Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Nucleic Acids Res ; 52(17): 10619-10629, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989619

RESUMEN

The type III-A (Csm) CRISPR-Cas systems are multi-subunit and multipronged prokaryotic enzymes in guarding the hosts against viral invaders. Beyond cleaving activator RNA transcripts, Csm confers two additional activities: shredding single-stranded DNA and synthesizing cyclic oligoadenylates (cOAs) by the Cas10 subunit. Known Cas10 enzymes exhibit a fascinating diversity in cOA production. Three major forms-cA3, cA4 and cA6have been identified, each with the potential to trigger unique downstream effects. Whereas the mechanism for cOA-dependent activation is well characterized, the molecular basis for synthesizing different cOA isoforms remains unclear. Here, we present structural characterization of a cA6-producing Csm complex during its activation by an activator RNA. Analysis of the captured intermediates of cA6 synthesis suggests a 3'-to-5' nucleotidyl transferring process. Three primary adenine binding sites can be identified along the chain elongation path, including a unique tyrosine-threonine dyad found only in the cA6-producing Cas10. Consistently, disrupting the tyrosine-threonine dyad specifically impaired cA6 production while promoting cA4 production. These findings suggest that Cas10 utilizes a unique enzymatic mechanism for forming the phosphodiester bond and has evolved distinct strategies to regulate the cOA chain length.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Nucleótidos de Adenina/metabolismo , Nucleótidos de Adenina/biosíntesis , Sitios de Unión , Modelos Moleculares , Oligorribonucleótidos/metabolismo , Oligorribonucleótidos/genética , Oligorribonucleótidos/biosíntesis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
2.
Nucleic Acids Res ; 47(17): 9259-9270, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31392987

RESUMEN

The CRISPR system provides adaptive immunity against mobile genetic elements (MGE) in prokaryotes. In type III CRISPR systems, an effector complex programmed by CRISPR RNA detects invading RNA, triggering a multi-layered defence that includes target RNA cleavage, licencing of an HD DNA nuclease domain and synthesis of cyclic oligoadenylate (cOA) molecules. cOA activates the Csx1/Csm6 family of effectors, which degrade RNA non-specifically to enhance immunity. Type III systems are found in diverse archaea and bacteria, including the human pathogen Mycobacterium tuberculosis. Here, we report a comprehensive analysis of the in vitro and in vivo activities of the type III-A M. tuberculosis CRISPR system. We demonstrate that immunity against MGE may be achieved predominantly via a cyclic hexa-adenylate (cA6) signalling pathway and the ribonuclease Csm6, rather than through DNA cleavage by the HD domain. Furthermore, we show for the first time that a type III CRISPR system can be reprogrammed by replacing the effector protein, which may be relevant for maintenance of immunity in response to pressure from viral anti-CRISPRs. These observations demonstrate that M. tuberculosis has a fully-functioning CRISPR interference system that generates a range of cyclic and linear oligonucleotides of known and unknown functions, potentiating fundamental and applied studies.


Asunto(s)
Nucleótidos de Adenina/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Mycobacterium tuberculosis/genética , Oligorribonucleótidos/genética , Inmunidad Adaptativa/inmunología , Nucleótidos de Adenina/biosíntesis , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Secuencias Repetitivas Esparcidas/genética , Secuencias Repetitivas Esparcidas/inmunología , Mycobacterium tuberculosis/inmunología , Oligorribonucleótidos/biosíntesis , Células Procariotas/inmunología , División del ARN/genética , División del ARN/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
3.
RNA Biol ; 16(10): 1513-1520, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31298604

RESUMEN

Type III CRISPR-Cas systems code for a multi-subunit ribonucleoprotein (RNP) complex that mediates DNA cleavage and synthesizes cyclic oligoadenylate (cOA) second messenger to confer anti-viral immunity. Both immune activities are to be activated upon binding to target RNA transcripts by their complementarity to crRNA, and autoimmunity avoidance is determined by extended complementarity between the 5'-repeat tag of crRNA and 3'-flanking sequences of target transcripts (anti-tag). However, as to how the strategy could achieve stringent autoimmunity avoidance remained elusive. In this study, we systematically investigated how the complementarity of the crRNA 5'-tag and anti-tag (i.e., tag complementarity) could affect the interference activities (DNA cleavage activity and cOA synthesis activity) of Cmr-α, a type III-B system in Sulfolobus islandicus Rey15A. The results revealed an increasing suppression on both activities by increasing degrees of tag complementarity and a critical function of the 7th nucleotide of crRNA in avoiding autoimmunity. More importantly, mutagenesis of Cmr3α exerts either positive or negative effects on the cOA synthesis activity depending on the degrees of tag complementarity, suggesting that the subunit, coupling with the interaction between crRNA tag and anti-tag, function in facilitating immunity and avoiding autoimmunity in Type III-B systems.


Asunto(s)
Nucleótidos de Adenina/biosíntesis , Sistemas CRISPR-Cas , Oligorribonucleótidos/biosíntesis , Secuencia de Aminoácidos , División del ADN , Sulfolobus/genética , Sulfolobus/metabolismo
4.
RNA ; 25(8): 948-962, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31076459

RESUMEN

CRISPR-Cas systems are a class of adaptive immune systems in prokaryotes that use small CRISPR RNAs (crRNAs) in conjunction with CRISPR-associated (Cas) nucleases to recognize and degrade foreign nucleic acids. Recent studies have revealed that Type III CRISPR-Cas systems synthesize second messenger molecules previously unknown to exist in prokaryotes, cyclic oligoadenylates (cOA). These molecules activate the Csm6 nuclease to promote RNA degradation and may also coordinate additional cellular responses to foreign nucleic acids. Although cOA production has been reconstituted and characterized for a few bacterial and archaeal Type III systems, cOA generation and its regulation have not been explored for the Staphylococcus epidermidis Type III-A CRISPR-Cas system, a longstanding model for CRISPR-Cas function. Here, we demonstrate that this system performs Mg2+-dependent synthesis of 3-6 nt cOA. We show that activation of cOA synthesis is perturbed by single nucleotide mismatches between the crRNA and target RNA at discrete positions, and that synthesis is antagonized by Csm3-mediated target RNA cleavage. Altogether, our results establish the requirements for cOA production in a model Type III CRISPR-Cas system and suggest a natural mechanism to dampen immunity once the foreign RNA is destroyed.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Oligorribonucleótidos/metabolismo , ARN Bacteriano/metabolismo , Staphylococcus epidermidis/metabolismo , Nucleótidos de Adenina/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Magnesio/metabolismo , Modelos Moleculares , Oligorribonucleótidos/biosíntesis , Polimorfismo de Nucleótido Simple , Sistemas de Mensajero Secundario
5.
Nucleic Acids Res ; 46(19): 10319-10330, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239876

RESUMEN

Recently, Type III-A CRISPR-Cas systems were found to catalyze the synthesis of cyclic oligoadenylates (cOAs), a second messenger that specifically activates Csm6, a Cas accessory RNase and confers antiviral defense in bacteria. To test if III-B CRISPR-Cas systems could mediate a similar CRISPR signaling pathway, the Sulfolobus islandicus Cmr-α ribonucleoprotein complex (Cmr-α-RNP) was purified from the native host and tested for cOA synthesis. We found that the system showed a robust production of cyclic tetra-adenylate (c-A4), and that c-A4 functions as a second messenger to activate the III-B-associated RNase Csx1 by binding to its CRISPR-associated Rossmann Fold domain. Investigation of the kinetics of cOA synthesis revealed that Cmr-α-RNP displayed positively cooperative binding to the adenosine triphosphate (ATP) substrate. Furthermore, mutagenesis of conserved domains in Cmr2α confirmed that, while Palm 2 hosts the active site of cOA synthesis, Palm 1 domain serves as the primary site in the enzyme-substrate interaction. Together, our data suggest that the two Palm domains cooperatively interact with ATP molecules to achieve a robust cOA synthesis by the III-B CRISPR-Cas system.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de la Membrana/metabolismo , Oligorribonucleótidos/metabolismo , Sistemas de Mensajero Secundario , Nucleótidos de Adenina/biosíntesis , Adenosina Trifosfato/metabolismo , Catálisis , Proteínas de la Membrana/química , Oligorribonucleótidos/biosíntesis , Unión Proteica , Ribonucleasas/química , Ribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo , Transducción de Señal , Especificidad por Sustrato , Sulfolobus
6.
Elife ; 72018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29963983

RESUMEN

The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.


Asunto(s)
Nucleótidos de Adenina/biosíntesis , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/genética , Oligorribonucleótidos/biosíntesis , Virus ARN/genética , ARN Viral/genética , Sulfolobus solfataricus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Oligonucleótidos Fosforotioatos/farmacología , División del ARN , Virus ARN/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sulfolobus solfataricus/efectos de los fármacos , Sulfolobus solfataricus/inmunología , Sulfolobus solfataricus/metabolismo , Factores de Tiempo
7.
ACS Chem Biol ; 13(2): 309-312, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28937734

RESUMEN

The signature component of type III CRISPR-Cas systems is the Cas10 protein that consists of two Palm domains homologous to those of DNA and RNA polymerases and nucleotide cyclases and an HD nuclease domain. However, until very recently, the activity of the Palm domains and their role in CRISPR function have not been experimentally established. Most of the type III CRISPR-Cas systems and some type I systems also encompass proteins containing the CARF (CRISPR-associated Rossmann fold) domain that has been predicted to regulate CRISPR functions via nucleotide binding, but its function in CRISPR-Cas remained obscure. Two independent recent studies show that the Palm domain of Cas10 catalyzes synthesis of oligoadenylates, which bind the CARF domain of the Csm6 protein and activate its RNase domain that cleaves foreign transcripts enabling interference by type III CRISPR-Cas. In one coup, these findings resolved two long-standing puzzles of CRISPR biology and reveal a new regulatory pathway that governs the CRISPR response. However, the full extent of this pathway, and especially the driving forces behind the evolution of this complex mechanism of CRISPR-Cas activation, remains to be uncovered.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiología , 2',5'-Oligoadenilato Sintetasa/química , Nucleótidos de Adenina/biosíntesis , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Oligorribonucleótidos/biosíntesis , Dominios Proteicos
8.
BMC Biochem ; 16: 15, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113370

RESUMEN

BACKGROUND: The 5'-triphosphorylated, 2'-5'-linked oligoadenylate polyribonucleotides (2-5As) are central to the interferon-induced antiviral 2-5A system. The 2-5As bind and activate the RNase L, an endoRNase degrading viral and cellular RNA leading to inhibition of viral replication. The 2-5A system is tightly controlled by synthesis and degradation of 2-5As. Whereas synthesis is mediated by the 2'-5' oligoadenylate synthetase family of enzymes, degradation seems to be orchestrated by multiple enzyme nucleases including phosphodiesterase 12, the ectonucleotide pyrophosphatase/phosphodiesterase 1 and the A-kinase anchoring protein 7. RESULTS: Here we present assay tools for identification and characterization of the enzymes regulating cellular 2-5A levels. A procedure is described for the production of 2'-5' oligoadenylates, which are then used as substrates for development and demonstration of enzyme assays measuring synthetase and nuclease activities, respectively. The synthetase assays produce only a single reaction product allowing for very precise kinetic assessment of the enzymes. We present an assay using dATP and the A(pA)3 tetramer core as substrates, which requires prior isolation of A(pA)3. A synthetase assay using either of the dNTPs individually together with NAD(+) as substrates is also presented. The nuclease reactions make use of the isolated 2'-5' oligoadenylates in producing a mixture of shorter reaction products, which are resolved by ion-exchange chromatography to determine the enzyme activities. A purified human 2'-5' oligoadenylate synthetase and a purified human phosphodiesterase 12 along with crude extracts expressing those proteins, are used to demonstrate the assays. CONCLUSIONS: This paper comprises an assay toolbox for identification and characterization of the synthetases and nucleases regulating cellular 2-5A levels. Assays are presented for both enzyme families. The assays can also be used to address a broader cellular role of the OAS enzymes, based on the multiple substrate specificity intrinsic to these proteins.


Asunto(s)
Nucleótidos de Adenina/biosíntesis , Nucleótidos de Adenina/metabolismo , Pruebas de Enzimas , Oligorribonucleótidos/biosíntesis , Oligorribonucleótidos/metabolismo , Polirribonucleótidos/biosíntesis , Polirribonucleótidos/metabolismo , 2',5'-Oligoadenilato Sintetasa/metabolismo , Exorribonucleasas/metabolismo , Células HeLa , Humanos , NAD/metabolismo , Especificidad por Sustrato
9.
Nature ; 498(7454): 380-4, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23722158

RESUMEN

Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.


Asunto(s)
Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Oligorribonucleótidos/metabolismo , Sistemas de Mensajero Secundario/fisiología , Adenosina Monofosfato/química , Animales , Biocatálisis , Línea Celular , GMP Cíclico/química , Ciclización , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Modelos Moleculares , Estructura Molecular , Nucleotidiltransferasas/genética , Oligorribonucleótidos/biosíntesis , Oligorribonucleótidos/química
10.
J Biol Chem ; 287(28): 23644-56, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22605336

RESUMEN

DNA primases catalyze the synthesis of oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Prokaryotic primases consist of a zinc-binding domain (ZBD) necessary for recognition of a specific template sequence and a catalytic RNA polymerase domain. Interactions of both domains with the DNA template and ribonucleotides are required for primer synthesis. Five tryptophan residues are dispersed in the primase of bacteriophage T7: Trp-42 in the ZBD and Trp-69, -97, -147, and -255 in the RNA polymerase domain. Previous studies showed that replacement of Trp-42 with alanine in the ZBD decreases primer synthesis, whereas substitution of non-aromatic residues for Trp-69 impairs both primer synthesis and delivery. However, the roles of tryptophan at position 97, 147, or 255 remain elusive. To investigate the essential roles of these residues, we replaced each tryptophan with the structurally similar tyrosine and examined the effect of this subtle alteration on primer synthesis. The substitution at position 42, 97, or 147 reduced primer synthesis, whereas substitution at position 69 or 255 did not. The functions of the tryptophans were further examined at each step of primer synthesis. Alteration of residue 42 disturbed the conformation of the ZBD and resulted in partial loss of the zinc ion, impairing binding to the ssDNA template. Replacement of Trp-97 with tyrosine reduced the binding affinity to NTP and the catalysis step. The replacement of Trp-147 with tyrosine also impaired the catalytic step. Therefore, Trp-42 is important in maintaining the conformation of the ZBD for template binding; Trp-97 contributes to NTP binding and the catalysis step; and Trp-147 maintains the catalysis step.


Asunto(s)
Bacteriófago T7/enzimología , ADN Primasa/metabolismo , Cartilla de ADN/biosíntesis , Triptófano/metabolismo , Proteínas Virales/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Alanina/genética , Alanina/metabolismo , Sustitución de Aminoácidos , Bacteriófago T7/genética , Sitios de Unión/genética , Biocatálisis , ADN Primasa/genética , Cartilla de ADN/genética , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Prueba de Complementación Genética , Cinética , Mutación , Oligorribonucleótidos/biosíntesis , Oligorribonucleótidos/genética , Unión Proteica , Resonancia por Plasmón de Superficie , Moldes Genéticos , Triptófano/genética , Tirosina/genética , Tirosina/metabolismo , Proteínas Virales/genética , Replicación Viral/genética , Zinc/metabolismo
11.
Nucleic Acids Res ; 39(21): 9422-32, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21852326

RESUMEN

The synthesis of a caged RNA phosphoramidite building block containing the oxidatively damaged base 5-hydroxycytidine (5-HOrC) has been accomplished. To determine the effect of this highly mutagenic lesion on complementary base recognition and coding properties, this building block was incorporated into a 12-mer oligoribonucleotide for T(m) and CD measurements and a 31-mer template strand for primer extension experiments with HIV-, AMV- and MMLV-reverse transcriptase (RT). In UV-melting experiments, we find an unusual biphasic transition with two distinct T(m)'s when 5-HOrC is paired against a DNA or RNA complement with the base guanine in opposing position. The higher T(m) closely matches that of a C-G base pair while the lower is close to that of a C-A mismatch. In single nucleotide extension reactions, we find substantial misincorporation of dAMP and to a lesser extent dTMP, with dAMP almost equaling that of the parent dGMP in the case of HIV-RT. A working hypothesis for the biphasic melting transition does not invoke tautomeric variability of 5-HOrC but rather local structural perturbations of the base pair at low temperature induced by interactions of the 5-HO group with the phosphate backbone. The properties of this RNA damage is discussed in the context of its putative biological function.


Asunto(s)
Citosina/análogos & derivados , Oligorribonucleótidos/química , ADN Polimerasa Dirigida por ARN/metabolismo , Emparejamiento Base , Citosina/química , Desnaturalización de Ácido Nucleico , Oligorribonucleótidos/biosíntesis , Compuestos Organofosforados/química , Oxidación-Reducción
12.
Nucleic Acids Res ; 39(5): e31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21148150

RESUMEN

Oligoribonucleotides containing a 5'-phosphorothiolate linkage have provided effective tools to study the mechanisms of RNA catalysis, allowing resolution of kinetic ambiguity associated with mechanistic dissection and providing a strategy to establish linkage between catalysis and specific functional groups. However, challenges associated with their synthesis have limited wider application of these modified nucleic acids. Here, we describe a general semisynthetic strategy to obtain these oligoribonucleotides reliably and relatively efficiently. The approach begins with the chemical synthesis of an RNA dinucleotide containing the 5'-phosphorothiolate linkage, with the adjacent 2'-hydroxyl group protected as the photolabile 2'-O-o-nitrobenzyl or 2'-O-α-methyl-o-nitrobenzyl derivative. Enzymatic ligation of the 2'-protected dinucleotide to transcribed or chemically synthesized 5' and 3' flanking RNAs yields the full-length oligoribonucleotide. The photolabile protecting group increases the chemical stability of these highly activated oligoribonucleotides during synthesis and long-term storage but is easily removed with UV irradiation under neutral conditions, allowing immediate use of the modified RNA in biochemical experiments.


Asunto(s)
Oligorribonucleótidos/química , Tionucleótidos/química , Oligorribonucleótidos/biosíntesis , Oligorribonucleótidos/síntesis química , Organofosfonatos/química , ARN Ligasa (ATP)/metabolismo , ARN Catalítico/metabolismo , Tionucleótidos/biosíntesis , Tionucleótidos/síntesis química
13.
Virology ; 409(2): 262-70, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21056894

RESUMEN

Resistance to flavivirus-induced disease in mice is conferred by the autosomal gene Flv, identified as 2'-5' oligoadenylate synthetase 1b (Oas1b). Resistant mice express a full-length Oas1b protein while susceptible mice express the truncated Oas1btr. In this study, Oas1b was shown to be an inactive synthetase. Although the Oas/RNase L pathway was previously shown to have an antiviral role during flavivirus infections, Oas1b protein inhibited Oas1a in vitro synthetase activity in a dose-dependent manner and reduced 2-5A production in vivo in response to poly(I:C). These findings suggest that negative regulation of 2-5A by inactive Oas1 proteins may fine tune the RNase L response that if not tightly controlled could cause significant damage in cells. The results also indicate that flavivirus resistance conferred by Oas1b is not mediated by 2-5A. Instead, Oas1b inhibits flavivirus replication by an alternative mechanism that overrides the proviral effect of reducing 2-5A accumulation and RNase L activation.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Nucleótidos de Adenina/biosíntesis , Flavivirus/crecimiento & desarrollo , Oligorribonucleótidos/biosíntesis , Animales , Endorribonucleasas/biosíntesis , Ratones
14.
Nucleic Acids Res ; 38(13): 4372-83, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20350931

RESUMEN

DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5'-TGGTC-3') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain.


Asunto(s)
ADN Primasa/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Adenosina Trifosfato/metabolismo , Bacteriófago T7/enzimología , Secuencia de Bases , Sitios de Unión , Citidina Trifosfato/metabolismo , ADN Primasa/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Oligorribonucleótidos/biosíntesis , Unión Proteica , Estructura Terciaria de Proteína , Moldes Genéticos
15.
Biochemistry ; 48(8): 1763-73, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19206208

RESUMEN

Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.


Asunto(s)
Bacteriófago T7/enzimología , ADN Primasa/química , ADN Primasa/metabolismo , ADN Viral/metabolismo , Zinc/metabolismo , Sustitución de Aminoácidos/efectos de los fármacos , Sustitución de Aminoácidos/genética , Bacteriófago T7/efectos de los fármacos , Biocatálisis/efectos de los fármacos , Cloruros/farmacología , Cristalografía por Rayos X , Cisteína/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Histidina/metabolismo , Ligandos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oligorribonucleótidos/biosíntesis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Moldes Genéticos , Espectroscopía de Absorción de Rayos X , Compuestos de Zinc/farmacología
16.
Med Sci (Paris) ; 24(10): 859-64, 2008 Oct.
Artículo en Francés | MEDLINE | ID: mdl-18950583

RESUMEN

The 2-5A/RNase L pathway is one of the first cellular defences against viruses. RNase L is an unusual endoribonuclease which activity is strictly regulated by its binding to a small oligonucleotide, 2-5A. 2-5A itself is very unusual, consisting of a series of 5'- triphosphorylated oligoadenylates with 2'-5' bonds. But RNase L activity is not limited to viral RNA cleavage. RNase L plays a central role in innate immunity, apoptosis, cell growth and differentiation by regulating cellular RNA stability and expression. Default in its activity leads to increased susceptibility to virus infections and to tumor development. RNase L gene has been identified as HPC1 (Hereditary Prostate Cancer 1) gene. Study of RNase L variant R462Q in etiology of prostate cancer has led to the identification of the novel human retrovirus closely related to xenotropic murine leukemia viruses (MuLVs) and named XMRV.


Asunto(s)
Nucleótidos de Adenina/fisiología , Endorribonucleasas/fisiología , Inmunidad Innata/fisiología , 2',5'-Oligoadenilato Sintetasa/metabolismo , Nucleótidos de Adenina/biosíntesis , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Animales , Apoptosis/fisiología , Dimerización , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/deficiencia , Endorribonucleasas/genética , Activación Enzimática , Humanos , Interferón-alfa/fisiología , Interferón beta/fisiología , Masculino , Mamíferos/inmunología , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Oligorribonucleótidos/biosíntesis , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Virosis/enzimología , Virosis/inmunología
17.
Nucleic Acids Res ; 35(4): e26, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17259217

RESUMEN

Many eukaryotic and viral mRNAs, in which the first transcribed nucleotide is an adenosine, are decorated with a cap-1 structure, (7Me)G5'-ppp5'-A(2'OMe). The positive-sense RNA genomes of flaviviruses (Dengue, West Nile virus) for example show strict conservation of the adenosine. We set out to produce GpppA- and (7Me)GpppA-capped RNA oligonucleotides for non-radioactive mRNA cap methyltransferase assays and, in perspective, for studies of enzyme specificity in relation to substrate length as well as for co-crystallization studies. This study reports the use of a bacteriophage T7 DNA primase fragment to synthesize GpppAC(n) and (7Me)GpppAC(n) (1 < or = n < or = 9) in a one-step enzymatic reaction, followed by direct on-line cleaning HPLC purification. Optimization studies show that yields could be modulated by DNA template, enzyme and substrate concentration adjustments and longer reaction times. Large-scale synthesis rendered pure (in average 99%) products (1 < or = n < or = 7) in quantities of up to 100 nmol starting from 200 nmol cap analog. The capped RNA oligonucleotides were efficient substrates of Dengue virus (nucleoside-2'-O-)-methyltransferase, and human (guanine-N7)-methyltransferase. Methyltransfer reactions were monitored by a non-radioactive, quantitative HPLC assay. Additionally, the produced capped RNAs may serve in biochemical, inhibition and structural studies involving a variety of eukaryotic and viral methyltransferases and guanylyltransferases.


Asunto(s)
Metiltransferasas/metabolismo , Oligorribonucleótidos/biosíntesis , Análogos de Caperuza de ARN/biosíntesis , Adenosina/metabolismo , Cromatografía Líquida de Alta Presión , Citidina Trifosfato/metabolismo , ADN Primasa , Guanina/metabolismo , Humanos , Oligorribonucleótidos/aislamiento & purificación , Oligorribonucleótidos/metabolismo , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/aislamiento & purificación , Moldes Genéticos
18.
J Biol Chem ; 281(31): 22248-22260, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16720577

RESUMEN

Although Mcm10p is a conserved essential component in eukaryotes required for both the initiation and elongation of DNA chains, its biochemical properties are unknown. Here, we report that the Schizosaccharomyces pombe fission yeast Mcm10 protein contains primase activity. Primases are enzymes that synthesize RNA primers on single-stranded DNA templates that are extended by DNA polymerases. In keeping with this property, Mcm10p supported oligoribonucleotide synthesis of short RNA primers (preferentially initiating synthesis on a dT template) that were extended with dATP by Escherichia coli DNA polymerase I. The C terminus of Mcm10p synthesized RNA, but less efficiently than the full-length protein at low rNTP levels. Mcm10p homologs contain a C-terminal motif found in proteins that polymerize nucleotides. A point mutant within this motif of S. pombe Mcm10p was defective in primer synthesis in vitro, and this mutant failed to support growth in vivo, suggesting that the primase activity of Mcm10p may be essential for cell viability.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , ADN Primasa/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cinética , Proteínas de Mantenimiento de Minicromosoma , Nucleótidos/metabolismo , Oligorribonucleótidos/biosíntesis , Fragmentos de Péptidos/metabolismo , ARN/biosíntesis , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Moldes Genéticos
19.
Mol Cell ; 20(3): 391-401, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16285921

RESUMEN

The coordination of primase function within the replisome is an essential but poorly understood feature of lagging strand synthesis. By using crystallography and small-angle X-ray scattering (SAXS), we show that functional elements of bacterial primase transition between two dominant conformations: an extended form that uncouples a regulatory domain from its associated RNA polymerase core and a compact state that sequesters the regulatory region from the site of primer synthesis. FRET studies and priming assays reveal that the regulatory domain of one primase subunit productively associates with nucleic acid that is bound to the polymerase domain of a second protomer in trans. This intersubunit interaction allows primase to select initiation sites on template DNA and implicates the regulatory domain as a "molecular brake" that restricts primer length. Our data suggest that the replisome may cooperatively use multiple primases and this conformational switch to control initiation frequency, processivity, and ultimately, Okazaki fragment synthesis.


Asunto(s)
Bacteriófago T7/enzimología , ADN Primasa/química , Replicación del ADN , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Oligorribonucleótidos/química , Proteínas Virales/química , Cristalografía por Rayos X/métodos , ADN/química , ADN/metabolismo , ADN Primasa/metabolismo , Replicación del ADN/fisiología , Proteínas de Escherichia coli/metabolismo , Oligorribonucleótidos/biosíntesis , Estructura Terciaria de Proteína , Proteínas Virales/metabolismo
20.
J Biol Chem ; 280(29): 26984-91, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-15917241

RESUMEN

DNA primases catalyze the synthesis of oligoribonucleotides to initiate lagging strand DNA synthesis during DNA replication. Like other prokaryotic homologs, the primase domain of the gene 4 helicase-primase of bacteriophage T7 contains a zinc motif and a catalytic core. Upon recognition of the sequence, 5'-GTC-3' by the zinc motif, the catalytic site condenses the cognate nucleotides to produce a primer. The TOPRIM domain in the catalytic site contains several charged residues presumably involved in catalysis. Each of eight acidic residues in this region was replaced with alanine, and the properties of the altered primases were examined. Six of the eight residues (Glu-157, Glu-159, Asp-161, Asp-207, Asp-209, and Asp-237) are essential in that altered gene 4 proteins containing these mutations cannot complement T7 phage lacking gene 4 for T7 growth. These six altered gene 4 proteins can neither synthesize primers de novo nor extend an oligoribonucleotide. Despite the inability to catalyze phosphodiester bond formation, the altered proteins recognize the sequence 5'-GTC-3' in the template and deliver preformed primer to T7 DNA polymerase. The alterations in the TOPRIM domain result in the loss of binding affinity for ATP as measured by surface plasmon resonance assay together with ATP-agarose affinity chromatography.


Asunto(s)
Aminoácidos Acídicos , ADN Primasa/química , Nucleótidos/metabolismo , Sustitución de Aminoácidos , Bacteriófago T7/enzimología , Secuencia de Bases , Sitios de Unión , Cromatografía de Afinidad , ADN Primasa/metabolismo , Oligorribonucleótidos/biosíntesis , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA