's rule.


Asunto(s)
Odonata , Animales , Humanos , Hibridación Genética , Masculino , Modelos Genéticos , Odonata/genética , Cromosomas Sexuales , Cromosoma X
15.
Neotrop Entomol ; 51(3): 404-412, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35575876

RESUMEN

Among the oldest winged insects, odonates are a monophyletic order that have become important models for ecological studies because of their highly diverse reproductive behaviors and their role as top predators and bioindicators. However, knowledge on evolutionary relationships within the order is still scarce compared to other taxa, and this situation is even more complicated in areas with high biodiversity, such as in the Amazon. Here, we sought to identify knowledge gaps on Amazonian Odonata regarding three main aspects: (i) how the inclusion of Amazonian taxa affects our interpretation of the evolutionary relationships of Zygoptera and Anisoptera; (ii) the position of Amazonian taxa in the existing supertree of the Odonata; (iii) dating evolutionary divergence between nodes using fossil records; (iv) assessing whether more species-rich basins (e.g., Amazon basin) have a larger phylogenetic gap when compared to basins with lower richness in South and Central America; and (v) in the light of our knowledge, we discuss diversification patterns found in the most predominant clades of Amazonian taxa. We built a supertree from currently available phylogenetic information of Odonata. The results show that there is no genetic information for 85% (n: 503) of the Amazonian species and that family level relationships are unknown for 17 genera. After compiling the data, we observed that clades belonging to Neotropical lineages are the most poorly resolved, with large polytomies. This problem was identified in many Anisoptera genera, such as Macrothemis, Dasythemis, Elasmothemis, and Erythrodiplax. Our results also suggest that not always the richest basins have the greatest phylogenetic gaps. As expected, we found important gaps in the existing Odonata phylogenies, especially in clades that include Amazonian representatives, that are also those less known from ecological and conservation perspectives.


Asunto(s)
Odonata , Animales , Biodiversidad , Evolución Biológica , América Central , Odonata/genética , Filogenia
16.
Gigascience ; 112022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35373834

RESUMEN

BACKGROUND: The globe skimmer dragonfly (Pantala flavescens) is a notable Odonata insect distributed in nature fields and farmlands worldwide, and it is commonly recognized as a natural enemy because it preys on agricultural pests and health pests. As one of the sister groups of winged insects, odonatan species are key to understanding the evolution of insect wings. FINDINGS: We present a high-quality reference genome of P. flavescens, which is the first chromosome-level genome in the Palaeoptera (Odonata and Ephemeroptera). The assembled genome size was 662 Mb, with a contig N50 of 16.2 Mb. Via Hi-C scaffolding, 648 Mb (97.9%) of contig sequences were clustered, ordered, and assembled into 12 large scaffolds, each corresponding to a natural chromosome. The X chromosome was identified by sequence coverage depth. The repetitive sequences and gene density of the X chromosome are similar to those of autosomal sequences, but the X chromosome shows a much lower degree of heterozygosity. Our analysis shows that the effective population size experienced 3 declining events, which may have been caused by climate change and environmental pollution. CONCLUSIONS: The genome of P. flavescens provides more information on the biology and evolution of insects and will help for the use of this species in pest control.


Asunto(s)
Odonata , Animales , Cromosomas , Tamaño del Genoma , Odonata/genética , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
17.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217609

RESUMEN

Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonataE93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93 Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93 These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.


Asunto(s)
Evolución Biológica , Metamorfosis Biológica/genética , Odonata/crecimiento & desarrollo , Alas de Animales , Animales , Femenino , Perfilación de la Expresión Génica , Genes de Insecto , Masculino , Odonata/genética , Interferencia de ARN
18.
Syst Biol ; 71(3): 526-546, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34324671

RESUMEN

Introgression is an important biological process affecting at least 10% of the extant species in the animal kingdom. Introgression significantly impacts inference of phylogenetic species relationships where a strictly binary tree model cannot adequately explain reticulate net-like species relationships. Here, we use phylogenomic approaches to understand patterns of introgression along the evolutionary history of a unique, nonmodel insect system: dragonflies and damselflies (Odonata). We demonstrate that introgression is a pervasive evolutionary force across various taxonomic levels within Odonata. In particular, we show that the morphologically "intermediate" species of Anisozygoptera (one of the three primary suborders within Odonata besides Zygoptera and Anisoptera), which retain phenotypic characteristics of the other two suborders, experienced high levels of introgression likely coming from zygopteran genomes. Additionally, we find evidence for multiple cases of deep inter-superfamilial ancestral introgression. [Gene flow; Odonata; phylogenomics; reticulate evolution.].


Asunto(s)
Odonata , Animales , Genoma , Insectos/anatomía & histología , Odonata/anatomía & histología , Odonata/genética , Filogenia
19.
BMC Ecol Evol ; 21(1): 181, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563127

RESUMEN

BACKGROUND: Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. METHOD: The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). RESULTS: Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. CONCLUSIONS: Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.


Asunto(s)
ADN Mitocondrial , Odonata/genética , Odonata/microbiología , Wolbachia , Animales , Chipre , ADN Mitocondrial/genética , Femenino , Variación Genética , Filogenia
20.
Sci Rep ; 11(1): 18642, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545136

RESUMEN

Large-scale latitudinal studies that include both north and south edge populations and address sex differences are needed to understand how selection has shaped trait variation. We quantified the variation of flight-related morphological traits (body size, wing size, ratio between wing size and body size, and wing shape) along the whole latitudinal distribution of the damselfly Lestes sponsa, spanning over 2700 km. We tested predictions of geographic variation in the flight-related traits as a signature of: (1) stronger natural selection to improve dispersal in males and females at edge populations; (2) stronger sexual selection to improve reproduction (fecundity in females and sexual behaviors in males) at edge populations. We found that body size and wing size showed a U-shaped latitudinal pattern, while wing ratio showed the inverse shape. However, wing shape varied very little along the latitudinal gradient. We also detected sex-differences in the latitudinal patterns of variation. We discuss how latitudinal differences in natural and sexual selection regimes can lead to the observed quadratic patterns of variation in body and wing morphology via direct or indirect selection. We also discuss the lack of latitudinal variation in wing shape, possibly due to aerodynamic constraints.


Asunto(s)
Odonata/anatomía & histología , Alas de Animales/anatomía & histología , Animales , Tamaño Corporal , Europa (Continente) , Femenino , Vuelo Animal , Geografía , Masculino , Odonata/genética , Odonata/fisiología , Fenotipo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA