Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 149(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355083

RESUMEN

Morphogens of the Hh family trigger gene expression changes in receiving cells in a concentration-dependent manner to regulate their identity, proliferation, death or metabolism, depending on the tissue or organ. This variety of responses relies on a conserved signaling pathway. Its logic includes a negative-feedback loop involving the Hh receptor Ptc. Here, using experiments and computational models we study and compare the different spatial signaling profiles downstream of Hh in several developing Drosophila organs. We show that the spatial distributions of Ptc and the activator transcription factor CiA in wing, antenna and ocellus show similar features, but are markedly different from that in the compound eye. We propose that these two profile types represent two time points along the signaling dynamics, and that the interplay between the spatial displacement of the Hh source in the compound eye and the negative-feedback loop maintains the receiving cells effectively in an earlier stage of signaling. These results show how the interaction between spatial and temporal dynamics of signaling and differentiation processes may contribute to the informational versatility of the conserved Hh signaling pathway.


Asunto(s)
Drosophila , Proteínas Hedgehog , Transducción de Señal , Drosophila/embriología , Animales , Proteínas Hedgehog/fisiología , Alas de Animales/embriología , Ojo Compuesto de los Artrópodos/embriología
2.
Dev Biol ; 465(2): 157-167, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32702356

RESUMEN

The compound eye in crustaceans is a main eye type in the animal kingdom, knowledge about the mechanism to determine the development of compound eye is very limited. Paired box protein 6 (Pax6) is generally regarded as a master regulator for eye development. In the present study, a genome-based analysis of the Pax6 gene in the ridge tail white prawn Exopalaemon carinicauda was performed and two members of Pax6 homologs, named Ec-Eyeless (EcEy) and Ec-Twin of eyeless (EcToy) were identified. To understand the function of these two homologs of Pax6 gene in the prawn, the CRISPR/Cas9 genome editing technique was applied to generate EcEy and EcToy knock-out (KO) prawns and their phenotypes were analyzed. The surviving EcEy-KO embryos and larvae exhibited severe abnormal eye morphology, suggesting that EcEy is necessary for the compound eye development in prawn, while no mutant phenotype was found in EcToy-KO individuals. These findings highlighted the conservative role of Pax6 gene in the compound eye formation, and the functional differentiation between EcEy and EcToy gene may reveal a novel regulating mechanism of Pax6 on the compound eye development in the decapods. These data will provide important information for understanding the regulation mechanism for crustacean compound eye development.


Asunto(s)
Proteínas de Artrópodos , Sistemas CRISPR-Cas , Ojo Compuesto de los Artrópodos/embriología , Decápodos , Mutación , Factor de Transcripción PAX6 , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Decápodos/embriología , Decápodos/genética , Edición Génica , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo
3.
PLoS Genet ; 16(6): e1008792, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579612

RESUMEN

While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Trastornos del Neurodesarrollo/genética , Animales , Ojo Compuesto de los Artrópodos/embriología , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Alas de Animales/embriología , Alas de Animales/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
4.
Genesis ; 57(9): e23309, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162816

RESUMEN

The placement of eyes on insect head is an important evolutionary trait. The stalk-eyed fly, Cyrtodopsis whitei, exhibits a hypercephaly phenotype where compound eyes are located on lateral extension from the head while the antennal segments are placed inwardly on this stalk. This stalk-eyed phenotype is characteristic of the family Diopsidae in the Diptera order and dramatically deviates from other dipterans, such as Drosophila. Like other insects, the adult eye and antenna of stalk-eyed fly develop from a complex eye-antennal imaginal disc. We analyzed the markers involved in proximo-distal (PD) axis of the developing eye imaginal disc of the stalk-eyed flies. We used homothorax (hth) and distalless (dll), two highly conserved genes as the marker for proximal and distal fate, respectively. We found that lateral extensions between eye and antennal field of the stalk-eyed fly's eye-antennal imaginal disc exhibit robust Hth expression. Hth marks the head specific fate in the eye- and proximal fate in the antenna-disc. Thus, the proximal fate marker Hth expression evolves in the stalk-eyed flies to generate lateral extensions for the placement of the eye on the head. Moreover, during pupal eye metamorphosis, the lateral extension folds back on itself to place the antenna inside and the adult compound eye on the distal tip. Interestingly, the compound eye in other insects does not have a prominent PD axis as observed in the stalk-eyed fly.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Dípteros/embriología , Genes de Insecto , Marcadores Genéticos , Animales , Dípteros/genética , Drosophila/genética , Inducción Embrionaria , Proteínas de Homeodominio/genética , Metamorfosis Biológica/genética , Retina/embriología
5.
Artículo en Inglés | MEDLINE | ID: mdl-30649587

RESUMEN

Fireflies (Coleoptera: Lampyridae) have distinct visual systems at different stages of development. Larvae have stemmata and adults have compound eyes. Adults use compound eyes to mediate photic communication during courtship. Larvae do not manifest this behavior, yet they are bioluminescent. We investigated the structure of stemmata in Photuris firefly larvae to identify anatomical substrates (i.e., rhabdomeres) conferring visual function. Stemmata were located bilaterally on the antero-lateral surfaces of the head. Beneath the ~ 130 µm diameter lens, we identified a pigmented eye-cup. At its widest point, the eye-cup was ~ 150 µm in diameter. The optic nerve exited the eye-cup opposite the lens. Two distinct regions, asymmetric in size and devoid of pigmentation, were characterized in stemmata cross-sections. We refer to these regions as lobes. Each lobe contained a rhabdom of a radial network of rhabdomeres. Pairs of rhabdomeres formed interdigitating microvilli contributed from neighboring photoreceptor cell bodies. The optic nerve contained 88 axons separable into two populations based on size. The number of axons in the optic nerve together with distinct rhabdoms suggests these structures were formed from 'fusion stemmata.' This structural specialization provides an anatomical substrate for future studies of visually mediated behaviors in Photuris larvae.


Asunto(s)
Axones/ultraestructura , Ojo Compuesto de los Artrópodos/ultraestructura , Luciérnagas/ultraestructura , Nervio Óptico/ultraestructura , Células Fotorreceptoras/ultraestructura , Animales , Ojo Compuesto de los Artrópodos/embriología , Luciérnagas/embriología , Larva/ultraestructura , Nervio Óptico/embriología
6.
Nucleic Acids Res ; 46(22): 11743-11758, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30295802

RESUMEN

Eyeless (ey) is one of the most critical transcription factors for initiating the entire eye development in Drosophila. However, the molecular mechanisms through which Ey regulates target genes and pathways have not been characterized at the genomic level. Using ChIP-Seq, we generated an endogenous Ey-binding profile in Drosophila developing eyes. We found that Ey binding occurred more frequently at promoter compared to non-promoter regions. Ey promoter binding was correlated with the active transcription of genes involved in development and transcription regulation. An integrative analysis revealed that Ey directly regulated a broad and highly connected genetic network, including many essential patterning pathways, and known and novel eye genes. Interestingly, we observed that Ey could target multiple components of the same pathway, which might enhance its control of these pathways during eye development. In addition to protein-coding genes, we discovered Ey also targeted non-coding RNAs, which represents a new regulatory mechanism employed by Ey. These findings suggest that Ey could use multiple molecular mechanisms to regulate target gene expression and pathway function, which might enable Ey to exhibit a greater flexibility in controlling different processes during eye development.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Tipificación del Cuerpo , Linaje de la Célula , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genómica , Regiones Promotoras Genéticas , ARN no Traducido
7.
Development ; 145(18)2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242104

RESUMEN

Metazoan Hedgehog (Hh) morphogens are essential regulators of growth and patterning at significant distances from their source, despite being produced as N-terminally palmitoylated and C-terminally cholesteroylated proteins, which firmly tethers them to the outer plasma membrane leaflet of producing cells and limits their spread. One mechanism to overcome this limitation is proteolytic processing of both lipidated terminal peptides, called shedding, but molecular target site requirements for effective Hh shedding remained undefined. In this work, by using Drosophila melanogaster as a model, we show that mutagenesis of the N-terminal Cardin-Weintraub (CW) motif inactivates recombinant Hh proteins to variable degrees and, if overexpressed in the same compartment, converts them into suppressors of endogenous Hh function. In vivo, additional removal of N-palmitate membrane anchors largely restored endogenous Hh function, supporting the hypothesis that proteolytic CW processing controls Hh solubilization. Importantly, we also observed that CW repositioning impairs anterior/posterior compartmental boundary maintenance in the third instar wing disc. This demonstrates that Hh shedding not only controls the differentiation of anterior cells, but also maintains the sharp physical segregation between these receiving cells and posterior Hh-producing cells.


Asunto(s)
Secuencias de Aminoácidos/genética , Tipificación del Cuerpo/genética , Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Proteínas Hedgehog/genética , Alas de Animales/embriología , Animales , Diferenciación Celular , Lipoilación/fisiología , Palmitatos/metabolismo , Transducción de Señal/genética
8.
Dev Biol ; 443(2): 188-202, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30243673

RESUMEN

A fundamental question in evolutionary biology is how developmental processes are modified to produce morphological innovations while abiding by functional constraints. Here we address this question by investigating the cellular mechanism responsible for the transition between fused and open rhabdoms in ommatidia of apposition compound eyes; a critical step required for the development of visual systems based on neural superposition. Utilizing Drosophila and Tribolium as representatives of fused and open rhabdom morphology in holometabolous insects respectively, we identified three changes required for this innovation to occur. First, the expression pattern of the extracellular matrix protein Eyes Shut (EYS) was co-opted and expanded from mechanosensory neurons to photoreceptor cells in taxa with open rhabdoms. Second, EYS homologs obtained a novel extension of the amino terminus leading to the internalization of a cleaved signal sequence. This amino terminus extension does not interfere with cleavage or function in mechanosensory neurons, but it does permit specific targeting of the EYS protein to the apical photoreceptor membrane. Finally, a specific interaction evolved between EYS and a subset of Prominin homologs that is required for the development of open, but not fused, rhabdoms. Together, our findings portray a case study wherein the evolution of a set of molecular novelties has precipitated the origin of an adaptive photoreceptor cell arrangement.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Células Fotorreceptoras/fisiología , Animales , Artrópodos/metabolismo , Evolución Biológica , Ojo Compuesto de los Artrópodos/metabolismo , Ojo Compuesto de los Artrópodos/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Evolución Molecular , Proteínas del Ojo/metabolismo , Sistemas de Lectura Abierta/genética , Células Fotorreceptoras/metabolismo , Filogenia , Tribolium/embriología , Tribolium/metabolismo
9.
Genetics ; 207(1): 197-213, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28696218

RESUMEN

One of the pertinent issues associated with cellular plasticity is to understand how the delicate balance between the determined state of cells and the extent to which they can transdetermine is maintained. Employing the well-established model of generating ectopic eyes in developing wing discs of Drosophila by ectopic eyeless expression, we provide evidence for the genetic basis of this mechanism. By both loss-of-function and gain-of-function genetic analyses, we demonstrate that Matrix metalloproteinase 1 (Mmp1) plays an important role in regulating the extent of ectopic ommatidial differentiation. Transcriptional activation of ectopic Mmp1 by the morphogen Decapentaplegic (Dpp) is not triggered by its canonical signaling pathway which involves Mad. Rather, Dpp activates an alternate cascade involving dTak1 and JNK, to induce ectopic Mmp1 expression. Mutational analyses reveal that Mmp1 negatively regulates ectopic eye differentiation by restricting the rate of proliferation and the levels of expression of retinal-determining genes dachshund and eyes absent This is primarily achieved by restricting the range of Hedgehog (Hh) signaling. Importantly, the increase in proliferation and upregulation of target retinal-determining genes, as observed upon attenuating Mmp1 activity, gets significantly rescued when ectopic eyes are generated in wing discs of hh heterozygous mutants. In conjunction with the previously established instructive and permissive roles of Dpp in facilitating ectopic eye differentiation in wing discs, the outcome of this study sheds light on a mechanism by which Dpp plays a dual role in modulating the delicate balance between the determined state of cells and the extent they can transdetermine.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , Metaloproteinasa 1 de la Matriz/genética , Transducción de Señal , Animales , Proliferación Celular , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Mutación con Ganancia de Función , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Mutación con Pérdida de Función , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Apoptosis ; 22(4): 479-490, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28150056

RESUMEN

The proto-oncogene Myc is well known for its roles in promoting cell growth, proliferation and apoptosis. However, in this study, we found from a genetic screen that Myc inhibits, rather than promotes, cell death triggered by c-Jun N-terminal kinase (JNK) signaling in Drosophila. Firstly, expression of Drosophila Myc (dMyc) suppresses, whereas loss of dMyc enhances, ectopically activated JNK signaling-induced cell death. Secondly, dMyc impedes physiologically activated JNK pathway-mediated cell death. Thirdly, loss of dMyc triggers JNK pathway activation and JNK-dependent cell death. Finally, the mammalian cMyc gene, when expressed in Drosophila, impedes activated JNK signaling-induced cell death. Thus, besides its well-studied apoptosis promoting function, Myc also antagonizes JNK-mediated cell death in Drosophila, and this function is likely conserved from fly to human.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Genes myc , Sistema de Señalización de MAP Quinasas/genética , Factores de Transcripción/fisiología , Animales , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/embriología , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Sintéticos , Humanos , Larva , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Morfogénesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Especificidad de la Especie , Tórax/citología , Tórax/embriología , Tórax/crecimiento & desarrollo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Alas de Animales/citología , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo
11.
Dev Biol ; 418(1): 10-16, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27565023

RESUMEN

The fruit fly Drosophila melanogaster has two types of external visual organs, a pair of compound eyes and a group of three ocelli. At the time of neurogenesis, the proneural transcription factor Atonal mediates the transition from progenitor cells to differentiating photoreceptor neurons in both organs. In the developing compound eye, atonal (ato) expression is directly induced by transcriptional regulators that confer retinal identity, the Retinal Determination (RD) factors. Little is known, however, about control of ato transcription in the ocelli. Here we show that a 2kb genomic DNA fragment contains distinct and common regulatory elements necessary for ato induction in compound eyes and ocelli. The three binding sites that mediate direct regulation by the RD factors Sine oculis and Eyeless in the compound eye are also required in the ocelli. However, in the latter, these sites mediate control by Sine oculis and the other Pax6 factor of Drosophila, Twin of eyeless, which can bind the Pax6 sites in vitro. Moreover, the three sites are differentially utilized in the ocelli: all three are similarly essential for atonal induction in the posterior ocelli, but show considerable redundancy in the anterior ocellus. Strikingly, this difference parallels the distinct control of ato transcription in the posterior and anterior progenitors of the developing compound eyes. From a comparative perspective, our findings suggest that the ocelli of arthropods may have originated through spatial partitioning from the dorsal edge of an ancestral compound eye.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Células Fotorreceptoras de Invertebrados/citología , Activación Transcripcional/genética , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ensayo de Cambio de Movilidad Electroforética , Activación Enzimática , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción PAX6/genética , Transactivadores/genética
12.
Dev Biol ; 418(1): 98-107, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27502436

RESUMEN

During organ development, the progenitor state is transient, and depends on specific combinations of transcription factors and extracellular signals. Not surprisingly, abnormal maintenance of progenitor transcription factors may lead to tissue overgrowth, and the concurrence of signals from the local environment is often critical to trigger this overgrowth. Therefore, identifying specific combinations of transcription factors/signals promoting -or opposing- proliferation in progenitors is essential to understand normal development and disease. We have investigated this issue using the Drosophila eye as model. Transcription factors hth and tsh are transiently expressed in eye progenitors causing the expansion of the progenitor pool. However, if their co-expression is maintained experimentally, cell proliferation continues and differentiation is halted. Here we show that Hth+Tsh-induced tissue overgrowth requires the BMP2 Dpp and the abnormal hyperactivation of its pathway. Rather than using autocrine Dpp expression, Hth+Tsh cells increase their avidity for Dpp, produced locally, by upregulating extracellular matrix components. During normal development, Dpp represses hth and tsh ensuring that the progenitor state is transient. However, cells in which Hth+Tsh expression is forcibly maintained use Dpp to enhance their proliferation.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas Represoras/biosíntesis , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Ojo Compuesto de los Artrópodos/citología , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Transducción de Señal
13.
PLoS Genet ; 12(7): e1006204, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27442438

RESUMEN

Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Proteínas Nucleares/fisiología , Animales , Ojo Compuesto de los Artrópodos/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/fisiología , Discos Imaginales/embriología , Morfogénesis , Transducción de Señal
14.
Cell Rep ; 15(1): 45-53, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27052178

RESUMEN

The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through ß-catenin (ß-cat/Arm) phosphorylation. We find that ß-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3.


Asunto(s)
Uniones Adherentes/metabolismo , Polaridad Celular , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Proteínas Quinasas/metabolismo , Uniones Adherentes/ultraestructura , Animales , Diferenciación Celular , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/embriología , Drosophila/citología , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Epiteliales/citología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/genética , beta Catenina/metabolismo
15.
Nat Commun ; 7: 10461, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876750

RESUMEN

Generation of periodic patterns is fundamental to the differentiation of multiple tissues during development. How such patterns form robustly is still unclear. The Drosophila eye comprises ∼750 units, whose crystalline order is set during differentiation of the eye imaginal disc: an activation wave sweeping across the disc is coupled to lateral inhibition, sequentially selecting pro-neural cells. Using mathematical modelling, here we show that this template-based lateral inhibition is highly sensitive to spatial variations in biochemical parameters and cell sizes. We reveal the basis of this sensitivity, and suggest that it can be overcome by assuming a short-range diffusible activator. Clonal experiments identify Scabrous, a previously implicated inhibitor, as the predicted activator. Our results reveal the mechanism by which periodic patterning in the fly eye is stabilized against spatial variations, highlighting how the need to maintain robustness shapes the design of patterning circuits.


Asunto(s)
Diferenciación Celular/genética , Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/genética , Drosophila/embriología , Glicoproteínas/genética , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Animales Modificados Genéticamente , Ojo Compuesto de los Artrópodos/metabolismo , Inmunohistoquímica , Modelos Teóricos , Periodicidad
16.
Dev Genes Evol ; 225(4): 235-51, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26155777

RESUMEN

The postembryonic development and caste differentiation patterns of lower termites have been described multiple times in a variety of different species. However, most of these studies focused on gross ontogeny, without carefully describing the maturation of any particular organ or organ system. The few studies that have attempted to correlate caste development and organ differentiation have produced somewhat inconsistent results, especially in the area of eye formation. Therefore, in order to help further elucidate the relationship between eye formation and postembryonic differentiation in lower termites, we studied eye development in the termite, Incisitermes minor (Hagen). Eye formation in I. minor began in the earliest larvae, with only an eye primordium. However, in all later larval stages, characteristic eye structures were observed and were shown to progressively differentiate through larval and nymphal stages. Curiously, pigmentation began with three to eight groups of cells in early larvae and the number of these pigmented groups increased along the developmental time course. Ultimately, a uniformly pigmented eye area was formed by the early nymphal stage. The overall eye area also gradually increased along with normal caste development, but the characteristic lenses seen in a prototypical insect compound eye did not completely form until after the final nymphal stage. Electrophysiological measurements provided clear evidence that eyes were indeed functional at all stages of development where pigment was present. Based upon this data, the eye development pattern in I. minor appeared to follow a divergent pathway from holometabolous insects and an intermediate pathway between typical hemimetabolous eye development and the heterochronic shift observed in other termite species.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Ojo Compuesto de los Artrópodos/ultraestructura , Isópteros/anatomía & histología , Animales , Ojo Compuesto de los Artrópodos/fisiología , Fenómenos Electrofisiológicos , Isópteros/embriología , Isópteros/ultraestructura
17.
Mol Neurobiol ; 52(3): 1315-1329, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25339580

RESUMEN

Atonal genes are basic helix-loop-helix transcription factors that were first identified as regulating the formation of mechanoreceptors and photoreceptors in Drosophila. Isolation of vertebrate homologs of atonal genes has shown these transcription factors to play diverse roles in the development of neurons and their progenitors, gut epithelial cells, and mechanosensory cells in the inner ear and skin. In this article, we review the molecular function and regulation of atonal genes and their targets, with particular emphasis on the function of Atoh1 in the development, survival, and function of hair cells of the inner ear. We discuss cell-extrinsic signals that induce Atoh1 expression and the transcriptional networks that regulate its expression during development. Finally, we discuss recent work showing how identification of Atoh1 target genes in the cerebellum, spinal cord, and gut can be used to propose candidate Atoh1 targets in tissues such as the inner ear where cell numbers and biochemical material are limiting.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Proteínas del Tejido Nervioso/fisiología , Secuencia de Aminoácidos , Estructuras Animales/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Evolución Molecular , Células Ciliadas Auditivas/fisiología , Humanos , Intestinos/citología , Intestinos/embriología , Intestinos/crecimiento & desarrollo , Invertebrados/fisiología , Células de Merkel/metabolismo , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neurogénesis/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Filogenia , Órganos de los Sentidos/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal/fisiología , Transcripción Genética , Vertebrados/fisiología
18.
Cell Rep ; 9(6): 2043-55, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25533344

RESUMEN

During morphogenesis, extracellular signals trigger actomyosin contractility in subpopulations of cells to coordinate changes in cell shape. To illuminate the link between signaling-mediated tissue patterning and cytoskeletal remodeling, we study the progression of the morphogenetic furrow (MF), the wave of apical constriction that traverses the Drosophila eye imaginal disc preceding photoreceptor neurogenesis. Apical constriction depends on actomyosin contractility downstream of the Hedgehog (Hh) and bone morphogenetic protein (BMP) pathways. We identify a role for integrin adhesion receptors in MF progression. We show that Hh and BMP regulate integrin expression, the loss of which disrupts apical constriction and slows furrow progression; conversely, elevated integrins accelerate furrow progression. We present evidence that integrins regulate MF progression by promoting microtubule stabilization, since reducing microtubule stability rescues integrin-mediated furrow acceleration. Thus, integrins act as a genetic link between tissue-level signaling events and morphological change at the cellular level, leading to morphogenesis and neurogenesis in the eye.


Asunto(s)
Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Epitelio/metabolismo , Cadenas alfa de Integrinas/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Ojo Compuesto de los Artrópodos/embriología , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Epitelio/embriología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Cadenas alfa de Integrinas/genética , Morfogénesis
19.
Development ; 141(16): 3233-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063458

RESUMEN

Cell migration is an important feature of glial cells. Here, we used the Drosophila eye disc to decipher the molecular network controlling glial migration. We stimulated glial motility by pan-glial PDGF receptor (PVR) activation and identified several genes acting downstream of PVR. Drosophila lox is a non-essential gene encoding a secreted protein that stiffens the extracellular matrix (ECM). Glial-specific knockdown of Integrin results in ECM softening. Moreover, we show that lox expression is regulated by Integrin signaling and vice versa, suggesting that a positive-feedback loop ensures a rigid ECM in the vicinity of migrating cells. The general implication of this model was tested in a mammalian glioma model, where a Lox-specific inhibitor unraveled a clear impact of ECM rigidity in glioma cell migration.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Matriz Extracelular/fisiología , Neuroglía/citología , Proteína-Lisina 6-Oxidasa/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Matriz Extracelular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Glioblastoma/metabolismo , Humanos , Integrinas/metabolismo , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Trasplante de Neoplasias , Proteína-Lisina 6-Oxidasa/genética , Transducción de Señal
20.
PLoS One ; 9(2): e88171, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505414

RESUMEN

The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFß homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.


Asunto(s)
Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/embriología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Tipificación del Cuerpo , Muerte Celular , Diferenciación Celular , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...