Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 144(9): 1687-1697, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28302747

RESUMEN

The Wnt/ß-catenin signaling pathway plays pivotal roles in axis formation during embryogenesis and in adult tissue homeostasis. Glutathione peroxidase 4 (GPX4) is a selenoenzyme and participates in the reduction of peroxides. Its synthesis depends on the availability of the element selenium. However, the roles of GPX4 in vertebrate embryonic development and underlying mechanisms are largely unknown. Here, we show that maternal loss of zebrafish gpx4b promotes embryonic dorsal organizer formation, whereas overexpression of gpx4b inhibits the development of the dorsal organizer. Depletion of human GPX4 and zebrafish gpx4b (GPX4/gpx4b) increases, while GPX4/gpx4b overexpression decreases, Wnt/ß-catenin signaling in vivo and in vitro Functional and epistatic studies showed that GPX4 functions at the Tcf/Lef level, independently of selenocysteine activation. Mechanistically, GPX4 interacts with Tcf/Lefs and inhibits Wnt activity by preventing the binding of Tcf/Lefs to the promoters of Wnt target genes, resulting in inhibitory action in the presence of Wnt/ß-catenin signaling. Our findings unravel GPX4 as a suppressor of Wnt/ß-catenin signals, suggesting a possible relationship between the Wnt/ß-catenin pathway and selenium via the association of Tcf/Lef family proteins with GPX4.


Asunto(s)
Embrión no Mamífero/enzimología , Glutatión Peroxidasa/metabolismo , Organizadores Embrionarios/enzimología , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Embrión no Mamífero/citología , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Glutatión Peroxidasa/química , Glutatión Peroxidasa/deficiencia , Células HEK293 , Humanos , Fenotipo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Selenio/metabolismo , Transducción de Señal/genética , Transcripción Genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Cigoto/metabolismo
2.
Nat Cell Biol ; 11(9): 1121-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19668196

RESUMEN

The organizer anchors the primary embryonic axis, and balance between dorsal (organizer) and ventral domains is fundamental to body patterning. LNX (ligand of Numb protein-X) is a RING finger and four PDZ domain-containing E3 ubiquitin ligase. LNX serves as a binding platform and may have a role in cell fate determination, but its in vivo functions are unknown. Here we show that Lnx-l (Lnx-like) functions as a critical regulator of dorso-ventral axis formation in zebrafish. Depletion of Lnx-l using specific antisense morpholinos (MOs) caused strong embryonic dorsalization. We identified Bozozok (Boz, also known as Dharma or Nieuwkoid) as a binding partner and substrate of Lnx-l. Boz is a homeodomain-containing transcriptional repressor induced by canonical Wnt signalling that is critical for dorsal organizer formation. Lnx-l induced K48-linked polyubiquitylation of Boz, leading to its proteasomal degradation in human 293T cells and in zebrafish embryos. Dorsalization induced by Boz overexpression was suppressed by raising the level of Lnx-l, but Lnx-l failed to counteract dorsalization caused by mutant Boz lacking a critical motif for Lnx-l binding. Furthermore, dorsalization induced by depletion of Lnx-l was alleviated by attenuation of Boz expression. We conclude that Lnx-l modulates Boz activity to prevent the invasion of ventral regions of the embryo by organizer tissue. These studies introduce a ubiquitin ligase, Lnx-l, as a balancing modulator of axial patterning in the zebrafish embryo.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Organizadores Embrionarios/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Línea Celular , Proteína Goosecoide/metabolismo , Humanos , Oligonucleótidos Antisentido/farmacología , Organizadores Embrionarios/efectos de los fármacos , Poliubiquitina/metabolismo , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Proteínas de Pez Cebra/deficiencia
3.
Dis Model Mech ; 2(5-6): 295-305, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19380308

RESUMEN

Human embryos exposed to alcohol (ethanol) develop a complex developmental phenotype known as fetal alcohol spectrum disorder (FASD). In Xenopus embryos, ethanol reduces the levels of retinoic acid (RA) signaling during gastrulation. RA, a metabolite of vitamin A (retinol), is required for vertebrate embryogenesis, and deviation from its normal levels results in developmental malformations. Retinaldehyde dehydrogenase 2 (RALDH2) is required to activate RA signaling at the onset of gastrulation. We studied the effect of alcohol on embryogenesis by manipulating retinaldehyde dehydrogenase activity in ethanol-treated embryos. In alcohol-treated embryos, we analyzed RA signaling levels, phenotypes induced and changes in gene expression. Developmental defects that were characteristic of high ethanol concentrations were phenocopied by a low ethanol concentration combined with partial RALDH inhibition, whereas Raldh2 overexpression rescued the developmental malformations induced by high ethanol. RALDH2 knockdown resulted in similar RA signaling levels when carried out alone or in combination with ethanol treatment, suggesting that RALDH2 is the main target of ethanol. The biochemical evidence that we present shows that, at the onset of RA signaling during early gastrulation, the ethanol effect centers on the competition for the available retinaldehyde dehydrogenase activity. In light of the multiple regulatory roles of RA, continued embryogenesis in the presence of abnormally low RA levels provides an etiological explanation for the malformations observed in individuals with FASD.


Asunto(s)
Aldehído Oxidasa/metabolismo , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Etanol/toxicidad , Gastrulación/efectos de los fármacos , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Familia de Aldehído Deshidrogenasa 1 , Aldehído Oxidasa/genética , Animales , Embrión no Mamífero/enzimología , Gástrula/anomalías , Gástrula/efectos de los fármacos , Gástrula/enzimología , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Organizadores Embrionarios/efectos de los fármacos , Organizadores Embrionarios/enzimología , Fenotipo , Retinal-Deshidrogenasa , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología , Xenopus/genética , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA