Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Nat Commun ; 15(1): 1060, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316765

RESUMEN

Synthetic biology holds immense promise to tackle key problems in resource use, environmental remediation, and human health care. However, comprehensive safety measures are lacking to employ engineered microorganisms in open-environment applications. Genetically encoded biocontainment systems may solve this issue. Here, we describe such a system based on conditional stability of essential proteins. We used a destabilizing domain degron stabilized by estradiol addition (ERdd). We ERdd-tagged 775 essential genes and screened for strains with estradiol dependent growth. Three genes, SPC110, DIS3 and RRP46, were found to be particularly suitable targets. Respective strains showed no growth defect in the presence of estradiol and strong growth inhibition in its absence. SPC110-ERdd offered the most stringent containment, with an escape frequency of <5×10-7. Removal of its C-terminal domain decreased the escape frequency further to <10-8. Being based on conditional protein stability, the presented approach is mechanistically orthogonal to previously reported genetic biocontainment systems.


Asunto(s)
Ingeniería Genética , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Organismos Modificados Genéticamente/genética , Contención de Riesgos Biológicos , Biología Sintética , Estradiol/metabolismo
2.
Trends Biotechnol ; 41(12): 1518-1531, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37442714

RESUMEN

Synthetic biology has made significant progress in many areas, but a major challenge that has received limited attention is the evolutionary stability of synthetic constructs made of heterologous genes. The expression of these constructs in microorganisms, that is, production of proteins that are not necessary for the organism, is a metabolic burden, leading to a decrease in relative fitness and make the synthetic constructs unstable over time. This is a significant concern for the synthetic biology community, particularly when it comes to bringing this technology out of the laboratory. In this review, we discuss the issue of evolutionary stability in synthetic biology and review the available tools to address this challenge.


Asunto(s)
Evolución Biológica , Biología Sintética , Tecnología , Organismos Modificados Genéticamente/genética
3.
Nature ; 615(7953): 720-727, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922599

RESUMEN

Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.


Asunto(s)
Aminoácidos , Escherichia coli , Transferencia de Gen Horizontal , Código Genético , Interacciones Microbiota-Huesped , Biosíntesis de Proteínas , Virosis , Aminoácidos/genética , Aminoácidos/metabolismo , Codón/genética , Ecosistema , Escherichia coli/genética , Escherichia coli/virología , Código Genético/genética , Leucina/genética , Leucina/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Serina/genética , Virosis/genética , Virosis/prevención & control , Interacciones Microbiota-Huesped/genética , Organismos Modificados Genéticamente/genética , Genoma Bacteriano/genética , Transferencia de Gen Horizontal/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Nat Rev Genet ; 23(3): 154-168, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34611352

RESUMEN

Modern genome-scale methods that identify new genes, such as proteogenomics and ribosome profiling, have revealed, to the surprise of many, that overlap in genes, open reading frames and even coding sequences is widespread and functionally integrated into prokaryotic, eukaryotic and viral genomes. In parallel, the constraints that overlapping regions place on genome sequences and their evolution can be harnessed in bioengineering to build more robust synthetic strains and constructs. With a focus on overlapping protein-coding and RNA-coding genes, this Review examines their discovery, topology and biogenesis in the context of their genome biology. We highlight exciting new uses for sequence overlap to control translation, compress synthetic genetic constructs, and protect against mutation.


Asunto(s)
Bioingeniería , Genes Sobrepuestos/fisiología , Genoma/genética , Animales , Bioingeniería/métodos , Bioingeniería/tendencias , Mapeo Cromosómico , Humanos , Organismos Modificados Genéticamente/genética
5.
J AOAC Int ; 105(2): 476-482, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34927696

RESUMEN

BACKGROUND: With the commercialization of genetically modified organisms (GMOs) in the market, laboratories have undergone a significantly increased workload. A universal analytical approach was designed to achieve cost-efficient and high-throughput GMOs screening with high specificity and accuracy. The approach provides accurate qualification of authorized and unauthorized GMOs. OBJECTIVE: This article describes the assessment of this analytical approach developed to detect the majority of commercialized GMOs over the world. METHOD: Seven elements and three events were detected by qPCR in a single laboratory to detect 59 commercialized GMOs. Certificated reference materials and food/feed samples from the Chinese market were also evaluated for the specificity, conformity, and robustness of this approach and were challenged in the interlaboratory study. RESULTS: The results showed that elements and events selected can best detect GMO presence with good specificity and sensitivity. The results showed a concordance between 97.5 and 99.56% and the variance between 0.65 and 12.88%, which is in line with the minimum requirement of analytical methods of GMO testing. CONCLUSIONS: The approach validated here can be used to manipulate GMO presence in food and feed and showed the capacity to manipulate GMO trace in the trade and domestic agriculture market in China. HIGHLIGHTS: A universal analytical approach used to track GMO presence was evaluated for its specificity, sensitivity, and robustness.


Asunto(s)
Agricultura , Alimentos Modificados Genéticamente , China , Laboratorios , Organismos Modificados Genéticamente/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768859

RESUMEN

Fusarium graminearum species complex produces type B trichothecenes oxygenated at C-7. In axenic liquid culture, F. graminearum mainly accumulates one of the three types of trichothecenes, namely 3-acetyldeoxyinvalenol, 15-acetyldeoxyinvalenol, or mixtures of 4,15-diacetylnivalenol/4-acetylnivalenol, depending on each strain's genetic background. The acetyl groups of these trichothecenes are slowly deacetylated to give deoxynivalenol (DON) or nivalenol (NIV) on solid medium culture. Due to the evolution of F. graminearum FgTri1, encoding a cytochrome P450 monooxygenase responsible for hydroxylation at both C-7 and C-8, new derivatives of DON, designated as NX-type trichothecenes, have recently emerged. To assess the risks of emergence of new NX-type trichothecenes, we examined the effects of replacing FgTri1 in the three chemotypes with FgTri1_NX chemotype, which encodes a cytochrome P450 monooxygenase that can only hydroxylate C-7 of trichothecenes. Similar to the transgenic DON chemotypes, the transgenic NIV chemotype strain accumulated NX-type 4-deoxytrichothecenes in axenic liquid culture. C-4 oxygenated trichothecenes were marginal, despite the presence of a functional FgTri13 encoding a C-4 hydroxylase. At present, outcrossing of the currently occurring NX chemotype with NIV chemotype strains of F. graminearum in the natural environment likely will not yield a new strain that produces a C-4 oxygenated NX-type trichothecene.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Fusarium/metabolismo , Tricotecenos/metabolismo , Cultivo Axénico , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Organismos Modificados Genéticamente/genética , Tricotecenos/química
7.
Toxins (Basel) ; 13(11)2021 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-34822538

RESUMEN

Multicopper oxidases (MCOs) are a diverse group of enzymes that could catalyze the oxidation of different xenobiotic compounds, with simultaneous reduction in oxygen to water. Aside from laccase, one member of the MCO superfamily has shown great potential in the biodegradation of mycotoxins; however, the mycotoxin degradation ability of other MCOs is uncertain. In this study, a novel MCO-encoding gene, StMCO, from Streptomyces thermocarboxydus, was identified, cloned, and heterologously expressed in Escherichia coli. The purified recombinant StMCO exhibited the characteristic blue color and bivalent copper ion-dependent enzyme activity. It was capable of oxidizing the model substrate ABTS, phenolic compound DMP, and azo dye RB5. Notably, StMCO could directly degrade aflatoxin B1 (AFB1) and zearalenone (ZEN) in the absence of mediators. Meanwhile, the presence of various lignin unit-derived natural mediators or ABTS could significantly accelerate the degradation of AFB1 and ZEN by StMCO. Furthermore, the biological toxicities of their corresponding degradation products, AFQ1 and 13-OH-ZEN-quinone, were remarkably decreased. Our findings suggested that efficient degradation of mycotoxins with mediators might be a common feature of the MCOs superfamily. In summary, the unique properties of MCOs make them good candidates for degrading multiple major mycotoxins in contaminated feed and food.


Asunto(s)
Aflatoxina B1/metabolismo , Proteínas Bacterianas/metabolismo , Oxidorreductasas/metabolismo , Streptomyces/enzimología , Zearalenona/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Lacasa/metabolismo , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo
8.
BMC Microbiol ; 21(1): 88, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757419

RESUMEN

BACKGROUND: Viruses cause significant economic losses to shrimp aquaculture worldwide. In severe cases, they can lead to 100% mortality within a matter of days, hence the aquaculture industry requires antiviral strategies to minimize economic impacts. Currently, a double-stranded RNA (dsRNA)-based platform has been proven effective at a laboratory scale. The bottleneck for its industrialization is the lack of low-cost, efficient and practical delivery approaches. In an effort to bridge the gap between laboratory and farm applications, virus-like particles (VLP) have been used as nanocarriers of dsRNA. However, the implementation of this approach still suffers from high costs and a lengthy procedure, co-expression of subunits of VLP or capsid proteins (CPs) and dsRNA can be the solution for the problem. CP and dsRNA are traditionally expressed in two different E. coli hosts: protease-deficient and RNase III-deficient strains. To condense the manufacturing of dsRNA-containing VLP, this study constructed a novel E. coli strain that is able to co-express viral capsid proteins and dsRNA in the same E. coli cell. RESULTS: A novel bacterial strain DualX-B15(DE3) was engineered to be both protease- and RNase III-deficiency via P1 phage transduction. The results revealed that it could simultaneously express recombinant proteins and dsRNA. CONCLUSION: Co-expression of viral capsid proteins and dsRNA in the same cell has been shown to be feasible. Not only could this platform serve as a basis for future cost-effective and streamlined production of shrimp antiviral therapeutics, it may be applicable for other applications that requires co-expression of recombinant proteins and dsRNA.


Asunto(s)
Acuicultura/métodos , Proteínas de la Cápside/genética , Escherichia coli/genética , Organismos Modificados Genéticamente/genética , Penaeidae/virología , ARN Bicatenario/genética , Animales , Interacciones Microbianas , Penaeidae/microbiología
9.
BMC Genom Data ; 22(1): 11, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691617

RESUMEN

BACKGROUND: It is well known that WRKY transcription factors play important roles in plant growth and development, defense regulation and stress responses. RESULTS: In this study, a WRKY transcription factor, WRKY33, was cloned from Caragana korshinskii. A sequence structure analysis showed that it belonged to the Group-I type. Subcellular localization experiments in tobacco epidermal cells showed the presence of CkWRKY33 in the nucleus. Additionally, CkWRKY33 was overexpressed in Arabidopsis thaliana. A phenotypic investigation revealed that compared with wild-type plants, CkWRKY33-overexpressing transgenic plants had higher survival rates, as well as relative soluble sugar, proline and peroxidase contents, but lower malondialdehyde contents, following a drought stress treatment. CONCLUSIONS: This suggested that the overexpression of CkWRKY33 led to an enhanced drought-stress tolerance in transgenic A. thaliana. Thus, CkWRKY33 may act as a positive regulator involved in the drought-stress responses in Caragana korshinskii.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Caragana/genética , Sequías , Estrés Fisiológico/genética , Transgenes/genética , Regulación de la Expresión Génica de las Plantas , Organismos Modificados Genéticamente/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética
10.
Nat Commun ; 11(1): 6294, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293537

RESUMEN

Biology can be misused, and the risk of this causing widespread harm increases in step with the rapid march of technological progress. A key security challenge involves attribution: determining, in the wake of a human-caused biological event, who was responsible. Recent scientific developments have demonstrated a capability for detecting whether an organism involved in such an event has been genetically modified and, if modified, to infer from its genetic sequence its likely lab of origin. We believe this technique could be developed into powerful forensic tools to aid the attribution of outbreaks caused by genetically engineered pathogens, and thus protect against the potential misuse of synthetic biology.


Asunto(s)
Bioterrorismo/prevención & control , ADN/análisis , Genética Forense/métodos , Organismos Modificados Genéticamente/genética , Medidas de Seguridad , Animales , Biotecnología , Control de Enfermedades Transmisibles/métodos , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/transmisión , Conjuntos de Datos como Asunto , Ingeniería Genética , Humanos , Organismos Modificados Genéticamente/patogenicidad , Virulencia/genética
11.
Nat Commun ; 11(1): 5459, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122649

RESUMEN

Biocontainment systems are needed to neutralize genetically modified organisms (GMOs) that pose ecological threats outside of controlled environments. In contrast, benign selection markers complement GMOs with reduced fitness. Benign selection agents serve as alternatives to antibiotics, which are costly and risk spread of antibiotic resistance. Here, we present a yeast biocontainment strategy leveraging engineered fluoride sensitivity and DNA vectors enabling use of fluoride as a selection agent. The biocontainment system addresses the scarcity of platforms available for yeast despite their prevalent use in industry and academia. In the absence of fluoride, the biocontainment strain exhibits phenotypes nearly identical to those of the wildtype strain. Low fluoride concentrations severely inhibit biocontainment strain growth, which is restored upon introduction of fluoride-based vectors. The biocontainment strategy is stringent, easily implemented, and applicable to several eukaryotes. Further, the DNA vectors enable genetic engineering at reduced costs and eliminate risks of propagating antibiotic resistance.


Asunto(s)
Fluoruros , Proteínas de la Membrana/genética , Organismos Modificados Genéticamente/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Selección Genética , Fluoruros/metabolismo , Fluoruros/farmacología , Ingeniería Genética , Marcadores Genéticos , Saccharomyces cerevisiae/efectos de los fármacos , Biología Sintética/métodos
12.
Med Sci (Paris) ; 36(8-9): 797-802, 2020.
Artículo en Francés | MEDLINE | ID: mdl-32755538

RESUMEN

SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2, which emerged in China at the end of 2019, is responsible for a global health crisis resulting in the confinement of more than 3 billion people worldwide and the sharp decline of the world economy. In this context, a race against the clock is launched in order to develop a treatment to stop the pandemic as soon as possible. A study published in Nature by the Volker Thiel team reports the development of reverse genetics for SARS-CoV-2 allowing them to recreate the virus in just a few weeks. The perspectives of this work are very interesting since it will allow the genetic manipulation of the virus and thus the development of precious tools which will be useful to fight the infection. Even though this approach represents a technological leap that will improve our knowledge of the virus, it also carries the germ of possible misuse and the creation of the virus for malicious purposes. The advantages and disadvantages of recreating SARS-CoV-2 in this pandemic period are discussed in this mini-synthesis.


TITLE: Une course contre la montre - Création du SARS-CoV-2 en laboratoire, un mois après son émergence ! ABSTRACT: Le SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2), qui a émergé à la fin de l'année 2019 en République populaire de Chine, est responsable d'une crise sanitaire mondiale qui a entraîné le confinement de plus de 3 milliards d'individus et l'arrêt brutal de l'économie planétaire. Dans ce contexte, une course contre la montre est lancée afin de développer, dans les plus brefs délais, un traitement permettant d'enrayer la pandémie. Une étude de l'équipe de Volker Thiel, parue dans le journal Nature, rapporte la mise au point d'une technique de génétique inverse pour le SARS-CoV-2, leur ayant permis de recréer le virus en seulement quelques semaines. Les perspectives de ces travaux sont très intéressantes puisqu'elles permettent d'envisager la manipulation génétique du virus et ainsi le développement d'outils précieux qui seront utiles pour combattre l'infection. Si la technique représente également un saut technologique qui permettra d'améliorer nos connaissances sur le virus, elle porte aussi en elle le germe d'un possible mésusage et la création d'un virus à des fins malveillantes. Les avantages et inconvénients de recréer le SARS-CoV-2 dans cette période de pandémie sont discutés dans cet article.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Organismos Modificados Genéticamente , Pandemias , Neumonía Viral/virología , Genética Inversa/métodos , Betacoronavirus/patogenicidad , Derrame de Material Biológico , COVID-19 , Vacunas contra la COVID-19 , Cromosomas Artificiales de Levadura , Clonación Molecular/métodos , Coronaviridae/clasificación , Coronaviridae/genética , Coronaviridae/patogenicidad , Infecciones por Coronavirus/prevención & control , ADN Complementario/genética , Especificidad del Huésped , Humanos , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/patogenicidad , Pandemias/prevención & control , Neumonía Viral/prevención & control , ARN Viral/genética , Recombinación Genética , Riesgo , SARS-CoV-2 , Vacunas Virales
13.
BMC Bioinformatics ; 21(1): 284, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631215

RESUMEN

BACKGROUND: The European Community has adopted very restrictive policies regarding the dissemination and use of genetically modified organisms (GMOs). In fact, a maximum threshold of 0.9% of contaminating GMOs is tolerated for a "GMO-free" label. In recent years, imports of undescribed GMOs have been detected. Their sequences are not described and therefore not detectable by conventional approaches, such as PCR. RESULTS: We developed DUGMO, a bioinformatics pipeline for the detection of genetically modified (GM) bacteria, including unknown GM bacteria, based on Illumina paired-end sequencing data. The method is currently focused on the detection of GM bacteria with - possibly partial - transgenes in pure bacterial samples. In the preliminary steps, coding sequences (CDSs) are aligned through two successive BLASTN against the host pangenome with relevant tuned parameters to discriminate CDSs belonging to the wild type genome (wgCDS) from potential GM coding sequences (pgmCDSs). Then, Bray-Curtis distances are calculated between the wgCDS and each pgmCDS, based on the difference of genomic vocabulary. Finally, two machine learning methods, namely the Random Forest and Generalized Linear Model, are carried out to target true GM CDS(s), based on six variables including Bray-Curtis distances and GC content. Tests carried out on a GM Bacillus subtilis showed 25 positive CDSs corresponding to the chloramphenicol resistance gene and CDSs of the inserted plasmids. On a wild type B. subtilis, no false positive sequences were detected. CONCLUSION: DUGMO detects exogenous CDS, truncated, fused or highly mutated wild CDSs in high-throughput sequencing data, and was shown to be efficient at detecting GM sequences, but it might also be employed for the identification of recent horizontal gene transfers.


Asunto(s)
Bacterias/química , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Organismos Modificados Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos , Humanos
14.
Cell Host Microbe ; 27(5): 841-848.e3, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32289263

RESUMEN

The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 106 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , ADN Complementario/genética , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/patogenicidad , Neumonía Viral/virología , Animales , Antivirales/uso terapéutico , COVID-19 , Chlorocebus aethiops , Células Clonales , Infecciones por Coronavirus/tratamiento farmacológico , Genes Reporteros/genética , Genoma Viral/genética , Interferones/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , ARN Viral/genética , SARS-CoV-2 , Células Vero/virología , Replicación Viral/fisiología
15.
Microbiol Res ; 236: 126455, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32179389

RESUMEN

Echinenone and canthaxanthin are important carotenoid pigments with food and industrial applications. Biosynthesis of echinenone and/or canthaxanthin is catalyzed by ß-carotene ketolase (CrtO), with ß-carotene as the substrate. In this study, we generated transgenic Nostoc sp. PCC 7120 overexpressing a heterologous crtO gene from Nostoc flagelliforme and evaluated the productivity of both pigments. Normal (BG11 medium, 30 °C) and osmotic stress (BG11 medium supplemented with 0.4 M mannitol, 30 °C) conditions were used for cultivation. As compared to control strain, production of echinenone and canthaxanthin in transgenic strain were respectively increased by more than 16 % and 80 %, under either normal or osmotic stress conditions. Especially upon the stress condition, higher proportion of echinenone and canthaxanthin in total pigments was achieved, which should be beneficial for downstream separation and purification. In addition, transgenic strain showed drought tolerance and could revive from desiccation treatment after rewetting. Thus, this study provided technical clues for production of both pigments in engineered cyanobacteria as well as for cyanobacterial anhydrobiotic engineering.


Asunto(s)
Nostoc/genética , Organismos Modificados Genéticamente/crecimiento & desarrollo , Organismos Modificados Genéticamente/metabolismo , Oxigenasas/genética , Adaptación Fisiológica , Proteínas Bacterianas/genética , Cantaxantina/biosíntesis , Carotenoides/metabolismo , Clonación Molecular , Sequías , Genes Bacterianos , Ingeniería Metabólica/métodos , Nostoc/crecimiento & desarrollo , Nostoc/metabolismo , Organismos Modificados Genéticamente/genética , Oxigenasas/metabolismo , beta Caroteno/biosíntesis
16.
FEMS Microbiol Lett ; 367(6)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129852

RESUMEN

Erucic acid (C22:1Δ13) has several industrial applications including its use as a lubricant, surfactant and biodiesel and composite material constituent. It is produced by plants belonging to the Brassicaceae family, especially by the high erucic acid rapeseed. The ability to convert oleic acid into erucic acid is facilitated by FAE1. In this study, FAD2 (encoding Δ12-desaturase) was deleted in the strain Po1d to increase oleic acid content. Subsequently, FAE1 from Thlaspi arvense was overexpressed in Yarrowia lipolytica with the Δfad2 genotype. This resulted in the YL10 strain producing very long chain fatty acids, especially erucic acid. The YL10 strain was cultivated in media containing crude glycerol and waste cooking oil as carbon substrates. The cells grown using glycerol produced microbial oil devoid of linoleic acid, which was enriched with very long chain fatty acids, mainly erucic acid (9% of the total fatty acids). When cells were grown using waste cooking oil, the highest yield of erucic acid was obtained (887 mg L-1). However, external linoleic and α-linolenic were accumulated in cellular lipids when yeasts were grown in an oil medium. This study describes the possibility of conversion of waste material into erucic acid by a recombinant yeast strain.


Asunto(s)
Ácidos Grasos/biosíntesis , Aceites/metabolismo , Organismos Modificados Genéticamente/metabolismo , Eliminación de Residuos Líquidos/métodos , Yarrowia/metabolismo , Ácidos Erucicos/metabolismo , Ácido Graso Desaturasas/genética , Genes de Plantas/genética , Organismos Modificados Genéticamente/genética , Thlaspi/genética , Yarrowia/genética
17.
PLoS One ; 15(2): e0229659, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32101588

RESUMEN

The cultivation of genetically modified organisms (GMO) continues to expand worldwide. Still, many consumers express concerns about the use of GMO in food or feed, and many countries have legislated on labelling systems to indicate the presence of GMO in commercial products. To deal with the increased number of GMO events and to address related regulations, alternative detection methods for GMO inspection are required. In this work, a genosensor based on Surface Plasmon Resonance under continuous flow was developed for the detection and quantification of a genetically modified soybean (event GTS 40-3-2). In a single chip, the simultaneous detection of the event-specific and the taxon-specific samples were achieved, whose detection limits were 20 pM and 16 pM, respectively. The reproducibility was 1.4%, which supports the use of the chip as a reliable and cost-effective alternative to other DNA-based techniques. The results indicate that the proposed method is a versatile tool for GMO quantification in food and feed samples.


Asunto(s)
Glycine max/genética , Resonancia por Plasmón de Superficie/métodos , ADN de Plantas/genética , Alimentos Modificados Genéticamente/clasificación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Organismos Modificados Genéticamente/química , Organismos Modificados Genéticamente/genética , Plantas Modificadas Genéticamente/genética , Reproducibilidad de los Resultados
20.
Methods Mol Biol ; 2066: 195-209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31512218

RESUMEN

Cryobanking of sperm, oocytes, and embryos is a useful means to efficiently maintain mouse colonies without breeding live animals. Cryopreserved cells can be permanently stored in well-managed systems in liquid nitrogen tanks at -196 °C and quickly reanimated for use via in vitro fertilization and/or embryo transfer. Recent improvements of reproductive technology markedly enhanced the efficiency of recovering and producing animals using cryopreserved cells. The establishment of a cryobanking system will increase the performance of animal experiments, meet the principles of 3Rs (replacement, reduction, and refinement), and reduce labour and costs. In this chapter, we described the latest techniques of sperm cryopreservation, in vitro fertilization, and oocyte and two-cell embryo vitrification developed at the Center for Animal Resources and Development (CARD).


Asunto(s)
Transferencia de Embrión/métodos , Fertilización In Vitro/métodos , Ratones Transgénicos/genética , Organismos Modificados Genéticamente/genética , Animales , Criopreservación/métodos , Femenino , Humanos , Masculino , Ratones , Oocitos/crecimiento & desarrollo , Embarazo , Índice de Embarazo , Espermatozoides/crecimiento & desarrollo , Vitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...