Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Sci Rep ; 11(1): 20200, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642398

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with typical neuropathological hallmarks, such as neuritic plaques and neurofibrillary tangles, preferentially found at layers III and V. The distribution of both hallmarks provides the basis for the staging of AD, following a hierarchical pattern throughout the cerebral cortex. To unravel the background of this layer-specific vulnerability, we evaluated differential gene expression of supragranular and infragranular layers and subcortical white matter in both healthy controls and AD patients. We identified AD-associated layer-specific differences involving protein-coding and non-coding sequences, most of those present in the subcortical white matter, thus indicating a critical role for long axons and oligodendrocytes in AD pathomechanism. In addition, GO analysis identified networks containing synaptic vesicle transport, vesicle exocytosis and regulation of neurotransmitter levels. Numerous AD-associated layer-specifically expressed genes were previously reported to undergo layer-specific switches in recent hominid brain evolution between layers V and III, i.e., those layers that are most vulnerable to AD pathology. Against the background of our previous finding of accelerated evolution of AD-specific gene expression, here we suggest a critical role in AD pathomechanism for this phylogenetic layer-specific adaptation of gene expression, which is most prominently seen in the white matter compartment.


Asunto(s)
Enfermedad de Alzheimer/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , ARN no Traducido/genética , Sustancia Blanca/química , Anciano , Anciano de 80 o más Años , Axones/química , Estudios de Casos y Controles , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Oligodendroglía/química , Especificidad de Órganos , Análisis de Secuencia de ARN
2.
Neuroimage ; 239: 118267, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34139358

RESUMEN

Myelin loss and iron accumulation are cardinal features of aging and various neurodegenerative diseases. Oligodendrocytes incorporate iron as a metabolic substrate for myelin synthesis and maintenance. An emerging hypothesis in Alzheimer's disease research suggests that myelin breakdown releases substantial stores of iron that may accumulate, leading to further myelin breakdown and neurodegeneration. We assessed associations between iron content and myelin content in critical brain regions using quantitative magnetic resonance imaging (MRI) on a cohort of cognitively unimpaired adults ranging in age from 21 to 94 years. We measured whole-brain myelin water fraction (MWF), a surrogate of myelin content, using multicomponent relaxometry, and whole-brain iron content using susceptibility weighted imaging in all individuals. MWF was negatively associated with iron content in most brain regions evaluated indicating that lower myelin content corresponds to higher iron content. Moreover, iron content was significantly higher with advanced age in most structures, with men exhibiting a trend towards higher iron content as compared to women. Finally, relationship between MWF and age, in all brain regions investigated, suggests that brain myelination continues until middle age, followed by degeneration at older ages. This work establishes a foundation for further investigations of the etiology and sequelae of myelin breakdown and iron accumulation in neurodegeneration and may lead to new imaging markers for disease progression and treatment.


Asunto(s)
Envejecimiento/metabolismo , Química Encefálica , Sustancia Gris/diagnóstico por imagen , Hierro/análisis , Imagen por Resonancia Magnética/métodos , Vaina de Mielina/química , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Agua Corporal , Estudios Transversales , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Oligodendroglía/química , Adulto Joven
3.
J Comp Neurol ; 529(13): 3274-3291, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33950531

RESUMEN

Perineuronal nets are extracellular glycoprotein structures that have been found on some neurons in the central nervous system and that have been shown to regulate their structural plasticity. Until now work on perineuronal nets has been focused on their role in cortical structures where they are selectively expressed on parvalbumin-positive neurons and are reported to restrict the experience-dependent plasticity of inhibitory afferents. Here, we examined the expression of perineuronal nets subcortically, showing that they are expressed in several discrete structures, including nuclei that comprise the brain network controlling reproductive behaviors (e.g., mounting, lordosis, aggression, and social defense). In particular, perineuronal nets were found in the posterior dorsal division of the medial amygdala, the medial preoptic nucleus, the posterior medial bed nucleus of the stria terminalis, the ventrolateral ventromedial hypothalamus and adjacent tuberal nucleus, and the ventral premammillary nucleus in both the mouse and primate brain. Comparison of perineuronal nets in male and female mice revealed a significant sexually dimorphic expression, with expression found prominently on estrogen receptor expressing neurons in the medial amygdala. These findings suggest that perineuronal nets may be involved in regulating neural plasticity in the mammalian reproductive system.


Asunto(s)
Encéfalo/metabolismo , Glicoproteínas/biosíntesis , Red Nerviosa/metabolismo , Reproducción/fisiología , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Animales , Química Encefálica/fisiología , Callithrix , Femenino , Glicoproteínas/análisis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Red Nerviosa/química , Oligodendroglía/química , Oligodendroglía/metabolismo , Imagen Óptica/métodos , Primates , Roedores , Especificidad de la Especie
4.
Neurotox Res ; 39(4): 1181-1188, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33871814

RESUMEN

Multiple sclerosis is a chronic demyelinating disease with a functional disturbance in the immune system and axonal damages. It was shown that Apamin as a blood-brain barrier shuttle acts as a Ca2+ activated K+ channels (SK channels) blocker. In this study, the effects of Apamin on oligodendrocyte differentiation markers were evaluated on an induced model of MS. Briefly, C57BL/6 male mice (22 ± 5 g) except the control group were fed with 0.2% (w/w) cuprizone pellets for 6 weeks. After cuprizone withdrawal, mice were divided randomly into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week. Mice were anesthetized, perfused with phosphate-buffered saline, then fixed brains were coronally sectioned and the changes in oligodendrocytes markers such as Olig2, PDGFR-α, and BrdU incorporation were assessed by immunohistochemistry assay. Apamin administration increased Olig2+ cells in phase I as compared to the control group (p < 0.0001). Also, a decreasing trend in PDGFRa+ cells observed after cuprizone withdrawal (p < 0.001). 5-Bromo-2'-deoxyuridine (BrdU) incorporation test was confirmed stimulation of oligodendrocyte progenitor cell proliferation in phase I in the Apamin exposed group (p < 0.0001), especially at the subventricular zone. This study highlights the potential therapeutic effects of Apamin as a bee venom-derived peptide on oligodendrocyte precursor proliferation and elevation in myelin content in an oxidative induced multiple sclerosis model due to cuprizone exposure.


Asunto(s)
Venenos de Abeja/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cuprizona/toxicidad , Esclerosis Múltiple/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Animales , Venenos de Abeja/farmacología , Barrera Hematoencefálica/química , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proliferación Celular/fisiología , Quelantes/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/análisis , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/química , Oligodendroglía/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/análisis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593907

RESUMEN

The molecular composition of myelin membranes determines their structure and function. Even minute changes to the biochemical balance can have profound consequences for axonal conduction and the synchronicity of neural networks. Hypothesizing that the earliest indication of myelin injury involves changes in the composition and/or polarity of its constituent lipids, we developed a sensitive spectroscopic technique for defining the chemical polarity of myelin lipids in fixed frozen tissue sections from rodent and human. The method uses a simple staining procedure involving the lipophilic dye Nile Red, whose fluorescence spectrum varies according to the chemical polarity of the microenvironment into which the dye embeds. Nile Red spectroscopy identified histologically intact yet biochemically altered myelin in prelesioned tissues, including mouse white matter following subdemyelinating cuprizone intoxication, as well as normal-appearing white matter in multiple sclerosis brain. Nile Red spectroscopy offers a relatively simple yet highly sensitive technique for detecting subtle myelin changes.


Asunto(s)
Esclerosis Múltiple/patología , Vaina de Mielina/química , Oligodendroglía/patología , Oxazinas/química , Espectrometría de Fluorescencia/métodos , Anciano , Animales , Estudios de Casos y Controles , Línea Celular , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Colorantes Fluorescentes , Sustancia Gris/química , Sustancia Gris/citología , Humanos , Lípidos/química , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Oligodendroglía/química , Sustancia Blanca/química , Sustancia Blanca/citología
6.
Nat Prod Rep ; 38(5): 890-904, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33575689

RESUMEN

Covering: up to 2020 This short review surveys aspects of glycolipid-based natural products and their biological relevance in multiple sclerosis (MS). The role of isolated gangliosides in disease models is discussed together with an overview of ganglioside-inspired small molecule drugs and imaging probes. The discussion is extended to neurodegeneration in a more general context and addresses the need for more efficient synthetic methods to generate (glyco)structures that are of therapeutic relevance.


Asunto(s)
Gangliósidos/química , Glucolípidos/química , Esclerosis Múltiple , Oligodendroglía/química , Productos Biológicos , Diferenciación Celular , Glucolípidos/uso terapéutico , Humanos
7.
J Neurotrauma ; 38(6): 777-788, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33107383

RESUMEN

Chronic spinal cord injury (SCI) is a devastating medical condition. In the acute phase after injury, there is cell loss resulting in chronic axonal damage and loss of sensory and motor function including loss of oligodendrocytes that results in demyelination of axons and further dysfunction. In the chronic phase, the inhibitory environment within the lesion including the glial scar can arrest axonal growth and regeneration and can also potentially affect transplanted cells. We hypothesized that glial scar ablation (GSA) along with cell transplantation may be required as a combinatorial therapy to achieve functional recovery, and therefore we proposed to examine the survival and fate of human induced pluripotent stem cell (iPSC) derived pre-oligodendrocyte progenitor cells (pre-OPCs) transplanted in a model of chronic SCI, whether this was affected by GSA, and whether this combination of treatments would result in functional recovery. In this study, chronically injured athymic nude (ATN) rats were allocated to one of three treatment groups: GSA only, pre-OPCs only, or GSA+pre-OPCs. We found that human iPSC derived pre-OPCs were multi-potent and retained the ability to differentiate into mainly oligodendrocytes or neurons when transplanted into the chronically injured spinal cords of rats. Twelve weeks after cell transplantation, we observed that more of the transplanted cells differentiated into oligodendrocytes when the glial scar was ablated compared with no GSA. Further, we also observed that a higher percentage of transplanted cells differentiated into V2a interneurons and motor neurons in the pre-OPCs only group when compared with GSA+pre-OPCs. This suggests that the local environment created by ablation of the glial scar may have a significant effect on the fate of cells transplanted into the injury site.


Asunto(s)
Gliosis/terapia , Neuronas Motoras/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/fisiología , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre/métodos , Animales , Células Cultivadas , Femenino , Colorantes Fluorescentes/administración & dosificación , Gliosis/patología , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Neuronas Motoras/química , Células Precursoras de Oligodendrocitos/química , Células Precursoras de Oligodendrocitos/trasplante , Oligodendroglía/química , Ratas , Rosa Bengala/administración & dosificación , Traumatismos de la Médula Espinal/patología , Vértebras Torácicas/lesiones
8.
Sci Rep ; 10(1): 11007, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620908

RESUMEN

Brain-on-a-chip systems are designed to simulate brain activity using traditional in vitro cell culture on an engineered platform. It is a noninvasive tool to screen new drugs, evaluate toxicants, and elucidate disease mechanisms. However, successful recapitulation of brain function on these systems is dependent on the complexity of the cell culture. In this study, we increased cellular complexity of traditional (simple) neuronal cultures by co-culturing with astrocytes and oligodendrocyte precursor cells (complex culture). We evaluated and compared neuronal activity (e.g., network formation and maturation), cellular composition in long-term culture, and the transcriptome of the two cultures. Compared to simple cultures, neurons from complex co-cultures exhibited earlier synapse and network development and maturation, which was supported by localized synaptophysin expression, up-regulation of genes involved in mature neuronal processes, and synchronized neural network activity. Also, mature oligodendrocytes and reactive astrocytes were only detected in complex cultures upon transcriptomic analysis of age-matched cultures. Functionally, the GABA antagonist bicuculline had a greater influence on bursting activity in complex versus simple cultures. Collectively, the cellular complexity of brain-on-a-chip systems intrinsically develops cell type-specific phenotypes relevant to the brain while accelerating the maturation of neuronal networks, important features underdeveloped in traditional cultures.


Asunto(s)
Astrocitos/citología , Técnicas de Cocultivo/métodos , Perfilación de la Expresión Génica/métodos , Oligodendroglía/citología , Animales , Astrocitos/química , Células Cultivadas , Redes Reguladoras de Genes , Dispositivos Laboratorio en un Chip , Neurogénesis , Oligodendroglía/química , Ratas , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Sinaptofisina/genética
9.
J Pathol ; 251(3): 262-271, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32391572

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. The majority of cases are sporadic (sALS), while the most common inherited form is due to C9orf72 mutation (C9ALS). A high burden of inclusion pathology is seen in glia (including oligodendrocytes) in ALS, especially in C9ALS. Myelin basic protein (MBP) messenger RNA (mRNA) must be transported to oligodendrocyte processes for myelination, a possible vulnerability for normal function. TDP43 is found in pathological inclusions in ALS and is a component of mRNA transport granules. Thus, TDP43 aggregation could lead to MBP loss. Additionally, the hexanucleotide expansion of mutant C9ALS binds hnRNPA2/B1, a protein essential for mRNA transport, causing potential further impairment of hnRNPA2/B1 function, and thus myelination. Using immunohistochemistry for p62 and TDP43 in human post-mortem tissue, we found a high burden of glial inclusions in the prefrontal cortex, precentral gyrus, and spinal cord in ALS, which was greater in C9ALS than in sALS cases. Double staining demonstrated that the majority of these inclusions were in oligodendrocytes. Using immunoblotting, we demonstrated reduced MBP protein levels relative to PLP (a myelin component that relies on protein not mRNA transport) and neurofilament protein (an axonal marker) in the spinal cord. This MBP loss was disproportionate to the level of PLP and axonal loss, suggesting that impaired mRNA transport may be partly responsible. Finally, we show that in C9ALS cases, the level of oligodendroglial inclusions correlates inversely with levels of hnRNPA2/B1 and the number of oligodendrocyte precursor cells. We conclude that there is considerable oligodendrocyte pathology in ALS, which at least partially reflects impairment of mRNA transport. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Axones/patología , Oligodendroglía/patología , Tractos Piramidales/patología , Sustancia Blanca/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Autopsia , Axones/química , Biomarcadores/análisis , Proteína C9orf72/genética , Estudios de Casos y Controles , Proteínas de Unión al ADN/análisis , Predisposición Genética a la Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/análisis , Humanos , Mutación , Proteína Básica de Mielina/análisis , Oligodendroglía/química , Fenotipo , Tractos Piramidales/química , Transporte de ARN , ARN Mensajero/metabolismo , Proteína Sequestosoma-1/análisis , Factores de Transcripción/análisis , Sustancia Blanca/química
10.
Elife ; 92020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32459173

RESUMEN

Destruction of oligodendrocytes and myelin sheaths in cortical gray matter profoundly alters neural activity and is associated with cognitive disability in multiple sclerosis (MS). Myelin can be restored by regenerating oligodendrocytes from resident progenitors; however, it is not known whether regeneration restores the complex myelination patterns in cortical circuits. Here, we performed time lapse in vivo two photon imaging in somatosensory cortex of adult mice to define the kinetics and specificity of myelin regeneration after acute oligodendrocyte ablation. These longitudinal studies revealed that the pattern of myelination in cortex changed dramatically after regeneration, as new oligodendrocytes were formed in different locations and new sheaths were often established along axon segments previously lacking myelin. Despite the dramatic increase in axonal territory available, oligodendrogenesis was persistently impaired in deeper cortical layers that experienced higher gliosis. Repeated reorganization of myelin patterns in MS may alter circuit function and contribute to cognitive decline.


Asunto(s)
Vaina de Mielina/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Axones/química , Axones/metabolismo , Femenino , Humanos , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Vaina de Mielina/química , Oligodendroglía/química , Oligodendroglía/metabolismo , Remielinización , Corteza Somatosensorial/química
11.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-32089836

RESUMEN

Oligodendrocytes are the critical cell types giving rise to the myelin nerve sheath enabling efficient nerve transmission in the central nervous system (CNS). Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are maintained throughout life. Deficits in the generation, proliferation, or differentiation of these cells or their maintenance have been linked to neurological disorders ranging from developmental disorders to neurodegenerative diseases and limit repair after CNS injury. Understanding the regulation of these processes is critical for achieving proper myelination during development, preventing disease, or recovering from injury. Many of the key factors underlying these processes are epigenetic regulators that enable the fine tuning or reprogramming of gene expression during development and regeneration in response to changes in the local microenvironment. These include chromatin remodelers, histone-modifying enzymes, covalent modifiers of DNA methylation, and RNA modification-mediated mechanisms. In this review, we will discuss the key components in each of these classes which are responsible for generating and maintaining oligodendrocyte myelination as well as potential targeted approaches to stimulate the regenerative program in developmental disorders and neurodegenerative diseases.


Asunto(s)
Epigénesis Genética , Vaina de Mielina/genética , Enfermedades Neurodegenerativas , Oligodendroglía/química , Diferenciación Celular , Humanos , Enfermedades Neurodegenerativas/genética
12.
Chem Commun (Camb) ; 55(88): 13223-13226, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31595909

RESUMEN

There are a limited number of near-infrared (NIR) emitting (λem = 700-900 nm) molecular probes for imaging applications. A NIR-emitting probe that exhibits emission at ∼800 nm with a large Stokes shift was synthesized and found to exhibit excellent selectivity towards mitochondria for live-cell imaging. The photophysical properties were attributed to an excited "cyanine structure" via intramolecular charge transfer (ICT) involving a phenol group.


Asunto(s)
Carbocianinas/química , Fibroblastos/química , Colorantes Fluorescentes/química , Oligodendroglía/química , Imagen Óptica , Fenoles/química , Línea Celular , Humanos , Rayos Infrarrojos , Pulmón/citología , Estructura Molecular , Espectrometría de Fluorescencia
13.
Cells ; 8(10)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614602

RESUMEN

Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.


Asunto(s)
Epigénesis Genética , Redes Reguladoras de Genes , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/citología , Animales , Diferenciación Celular , Metilación de ADN , Regulación de la Expresión Génica , Código de Histonas , Humanos , MicroARNs/genética , Células Precursoras de Oligodendrocitos/química , Oligodendroglía/química
14.
BMC Res Notes ; 12(1): 609, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547849

RESUMEN

OBJECTIVE: Oligodendrocytes account for myelination in the central nervous system. During myelin compaction, key proteins are translated in the vicinity of the myelin membrane, requiring targeted mRNA transport. Quaking isoform 6 (QKI6) is a STAR domain-containing RNA transport protein, which binds a conserved motif in the 3'-UTR of certain mRNAs, affecting the translation of myelination-involved proteins. RNA binding has been earlier structurally characterized, but information about full-length QKI6 conformation is lacking. Based on known domains and structure predicitons, we expected full-length QKI6 to be flexible and carry disordered regions. Hence, we carried out biophysical and structural characterization of human QKI6. RESULTS: We expressed and purified full-length QKI6 and characterized it using mass spectrometry, light scattering, small-angle X-ray scattering, and circular dichroism spectroscopy. QKI6 was monodisperse, folded, and mostly dimeric, being oxidation-sensitive. The C-terminal tail was intrinsically disordered, as predicted. In the absence of RNA, the RNA-binding subdomain is likely to present major flexibility. In thermal stability assays, a double sequential unfolding behaviour was observed in the presence of phosphate, which may interact with the RNA-binding domain. The results confirm the flexibility and partial disorder of QKI6, which may be functionally relevant.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Fosfatos/química , Proteínas de Unión al ARN/química , ARN/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Oligodendroglía/química , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Difracción de Rayos X
15.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540019

RESUMEN

Evidence has been accumulated demonstrating that heavy metals may accumulate in various organs, leading to tissue damage and toxic effects in mammals. In particular, the Central Nervous System (CNS) seems to be particularly vulnerable to cumulative concentrations of heavy metals, though the pathophysiological mechanisms is still to be clarified. In particular, the potential role of oligodendrocyte dysfunction and myelin production after exposure to subtoxic concentration I confirmed. It is ok of heavy metals is to be better assessed. Here we investigated on the effect of sub-toxic concentration of several essential (Cu2 +, Cr3 +, Ni2 +, Co2+) and non-essential (Pb2 +, Cd2+, Al3+) heavy metals on human oligodendrocyte MO3.13 and human neuronal SHSY5Y cell lines (grown individually or in co-culture). MO3.13 cells are an immortal human-human hybrid cell line with the phenotypic characteristics of primary oligodendrocytes but following the differentiation assume the morphological and biochemical features of mature oligodendrocytes. For this reason, we decided to use differentiated MO3.13 cell line. In particular, exposure of both cell lines to heavy metals produced a reduced cell viability of co-cultured cell lines compared to cells grown separately. This effect was more pronounced in neurons that were more sensitive to metals than oligodendrocytes when the cells were grown in co-culture. On the other hand, a significant reduction of lipid component in cells occurred after their exposure to heavy metals, an effect accompanied by substantial reduction of the main protein that makes up myelin (MBP) in co-cultured cells. Finally, the effect of heavy metals in oligodendrocytes were associated to imbalanced intracellular calcium ion concentration as measured through the fluorescent Rhod-2 probe, thus confirming that heavy metals, even used at subtoxic concentrations, lead to dysfunctional oligodendrocytes. In conclusion, our data show, for the first time, that sub-toxic concentrations of several heavy metals lead to dysfunctional oligodendrocytes, an effect highlighted when these cells are co-cultured with neurons. The pathophysiological mechanism(s) underlying this effect is to be better clarified. However, imbalanced intracellular calcium ion regulation, altered lipid formation and, finally, imbalanced myelin formation seem to play a major role in early stages of heavy metal-related oligodendrocyte dysfunction.


Asunto(s)
Metales Pesados/toxicidad , Proteína Básica de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular , Sistema Nervioso Central , Humanos , Metales Pesados/química , Vaina de Mielina/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/química , Neuronas/efectos de los fármacos , Neuronas/patología , Oligodendroglía/química , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología
16.
Methods Mol Biol ; 1936: 1-21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820890

RESUMEN

Single-cell RNA sequencing has emerged as a powerful technique for the identification of distinct cell states/populations in complex tissues. We have recently used this technology to investigate heterogeneity of cells of the oligodendrocyte lineage in the mouse central nervous system. In this chapter, we describe methods to perform single-cell RNA sequencing on this glial cell lineage, and discuss experimental and computational approaches to explore the potential and to tackle hurdles associated with this technology.


Asunto(s)
Sistema Nervioso Central/citología , Oligodendroglía/citología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Diferenciación Celular , Linaje de la Célula , Sistema Nervioso Central/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Oligodendroglía/química
17.
Anal Chem ; 90(15): 8873-8880, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29972017

RESUMEN

The use of exosomes for diagnostic and disease monitoring purposes is becoming particularly appealing in biomedical research because of the possibility to study directly in biological fluids some of the features related to the organs from which exosomes originate. A paradigmatic example are brain-derived exosomes that can be found in plasma and used as a direct read-out of the status of the central nervous system (CNS). Inspired by recent remarkable development of plasmonic biosensors, we have designed a surface plasmon resonance imaging (SPRi) assay that, taking advantage of the fact that exosome size perfectly fits within the surface plasmon wave depth, allows the detection of multiple exosome subpopulations of neural origin directly in blood. By use of an array of antibodies, exosomes derived from neurons and oligodendrocytes were isolated and detected with good sensitivity. Subsequently, by injecting a second antibody on the immobilized vesicles, we were able to quantify the amount of CD81 and GM1, membrane components of exosomes, on each subpopulation. In this way, we have been able to demonstrate that they are not homogeneously expressed but exhibit a variable abundance according to the exosome cellular origin. These results confirm the extreme variability of exosome composition and demonstrate how SPRi can provide an effective tool for their characterization. Besides, our work paves the road toward more precise clinical studies on the use of exosomes as potential biomarkers of neurodegenerative diseases.


Asunto(s)
Encéfalo/citología , Exosomas/química , Neuronas/química , Oligodendroglía/química , Plasma/química , Resonancia por Plasmón de Superficie/métodos , Adulto , Anticuerpos Inmovilizados/química , Femenino , Gangliósido G(M1)/análisis , Humanos , Masculino , Tetraspanina 28/análisis
18.
Biometals ; 31(5): 807-819, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29959651

RESUMEN

Neurotoxic metals have been implicated in the pathogenesis of multiple sclerosis, neurodegenerative disorders and brain tumours but studies of the location of heavy metals in human brains are rare. In a man who injected himself with metallic mercury the cellular location of mercury in his brain was studied after 5 months of continuous exposure to inorganic mercury arising from metallic mercury deposits in his organs. Paraffin sections from the primary motor and sensory cortices and the locus ceruleus in the pons were stained with autometallography to detect inorganic mercury and combined with glial fibrillary acidic protein immunohistochemistry to identify astrocytes. Inorganic mercury was found in grey matter subpial, interlaminar, protoplasmic and varicose astrocytes, white matter fibrous astrocytes, grey but not white matter oligodendrocytes, corticomotoneurons and some locus ceruleus neurons. In summary, inorganic mercury is taken up by five types of human brain astrocytes, as well as by cortical oligodendrocytes, corticomotoneurons and locus ceruleus neurons. Mercury can induce oxidative stress, stimulate autoimmunity and damage DNA, mitochondria and lipid membranes, so its location in these CNS cells suggests it could play a role in the pathogenesis of multiple sclerosis, neurodegenerative conditions such as Alzheimer's disease and amyotrophic lateral sclerosis, and glial tumours.


Asunto(s)
Astrocitos/química , Glioma , Locus Coeruleus/citología , Mercurio/análisis , Neuronas Motoras/química , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Oligodendroglía/química , Daño del ADN , Glioma/inducido químicamente , Glioma/patología , Humanos , Locus Coeruleus/química , Mercurio/efectos adversos , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo/efectos de los fármacos
19.
Nature ; 557(7706): 558-563, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743672

RESUMEN

In Lewy body diseases-including Parkinson's disease, without or with dementia, dementia with Lewy bodies, and Alzheimer's disease with Lewy body co-pathology 1 -α-synuclein (α-Syn) aggregates in neurons as Lewy bodies and Lewy neurites 2 . By contrast, in multiple system atrophy α-Syn accumulates mainly in oligodendrocytes as glial cytoplasmic inclusions (GCIs) 3 . Here we report that pathological α-Syn in GCIs and Lewy bodies (GCI-α-Syn and LB-α-Syn, respectively) is conformationally and biologically distinct. GCI-α-Syn forms structures that are more compact and it is about 1,000-fold more potent than LB-α-Syn in seeding α-Syn aggregation, consistent with the highly aggressive nature of multiple system atrophy. GCI-α-Syn and LB-α-Syn show no cell-type preference in seeding α-Syn pathology, which raises the question of why they demonstrate different cell-type distributions in Lewy body disease versus multiple system atrophy. We found that oligodendrocytes but not neurons transform misfolded α-Syn into a GCI-like strain, highlighting the fact that distinct α-Syn strains are generated by different intracellular milieus. Moreover, GCI-α-Syn maintains its high seeding activity when propagated in neurons. Thus, α-Syn strains are determined by both misfolded seeds and intracellular environments.


Asunto(s)
Citoplasma/metabolismo , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Neuronas/metabolismo , alfa-Sinucleína/clasificación , alfa-Sinucleína/metabolismo , Animales , Citoplasma/química , Citoplasma/patología , Femenino , Humanos , Cuerpos de Lewy/química , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/patología , Oligodendroglía/química , Oligodendroglía/metabolismo , Oligodendroglía/patología , Especificidad de Órganos , Pliegue de Proteína , alfa-Sinucleína/química
20.
ACS Sens ; 3(2): 458-467, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29431427

RESUMEN

Despite the significant advantages of two-photon excitation microscopy (TPEM) over traditional confocal fluorescence microscopy in live-cell imaging applications, including reduced phototoxicity and photobleaching, increased depth penetration, and minimized autofluorescence, only a few metal ion-selective fluorescent probes have been designed and optimized specifically for this technique. Building upon a donor-acceptor fluorophore architecture, we developed a membrane-permeant, Zn(II)-selective fluorescent probe, chromis-1, that exhibits a balanced two-photon cross section between its free and Zn(II)-bound form and responds with a large spectral shift suitable for emission-ratiometric imaging. With a Kd of 1.5 nM and wide dynamic range, the probe is well suited for visualizing temporal changes in buffered Zn(II) levels in live cells as demonstrated with mouse fibroblast cell cultures. Moreover, given the importance of zinc in the physiology and pathophysiology of the brain, we employed chromis-1 to monitor cytoplasmic concentrations of labile Zn(II) in oligodendrocytes, an important cellular constituent of the brain, at different stages of development in cell culture. These studies revealed a decrease in probe saturation upon differentiation to mature oligodendrocytes, implying significant changes to cellular zinc homeostasis during maturation with an overall reduction in cellular zinc availability. Optimized for TPEM, chromis-1 is especially well-suited for exploring the role of labile zinc pools in live cells under a broad range of physiological and pathological conditions.


Asunto(s)
Complejos de Coordinación/análisis , Colorantes Fluorescentes/química , Oligodendroglía/química , Piridinas/química , Zinc/análisis , Animales , Diferenciación Celular , Células Cultivadas , Complejos de Coordinación/química , Citoplasma/química , Colorantes Fluorescentes/síntesis química , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Células 3T3 NIH , Piridinas/síntesis química , Análisis de la Célula Individual , Espectrometría de Fluorescencia , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...