Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(10): e0206200, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30365514

RESUMEN

Storm surge is often the greatest threat to life and critical infrastructures during hurricanes and violent storms. Millions of people living in low-lying coastal zones and critical infrastructure within this zone rely on accurate storm surge forecast for disaster prevention and flood hazard mitigation. However, variability in residual sea level up-estuary, defined here as observed sea level minus predicted tide, can enhance total water levels; variability in the surge thus needs to be captured accurately to reduce uncertainty in site specific hazard assessment. Delft3D-FLOW is used to investigate surge variability, and the influence of storm surge timing on barotropic tide-surge propagation in a tide-dominant estuary using the Severn Estuary, south-west England, as an example. Model results show maximum surge elevation increases exponentially up-estuary and, for a range of surge timings consistently occurs on the flood tide. In the Severn Estuary, over a distance of 40 km from the most upstream tide gauge at Oldbury, the maximum surge elevation increases by 255%. Up-estuary locations experience short duration, high magnitude surge elevations and greater variability due to shallow-water effects and channel convergence. The results show that surge predictions from forecasting systems at tide gauge locations could under-predict the magnitude and duration of surge contribution to up-estuary water levels. Due to the large tidal range and dynamic nature of hyper-tidal estuaries, local forecasting systems should consider changes in surge elevation and shape with distance up-estuary from nearby tide gauge sites to minimize uncertainties in flood hazard assessment.


Asunto(s)
Tormentas Ciclónicas , Estuarios , Inundaciones , Predicción/métodos , Olas de Marea , Incertidumbre , Desastres/prevención & control , Monitoreo del Ambiente/métodos , Inundaciones/prevención & control , Humanos , Hidrodinámica , Modelos Teóricos , Oceanografía/métodos , Olas de Marea/prevención & control , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...