Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17791, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090156

RESUMEN

The generic term "Gill disease" refers to a wide range of disorders that affect the gills and severely impact salmonid aquaculture systems worldwide. In rainbow trout freshwater aquaculture, various etiological agents causing gill diseases have been described, particularly Flavobacterium and Amoeba species, but research studies suggest a more complex and multifactorial aetiology. Here, a cohort of rainbow trout affected by gill disease is monitored both through standard laboratory techniques and 16S rRNA Next-Generation Sequencing (NGS) analysis during a natural disease outbreak and subsequent antibiotic treatment with Oxytetracycline. NGS results show a clear clustering of the samples between pre- and post-treatment based on the microbial community of the gills. Interestingly, the three main pathogenic bacteria species in rainbow trout (Yersinia ruckeri, Flavobacterium psychrophilum, and Flavobacterium branchiophilum) appear to be weak descriptors of the diversity between pre-treatment and post-treatment groups. In this study, the dynamics of the gill microbiome during the outbreak and subsequent treatment are far more complex than previously reported in the literature, and environmental factors seem of the utmost importance in determining gill disease. These findings present a potential novel perspective on the diagnosis and management of gill diseases, showing the limitations of conventional laboratory methodologies in elucidating the complexity of this disease in rainbow trout. To the authors' knowledge, this work is the first to describe the microbiome of rainbow trout gills during a natural outbreak and subsequent antibiotic treatment. The results of this study suggest that NGS can play a critical role in the analysis and comprehension of gill pathology. Using NGS in future research is highly recommended to gain deeper insights into such diseases correlating gill's microbiome with other possible cofactors and establish strong prevention guidelines.


Asunto(s)
Acuicultura , Brotes de Enfermedades , Enfermedades de los Peces , Flavobacterium , Branquias , Microbiota , Oncorhynchus mykiss , ARN Ribosómico 16S , Animales , Oncorhynchus mykiss/microbiología , Branquias/microbiología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/epidemiología , Flavobacterium/genética , Flavobacterium/aislamiento & purificación , Flavobacterium/patogenicidad , Brotes de Enfermedades/veterinaria , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Yersinia ruckeri/genética , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/epidemiología , Oxitetraciclina/uso terapéutico , Oxitetraciclina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
2.
Glycobiology ; 34(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39107988

RESUMEN

Infections pose a challenge for the fast growing aquaculture sector. Glycosphingolipids are cell membrane components that pathogens utilize for attachment to the host to initiate infection. Here, we characterized rainbow trout glycosphingolipids from five mucosal tissues using mass spectrometry and nuclear magnetic resonance and investigated binding of radiolabeled Aeromonas salmonicida to the glycosphingolipids on thin-layer chromatograms. 12 neutral and 14 acidic glycosphingolipids were identified. The glycosphingolipids isolated from the stomach and intestine were mainly neutral, whereas glycosphingolipids isolated from the skin, gills and pyloric caeca were largely acidic. Many of the acidic structures were poly-sialylated with shorter glycan structures in the skin compared to the other tissues. The sialic acids found were Neu5Ac and Neu5Gc. Most of the glycosphingolipids had isoglobo and ganglio core chains, or a combination of these. The epitopes on the rainbow trout glycosphingolipid glycans differed between epithelial sites leading to differences in pathogen binding. A major terminal epitope was fucose, that occurred attached to GalNAc in a α1-3 linkage but also in the form of HexNAc-(Fuc-)HexNAc-R. A. salmonicida were shown to bind to neutral glycosphingolipids from the gill and intestine. This study is the first to do a comprehensive investigation of the rainbow trout glycosphingolipids and analyze binding of A. salmonicida to glycosphingolipids. The structural information paves the way for identification of ways of interfering in pathogen colonization processes to protect against infections in aquaculture and contributes towards understanding A. salmonicida infection mechanisms.


Asunto(s)
Aeromonas salmonicida , Glicoesfingolípidos , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Oncorhynchus mykiss/metabolismo , Aeromonas salmonicida/metabolismo , Aeromonas salmonicida/química , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Membrana Mucosa/microbiología , Membrana Mucosa/metabolismo
3.
Sci Rep ; 14(1): 16802, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039114

RESUMEN

Recirculating aquaculture systems (RAS) have become more attractive due to reduced water consumption and effluent discharge. However, intensification of production increases the risk of introducing pathogens at farming sites. The emergence of uncultivable pathogens and RAS pathobiome diversity shifts the traditional disease paradigm from "one pathogen, one disease" to complex multiple-pathogen disease cases. Piscine orthoreovirus genotype 3 (PRV-3) is an excellent example, as it is capable of inducing anemia and heart pathology resembling heart and skeletal muscle inflammation under experimental conditions, and is associated with increased mortality in association with other pathogens in the field. The aim of this study was to develop a method for detection of multiple pathogens and putative pathogens, as co-infections are common in aquaculture. To do this, in the pilot study, we mapped the pathobiome of RAS-farmed rainbow trout (Oncorhynchus mykiss) (commercial RAS, farm A) using both standard diagnostic methods and metabarcording (16S rRNA) to investigate the gill microbiome. During this study, we observed infections with multiple pathogens, and detected two putative gill pathogens Candidatus Branchiomonas cysticola and Candidatus Piscichlamydia salmonis, both of which have been linked with complex gill disease in Atlantic salmon (Salmo salar). Based on the pilot study, we developed and tested a high throughput qPCR (HT-qPCR) chip targeting 22 viral and bacterial pathogens and putative pathogens, followed by a surveillance of a fish cohort in a commercial RAS farm during production (farm B). Co-infection with PRV-3 and Ca. B. cysticola combined with stress inducing management practices may explain the severe disease outbreak observed (37% mortality). The time course study sets the base for a future screening scheme for disease prediction and addresses limitations of the method when testing environmental DNA/RNA.


Asunto(s)
Acuicultura , Coinfección , Enfermedades de los Peces , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/virología , Oncorhynchus mykiss/microbiología , Acuicultura/métodos , Coinfección/microbiología , Coinfección/veterinaria , Coinfección/virología , Enfermedades de los Peces/virología , Enfermedades de los Peces/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Branquias/virología , Branquias/microbiología , Microbiota/genética
4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38851245

RESUMEN

Short-term adaptation of the microbiota could promote nutrient degradation and the host health. While numerous studies are currently undertaking feeding trials using sustainable diets for the aquaculture industry, the extent to which the microbiota adapts to these novel diets is poorly described. The incorporation of carbohydrates (CHO) within a 100% plant-based diet could offer a novel, cost-effective energy source that is readily available, potentially replacing the protein component in the diets. In this study, we investigated the short-term (3 weeks) effects of a high CHO, 100% plant-based diet on the mucosal and digesta associated microbiota diversity and composition, as well as several metabolic parameters in rainbow trout. We highlighted that the mucosa is dominated by Mycoplasma (44.86%). While the diets did not have significant effects on the main phyla (Proteobacteria, Firmicutes, and Actinobacteria), after 3 weeks, a lower abundance of Bacillus genus, and higher abundances of four lactic-acid bacteria were demonstrated in digesta. In addition, no post-prandial hyperglycemia was observed with high carbohydrate intake. These results provide evidence for the rapid adaptation of the gut microbiota and host metabolism to high CHO in combination with 100% plant ingredients in rainbow trout.


Asunto(s)
Alimentación Animal , Microbioma Gastrointestinal , Oncorhynchus mykiss , Almidón , Animales , Oncorhynchus mykiss/microbiología , Alimentación Animal/análisis , Almidón/metabolismo , Dieta/veterinaria , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Adaptación Fisiológica , Dieta a Base de Plantas
5.
Curr Protoc ; 4(6): e1069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38865207

RESUMEN

Microbiome sequencing is at the forefront of health management development, and as such, it is becoming of great interest to monitor the microbiome in the aquaculture industry as well. Oxford Nanopore Technologies (ONT) platforms are gaining popularity to study microbial communities, enabling faster sequencing, extended read length, and therefore, improved taxonomic resolution. Despite this, there is a lack of clear guidelines to perform a metabarcoding study, especially when dealing with samples from non-mammalian species, such as aquaculture-related samples. In this article, we provide general guidelines for sampling, nucleic acid extraction, and ONT-based library preparation for both environmental (water, sediment) and host-associated (gill or skin mucus, skin, gut content, or gut mucosa) microbiome analysis. Our procedures focus specifically on rainbow trout (Oncorhynchus mykiss) reared in experimental facilities. However, these protocols can also be transferred to alternative types of samples, such as environmental DNA (eDNA) monitoring from alternative water sources, or to different fish species. The additional challenge posed by the low biomass and limited bacterial diversity inherent in fish-associated microbiomes is addressed through the implementation of troubleshooting solutions. Furthermore, we describe a bioinformatic pipeline starting from raw reads and leading to taxonomic abundance tables using currently available tools and software. Finally, we provide a set of specific guidelines and considerations related to the strategic planning of a microbiome study within the context of aquaculture. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Environmental sample collection Basic Protocol 2: Host-associated sample collection Alternate Protocol: Host-associated sample collection: Alternative sample types Basic Protocol 3: Sample pre-treatment and nucleic acid extraction Basic Protocol 4: Quality control and preparation for 16S rRNA gene sequencing Support Protocol 1: Assessment of inhibition by quantitative PCR Support Protocol 2: Bioinformatic analysis from raw files to taxonomic abundance tables.


Asunto(s)
Acuicultura , Microbiota , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Microbiota/genética , Nanoporos
6.
Aquat Toxicol ; 272: 106981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843740

RESUMEN

The increasing release of engineered nanoparticles (ENPs) in aquatic ecosystems stresses the need for stringent investigations of nanoparticle mixture toxicity towards aquatic organisms. Here, the individual and combined immunotoxicity of two of the most consumed ENPs, the ZnO and the TiO2 ones, was investigated on rainbow trout juveniles (Oncorhynchus mykiss). Fish were exposed to environmentally realistic concentrations (21 and 210 µg L-1 for the ZnO and 210 µg L-1 for the TiO2) for 28 days, and then challenged with the pathogenic bacterium, Aeromonas salmonicida achromogenes. Antioxidant and innate immune markers were assessed before and after the bacterial infection. None of the experimental conditions affected the basal activity of the studied innate immune markers and the redox balance. However, following the bacterial infection, the expression of genes coding for pro and anti-inflammatory cytokines (il1ß and il10), as well as innate immune compounds (mpo) were significantly reduced in fish exposed to the mixture. Conversely, exposure to ZnO NPs alone seemed to stimulate the immune response by enhancing the expression of the IgM and c3 genes for instance. Overall, our results suggest that even though the tested ENPs at their environmental concentration do not strongly affect basal immune functions, their mixture may alter the development of the immune response when the organism is exposed to a pathogen by interfering with the inflammatory response.


Asunto(s)
Aeromonas salmonicida , Infecciones por Bacterias Gramnegativas , Oncorhynchus mykiss , Titanio , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Aeromonas salmonicida/efectos de los fármacos , Óxido de Zinc/toxicidad , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/microbiología , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Inmunidad Innata/efectos de los fármacos , Nanopartículas/toxicidad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Nanopartículas del Metal/toxicidad , Citocinas/genética , Citocinas/metabolismo
7.
Vet Res ; 55(1): 75, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867318

RESUMEN

Flavobacterium psychrophilum, the causative agent of bacterial cold-water disease, is a devastating, worldwide distributed, fish pathogen causing significant economic loss in inland fish farms. Previous epidemiological studies showed that prevalent clonal complexes (CC) differ in fish species affected with disease such as rainbow trout, coho salmon and ayu, indicating significant associations between particular F. psychrophilum genotypes and host species. Yet, whether the population structure is driven by the trade of fish and eggs or by host-specific pathogenicity is uncertain. Notably, all F. psychrophilum isolates retrieved from ayu belong to Type-3 O antigen (O-Ag) whereas only very few strains retrieved from other fish species possess this O-Ag, suggesting a role in outbreaks affecting ayu. Thus, we investigated the links between genotype and pathogenicity by conducting comparative bath infection challenges in two fish hosts, ayu and rainbow trout, for a collection of isolates representing different MLST genotypes and O-Ag. Highly virulent strains in one host species exhibited low to no virulence in the other. F. psychrophilum strains associated with ayu and possessing Type-3 O-Ag demonstrated significant variability in pathogenicity in ayu, ranging from avirulent to highly virulent. Strikingly, F. psychrophilum strains retrieved from rainbow trout and possessing the Type-3 O-Ag were virulent for rainbow trout but not for ayu, indicating that Type-3 O-Ag alone is not sufficient for pathogenicity in ayu, nor does it prevent pathogenicity in rainbow trout. This study revealed that the association between a particular CC and host species partly depends on the pathogen's adaptation to specific host species.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Flavobacterium , Especificidad del Huésped , Oncorhynchus mykiss , Osmeriformes , Animales , Flavobacterium/patogenicidad , Flavobacterium/fisiología , Flavobacterium/genética , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Oncorhynchus mykiss/microbiología , Osmeriformes/microbiología , Virulencia , Genotipo
8.
Front Immunol ; 15: 1394501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774883

RESUMEN

Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.


Asunto(s)
Bacillus subtilis , Vesículas Extracelulares , Leucocitos , Oncorhynchus mykiss , Bazo , Animales , Bacillus subtilis/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/microbiología , Bazo/inmunología , Bazo/citología , Leucocitos/inmunología , Leucocitos/metabolismo , Probióticos/farmacología , Línea Celular , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inmunomodulación , Intestinos/inmunología
9.
J Fish Dis ; 47(9): e13965, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801516

RESUMEN

The diversity of Tenacibaculum maritimum in Chile remains poorly understood, particularly in terms of antigenic and genetic diversity. This information is crucial for the future development of a vaccine against tenacibaculosis and would increase understanding of this important fish pathogen. With this aim, the biochemical, antigenic, and genetic characteristics were analysed for 14 T. maritimum isolates, recovered from diseased Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) farmed in Chile between 1998 and 2022. Biochemical analysis showed a homogeneity among all the Chilean T. maritimum isolates and all four other strains included for comparison purposes. Serological characterization using dot-blot assaying revealed antigenic heterogeneity with the use of unabsorbed antisera. The majority of isolates showed cross-reactions, identifying three main serological patterns. When the PCR-based serotyping scheme was performed, the existence of antigenic heterogeneity was confirmed. Four Atlantic salmon isolates were 4-0; and most isolates, including the rainbow trout isolate, were 3-1 (n = 9). A turbot (Scophthalmus maximus) isolate was 1-0. Using an existing Multilocus Sequence Typing system, two newly identified sequence types (ST193 and ST198) in the database were detected. ST193 encompassed nine isolates obtained from Atlantic salmon and rainbow trout, while ST198 regrouped four isolates, all retrieved from diseased Atlantic salmon in 2022. These findings highlight significant antigenic and genetic diversity among the Chilean isolates. This information is useful for epizootiology and the selection of suitable candidate strain(s) for vaccine development against tenacibaculosis caused by T. maritimum in Chilean salmon farming.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Salmo salar , Tenacibaculum , Animales , Enfermedades de los Peces/microbiología , Tenacibaculum/genética , Tenacibaculum/aislamiento & purificación , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Chile/epidemiología , Oncorhynchus mykiss/microbiología , Variación Genética , Serotipificación/veterinaria , Heterogeneidad Genética , Acuicultura
10.
PeerJ ; 12: e17194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560471

RESUMEN

Disease outbreaks negatively affect fish production. Antimicrobial agents used in the treatment of diseases become ineffective over time because of antibiotic resistance developed by bacteria distributed in the aquaculture environment. This study was conducted for 4 months (cold period) in a fish farm to detect the fish disease, cold water streptococcosis. In the study, four brood stock showing disease signs were detected. Bacteria isolates were obtained and identified as Vagococcus salmoninarum. Antimicrobial susceptibility of V. salmoninarum was tested and antibiotic resistance gene profiles of V. salmoninarum isolates were screened. The phylogenetic relation of the isolates with the previously reported strains was evaluated. Antibiotic resistance developed by pathogenic bacteria is distributed in the aquaculture environment. The transfer of resistance genes from one bacterium to another is very common. This situation causes the antimicrobial agents used in the treatment of diseases to become ineffective over time. The disc diffusion test showed that all four isolates developed resistance to 13 (FFC30, AX25, C30, E15, CF30, L2, OX1, S10, T30, CRO30, CC2, PT15 and TY15) of the evaluated antibiotics and were about to develop resistance to six others (AM 10, FM 300, CFP75, SXT25, APR15 and TE30). Furthermore, antibiotic resistance genes tetA, sul1, sul2, sul3, dhfr1, ereB and floR were detected in the isolated strain. Moreover, the phylogenetic analysis showed that isolated V. salmoninarum strain (ESN1) was closely related to the bacterial strains isolated from USA and Jura.


Asunto(s)
Antiinfecciosos , Cocos Grampositivos , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Filogenia , Enterococcaceae/genética , Antibacterianos/farmacología
11.
Sci Rep ; 14(1): 9174, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649495

RESUMEN

This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.


Asunto(s)
Conservación de Alimentos , Almacenamiento de Alimentos , Oncorhynchus mykiss , Ficocianina , Animales , Almacenamiento de Alimentos/métodos , Oncorhynchus mykiss/microbiología , Oncorhynchus mykiss/crecimiento & desarrollo , Conservación de Alimentos/métodos , Ficocianina/farmacología , Antioxidantes/farmacología , Gases em Plasma/farmacología , Alimentos Marinos , Embalaje de Alimentos/métodos
12.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 29-34, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678631

RESUMEN

We hypothesized that the combined effect of vacuum packaging and Juniperi fructus essential oil addition would increase shelf life. Six different treatments were tested. The effects of the different concentrations of J. fructus essential oil (0%, 0.3% and 0.6%) and packing method (non-vacuum and vacuum) on the fish (Oncorhynchus mykiss) fillets of stored 4±1 °C were investigated in terms of its microbiological (mesophilic aerobic bacteria and yeast-mold), chemical (pH,  total volatile alkaline nitrogen (TVB-N), thiobarbituric acid (TBA value)) and sensory quality. The results showed that J. fructus essential oil had a positive significant effect on quality parameters (p<0.05). In conclusion, based primarily on sensory, TVB-N and mesophilic bacteria data the shelf-life of fresh rainbow trout was 4 days (non-vacuum packaged), 13 days (vacuum packaged), 19 and 28 days treated with J. fructus oil (0.3 and 0.6%, v/w) under vacuum packaged, respectively. J. fructus essential oil application and vacuum packaging; extended the shelf life of fish fillets by an average of 15 days. The combined use of J. fructus essential oil and packaging techniques could form the basis for new studies.


Asunto(s)
Embalaje de Alimentos , Conservación de Alimentos , Almacenamiento de Alimentos , Juniperus , Aceites Volátiles , Oncorhynchus mykiss , Animales , Aceites Volátiles/farmacología , Vacio , Embalaje de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Oncorhynchus mykiss/microbiología , Juniperus/química , Conservación de Alimentos/métodos , Concentración de Iones de Hidrógeno
13.
Microbiol Spectr ; 12(6): e0054124, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687062

RESUMEN

Lactococcus garvieae is a fish pathogen that can cause diseases in humans and cows. Two genetically related species, Lactococcus formosensis and Lactococcus petauri, may be misidentified as L. garvieae. It is unclear if these species differ in host specificity and virulence genes. This study analyzed the genomes of 120 L. petauri, 53 L. formosensis, and 39 L. garvieae isolates from various sources. The genetic diversity and virulence gene content of these isolates were compared. The results showed that 77 isolates previously reported as L. garvieae were actually L. formosensis or L. petauri. The distribution of the three species varied across different collection sources, with L. petauri being predominant in human infections, human fecal sources, and rainbow trout, while L. formosensis was more common in bovine isolates. The genetic diversity of isolates within each species was high and similar. Using a genomic clustering method, L. petauri, L. formosensis, and L. garvieae were divided into 45, 22, and 13 clusters, respectively. Most rainbow trout and human isolates of L. petauri belonged to different clusters, while L. formosensis isolates from bovine and human sources were also segregated into separate clusters. In L. garvieae, most human isolates were grouped into three clusters that also included isolates from food or other sources. Non-metric multidimensional scaling ordination revealed the differential association of 15 virulence genes, including 14 adherence genes and a bile salt hydrolase gene, with bacterial species and certain collection sources. In conclusion, this work provides evidence of host specificity among the three species. IMPORTANCE: Lactococcus formosensis and Lactococcus petauri are two newly discovered bacteria, which are closely related to Lactococcus garvieae, a pathogen that affects farmed rainbow trout, as well as causes cow mastitis and human infections. It is unclear whether the three bacteria differ in their host preference and the presence of genes that contribute to the development of disease. This study shows that L. formosensis and L. petauri were commonly misidentified as L. garvieae. The three bacteria showed different distribution patterns across various sources. L. petauri was predominantly found in human infections and rainbow trout, while L. formosensis was more commonly detected in cow mastitis. Fifteen genes displayed a differential distribution among the three bacteria from certain sources, indicating a genetic basis for the observed host preference. This work indicates the importance of differentiating the three bacteria in diagnostic laboratories for surveillance and outbreak investigation purposes.


Asunto(s)
Variación Genética , Genoma Bacteriano , Especificidad del Huésped , Lactococcus , Animales , Lactococcus/genética , Lactococcus/clasificación , Lactococcus/aislamiento & purificación , Humanos , Bovinos , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/veterinaria , Factores de Virulencia/genética , Filogenia , Oncorhynchus mykiss/microbiología , Genómica , Virulencia/genética , Heces/microbiología
14.
Vet Med Sci ; 10(3): e1419, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38520701

RESUMEN

OBJECTIVE: Doxycycline (DO) has been used in fish for a long time, but there are some factors that have not yet been clarified regarding its pharmacokinetic (PK) and pharmacodynamic (PD) properties. Therefore, the aim of this study was to investigate the PK and PK/PD targets of DO after 20 mg/kg intravascular (IV), intramuscular (IM) and oral (OR) gavage administration in rainbow trout (Oncorhynchus mykiss). METHODS: Plasma samples were collected at specific time points and subsequently analysed by HPLC-ultraviolet. The PK/PD indices were calculated based on the MIC90 (Aeromonas hydrophila and Aeromonas sobria) values obtained for the respective bacteria and the PK parameters obtained for DO following both IM and OR administration. RESULTS: After IV administration, the elimination half-life (t1/2 ʎz), area under the concentration vs. time curve (AUC), apparent volume of distribution at steady-state and total body clearance of DO were 34.81 h, 723.82 h µg/mL, 1.24 L/kg and 0.03 L/kg/h, respectively. The t1/2λz of the DO was found to be 37.39 and 39.78 h after IM, and OR administration, respectively. The bioavailability was calculated 57.02% and 32.29%, respectively, after IM and OR administration. The MIC90 of DO against A. hydrophila and A. sobria was 4 µg/mL. The PK/PD integration showed that DO (20 mg/kg dose) for A. hydrophila and A. sobria with MIC90 ≤4 µg/mL achieved target AUC/MIC value after IM administration. CONCLUSIONS: These results suggest that when rainbow trout was treated with 20 mg/kg IV and IM administered DO, therapeutically effective concentrations were reached in the control of infections caused by A. hydrophila and A. sobria.


Asunto(s)
Doxiciclina , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/microbiología , Administración Oral , Disponibilidad Biológica
15.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38305097

RESUMEN

Eutrophication of aquatic ecosystems is associated with an increased risk of pathogen infection via increased pathogen growth and host exposure via increased pathogen doses. Here, we studied the effect of nutrients on the virulence of an opportunistic bacterial pathogen of fish, Flavobacterium columnare, in challenge experiments with rainbow trout fingerlings. We hypothesized that removing all nutrients by washing the bacteria would reduce virulence as compared to unwashed bacteria, but adding nutrients to the tank water would increase the virulence of the bacterium. Nutrient addition and increase in bacterial dose increased virulence for both unwashed and washed bacteria. For unwashed bacteria, the addition of nutrients reduced the survival probability of fish challenged with low bacterial doses more than for fish challenged with higher bacterial doses, suggesting activation of bacterial virulence factors. Washing and centrifugation reduced viable bacterial counts, and the addition of washed bacteria alone did not lead to fish mortality. However, a small addition of nutrient medium, 0.05% of the total water volume, added separately to the fish container, restored the virulence of the washed bacteria. Our results show that human-induced eutrophication could trigger epidemics of aquatic pathogens at the limits of their survival and affect their ecology and evolution by altering the dynamics between strains that differ in their growth characteristics.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Animales , Humanos , Virulencia , Ecosistema , Enfermedades de los Peces/microbiología , Flavobacterium , Oncorhynchus mykiss/microbiología , Agua , Nutrientes
16.
Environ Microbiol Rep ; 16(1): e13226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298071

RESUMEN

Flavobacterium plurextorum is a potential fish pathogen of interest, previously isolated from diseased rainbow trout (Oncorhynchus mykiss) and oomycete-infected chum salmon (Oncorhynchus keta) eggs. We report here the first complete genome sequence of F. plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish (Sebastes schlegelii). The genome of RSG-18 consists of a circular chromosome of 5,610,911 bp with a 33.57% GC content, containing 4858 protein-coding genes, 18 rRNAs, 63 tRNAs and 1 tmRNA. A comparative analysis was conducted on 11 Flavobacterium species previously reported as pathogens or isolated from diseased fish to confirm the potential pathogenicity of RSG-18. In the SEED classification, RSG-18 was found to have 36 genes categorized in 'Virulence, Disease and Defense'. Across all Flavobacterium species, a total of 16 antibiotic resistance genes and 61 putative virulence factors were identified. All species had at least one phage region and type I, III and IX secretion systems. In pan-genomic analysis, core genes consist of genes linked to phages, integrases and matrix-tolerated elements associated with pathology. The complete genome sequence of F. plurextorum RSG-18 will serve as a foundation for future research, enhancing our understanding of Flavobacterium pathogenicity in fish and contributing to the development of effective prevention strategies.


Asunto(s)
Bacteriófagos , Enfermedades de los Peces , Oncorhynchus mykiss , Perciformes , Animales , Flavobacterium/genética , Virulencia/genética , Factores de Virulencia/genética , Peces/microbiología , Enfermedades de los Peces/microbiología , Oncorhynchus mykiss/microbiología
17.
Environ Microbiol ; 26(2): e16581, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195078

RESUMEN

Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease, causes substantial economic losses in salmonid farms and hatcheries. Some multilocus sequence types (ST) of F. psychrophilum are more likely to be associated with fish farms and hatcheries, but it is unclear if these patterns of association represent genetic lineages that are more adapted to aquaculture environments. Towards elucidating the disease ecology of F. psychrophilum, the culturability of 10 distinct F. psychrophilum STs was evaluated for 13 weeks in three microcosms including sterilized well water, sterilized well water with commercial trout feed, or sterilized well water with raceway detritus. All STs remained culturable in each of the microcosms for at least 8 weeks, with bacterial concentrations often highest in the presence of raceway detritus. In addition, most (e.g., 90%) STs remained culturable for at least 13-weeks. Significant differences in log10 cfus were observed among STs, both within and between microcosms, suggesting potential variability in environmental persistence capacity among specific variants. Collectively, results highlight the ability of F. psychrophilum to not only persist for weeks under nutrient-limited conditions but also thrive in the presence of organic substrates common in fish farms and hatchery-rearing units.


Asunto(s)
Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Explotaciones Pesqueras , Oncorhynchus mykiss/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Enfermedades de los Peces/microbiología , Flavobacterium/genética , Agua
18.
Sci Rep ; 14(1): 2470, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291237

RESUMEN

Marine cyanobacteria present a significant potential source of new bioactive compounds with vast structural diversity and relevant antimicrobial and antioxidant activities. Phycobiliproteins (PBPs) like phycocyanin (PC), phycoerythrin (PE), and water-soluble cyanobacterial photosynthetic pigments, have exhibited strong pharmacological activities and been used as natural food additives. In this study, phycoerythrin (PE) isolated from a marine strain of cyanobacterium Nostoc sp. Ft salt, was applied for the first time as a natural antimicrobial as well as an antioxidant to increase the shelf life of fresh rainbow trout i.e., (Oncorhynchus mykiss) fillets. Fresh trout fillets were marinated in analytical grade PE (3.9 µg/mL) prepared in citric acid (4 mg/mL), and stored at 4 °C and 8 °C for 21 days. Microbiological analysis, antioxidant activity and organoleptic evaluation of both control and treated fish fillets were then statistically compared. The results demonstrated noticeable (P < 0.05) differences in the microbial counts, antioxidant activity, and organoleptic characteristic values between PE-treated and non-treated groups. In addition, we observed that treating fresh fish fillets with a PE solution leads to a significant increase in shelf life by at least 14 days. Consequently, PE could be an alternative to synthetic chemical additives since it does not contain the potentially dangerous residues of the synthetic chemical additives and is thus healthier to the consumers.


Asunto(s)
Nostoc , Oncorhynchus mykiss , Ficoeritrina , Animales , Antioxidantes/farmacología , Oncorhynchus mykiss/microbiología , Alimentos Marinos/análisis
19.
Int J Biol Macromol ; 259(Pt 2): 129258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218291

RESUMEN

Economic loss due to fish spoilage exceeds 25 billion euros every year. Accurate and real-time monitoring of the freshness of fish can effectively cut down economic loss and food wastage. In this study, a dual-functional hydrogel based on sodium alginate-co-pigment complex with volatile antibacterial and intelligent indication was prepared and characterized. The characterization results indicated that the sodium alginate-co-pigment complex successfully improved the stability and color development ability of blueberry anthocyanins and bilberry anthocyanins at different temperatures and pH. The double cross-linking network inside the hydrogel conferred it with excellent mechanical properties. During rainbow trout storage, the hydrogel indicated a color difference of 73.55 on the last day and successfully extended the shelf-life of rainbow trout by 2 days (4 °C). Additionally, four dual-channel monitoring models were constructed using machine learning. The validation error of the genetic algorithm back propagation model (GA-BP) was only 5.6e-3, indicating that GA-BP can accurately monitor the freshness of rainbow trout. The rainbow trout real-time monitoring platform built based on GA-BP model can monitor the freshness of rainbow trout in real time through the images uploaded by users. The results of this study have broad applicability in the food industry, environmental conservation, and economic sustainability.


Asunto(s)
Antocianinas , Oncorhynchus mykiss , Animales , Antocianinas/química , Polisacáridos , Oncorhynchus mykiss/microbiología , Alimentos Marinos/análisis , Embalaje de Alimentos/métodos , Alginatos , Aprendizaje Automático , Concentración de Iones de Hidrógeno
20.
Microbiol Spectr ; 12(2): e0360123, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38112454

RESUMEN

Flavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and is responsible for substantial losses in farm and hatchery-reared salmonids (Family Salmonidae). Although F. psychrophilum infects multiple economically important salmonids and is transmitted horizontally, the extent of knowledge regarding F. psychrophilum shedding rates and duration is limited to rainbow trout (Oncorhynchus mykiss). Concurrently, hundreds of F. psychrophilum sequence types (STs) have been described using multilocus sequence typing (MLST), and evidence suggests that some variants have distinct phenotypes, including differences in host associations. Whether shedding dynamics differ among F. psychrophilum variants and/or salmonids remains unknown. Thus, three F. psychrophilum isolates (e.g., US19, US62, and US87) in three MLST STs (e.g., ST13, ST277, and ST275) with apparent host associations for coho salmon (O. kisutch), Atlantic salmon (Salmo salar), or rainbow trout were intramuscularly injected into each respective fish species. Shedding rates of live and dead fish were determined by quantifying F. psychrophilum loads in water via quantitative PCR. Both live and dead Atlantic and coho salmon shed F. psychrophilum, as did live and dead rainbow trout. Regardless of salmonid species, dead fish shed F. psychrophilum at higher rates (e.g., up to ~108-1010 cells/fish/hour) compared to live fish (up to ~107-109 cells/fish/hour) and for a longer duration (5-35 days vs 98 days); however, shedding dynamics varied by F. psychrophilum variant and/or host species, a matter that may complicate BCWD management. Findings herein expand knowledge on F. psychrophilum shedding dynamics across multiple salmonid species and can be used to inform future BCWD management strategies.IMPORTANCEFlavobacterium psychrophilum causes bacterial coldwater disease (BCWD) and rainbow trout fry syndrome, both of which cause substantial losses in farmed and hatchery-reared salmon and trout populations worldwide. This study provides insight into F. psychrophilum shedding dynamics in rainbow trout (Oncorhynchus mykiss) and, for the first time, coho salmon (O. kisutch) and Atlantic salmon (Salmo salar). Findings revealed that live and dead fish of all fish species shed the bacterium. However, dead fish shed F. psychrophilum at higher rates than living fish, emphasizing the importance of removing dead fish in farms and hatcheries. Furthermore, shedding dynamics may differ according to F. psychrophilum genetic variant and/or fish species, a matter that may complicate BCWD management. Overall, study results provide deeper insight into F. psychrophilum shedding dynamics and will guide future BCWD management strategies.


Asunto(s)
Infecciones Bacterianas , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus kisutch , Oncorhynchus mykiss , Animales , Tipificación de Secuencias Multilocus , Infecciones por Flavobacteriaceae/microbiología , Oncorhynchus mykiss/microbiología , Flavobacterium/genética , Oncorhynchus kisutch/microbiología , Enfermedades de los Peces/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA