Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.522
Filtrar
1.
Dev Cell ; 58(7): 616-632.e6, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36990090

RESUMEN

3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Microscopía , Organoides , Animales , Humanos , Ratones , Técnicas de Cultivo Tridimensional de Células/métodos , Microscopía Electrónica , Organoides/diagnóstico por imagen , Organoides/fisiología , Organoides/ultraestructura , Neoplasias Colorrectales/patología
2.
Cell Rep ; 38(7): 110379, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172130

RESUMEN

Pluripotent-stem-cell-derived human intestinal organoids (HIOs) model some aspects of intestinal development and disease, but current culture methods do not fully recapitulate the diverse cell types and complex organization of the human intestine and are reliant on 3D extracellular matrix or hydrogel systems, which limit experimental control and translational potential for regenerative medicine. We describe suspension culture as a simple, low-maintenance method for culturing HIOs and for promoting in vitro differentiation of an organized serosal mesothelial layer that is similar to primary human intestinal serosal mesothelium based on single-cell RNA sequencing and histological analysis. Functionally, HIO serosal mesothelium has the capacity to differentiate into smooth-muscle-like cells and exhibits fibrinolytic activity. An inhibitor screen identifies Hedgehog and WNT signaling as regulators of human serosal mesothelial differentiation. Collectively, suspension HIOs represent a three-dimensional model to study the human serosal mesothelium.


Asunto(s)
Epitelio/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Membrana Serosa/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos , Alginatos/farmacología , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Colágeno/farmacología , Combinación de Medicamentos , Epitelio/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Humanos , Intestinos/ultraestructura , Laminina/farmacología , Músculo Liso/citología , Organoides/efectos de los fármacos , Organoides/ultraestructura , Proteoglicanos/farmacología , Membrana Serosa/efectos de los fármacos , Membrana Serosa/ultraestructura , Transducción de Señal/efectos de los fármacos , Suspensiones , Proteínas Wnt/metabolismo
3.
Elife ; 102021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34698018

RESUMEN

During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.


Asunto(s)
Axones/ultraestructura , Tomografía con Microscopio Electrónico , Organoides/citología , Encéfalo/citología , Encéfalo/ultraestructura , Microscopía por Crioelectrón , Células HeLa , Humanos , Sustancias Macromoleculares/metabolismo , Microscopía , Microscopía Fluorescente , Organoides/ultraestructura
4.
Stem Cell Reports ; 16(11): 2690-2702, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34653402

RESUMEN

Cases of Leber congenital amaurosis caused by mutations in CRX (LCA7) exhibit an early form of the disease and show signs of significant photoreceptor dysfunction and eventual loss. To establish a translational in vitro model system to study gene-editing-based therapies, we generated LCA7 retinal organoids harboring a dominant disease-causing mutation in CRX. Our LCA7 retinal organoids develop signs of immature and dysfunctional photoreceptor cells, providing us with a reliable in vitro model to recapitulate LCA7. Furthermore, we performed a proof-of-concept study in which we utilize allele-specific CRISPR/Cas9-based gene editing to knock out mutant CRX and saw moderate rescue of photoreceptor phenotypes in our organoids. This work provides early evidence for an effective approach to treat LCA7, which can be applied more broadly to other dominant genetic diseases.


Asunto(s)
Edición Génica/métodos , Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/genética , Amaurosis Congénita de Leber/genética , Mutación , Transactivadores/genética , Alelos , Secuencia de Bases , Línea Celular , Perfilación de la Expresión Génica/métodos , Genes Dominantes , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/patología , Microscopía Electrónica de Transmisión , Modelos Biológicos , Organoides/citología , Organoides/metabolismo , Organoides/ultraestructura , Fenotipo , Polimorfismo de Nucleótido Simple , RNA-Seq/métodos , Retina/metabolismo , Transactivadores/metabolismo
5.
Cells ; 10(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34359871

RESUMEN

The creation of a testis organoid (artificial testis tissue) with sufficient resemblance to the complex form and function of the innate testis remains challenging, especially using non-rodent donor cells. Here, we report the generation of an organoid culture system with striking biomimicry of the native immature testis tissue, including vasculature. Using piglet testis cells as starting material, we optimized conditions for the formation of cell spheroids, followed by long-term culture in an air-liquid interface system. Both fresh and frozen-thawed cells were fully capable of self-reassembly into stable testis organoids consisting of tubular and interstitial compartments, with all major cell types and structural details expected in normal testis tissue. Surprisingly, our organoids also developed vascular structures; a phenomenon that has not been reported in any other culture system. In addition, germ cells do not decline over time, and Leydig cells release testosterone, hence providing a robust, tunable system for diverse basic and applied applications.


Asunto(s)
Materiales Biomiméticos/farmacología , Organoides/fisiología , Testículo/irrigación sanguínea , Animales , Recuento de Células , Criopreservación , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/efectos de los fármacos , Hormona Luteinizante/metabolismo , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Especificidad de Órganos , Organoides/citología , Organoides/efectos de los fármacos , Organoides/ultraestructura , Porcinos , Testículo/citología , Testículo/ultraestructura , Testosterona/metabolismo
6.
BMC Mol Cell Biol ; 22(1): 37, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34225662

RESUMEN

BACKGROUND: Organ culture models have been used over the past few decades to study development and disease. The in vitro three-dimensional (3D) culture system of organoids is well known, however, these 3D systems are both costly and difficult to culture and maintain. As such, less expensive, faster and less complex methods to maintain 3D cell culture models would complement the use of organoids. Chick embryos have been used as a model to study human biology for centuries, with many fundamental discoveries as a result. These include cell type induction, cell competence, plasticity and contact inhibition, which indicates the relevance of using chick embryos when studying developmental biology and disease mechanisms. RESULTS: Here, we present an updated protocol that enables time efficient, cost effective and long-term expansion of fetal organ spheroids (FOSs) from chick embryos. Utilizing this protocol, we generated FOSs in an anchorage-independent growth pattern from seven different organs, including brain, lung, heart, liver, stomach, intestine and epidermis. These three-dimensional (3D) structures recapitulate many cellular and structural aspects of their in vivo counterpart organs and serve as a useful developmental model. In addition, we show a functional application of FOSs to analyze cell-cell interaction and cell invasion patterns as observed in cancer. CONCLUSION: The establishment of a broad ranging and highly effective method to generate FOSs from different organs was successful in terms of the formation of healthy, proliferating 3D organ spheroids that exhibited organ-like characteristics. Potential applications of chick FOSs are their use in studies of cell-to-cell contact, cell fusion and tumor invasion under defined conditions. Future studies will reveal whether chick FOSs also can be applicable in scientific areas such as viral infections, drug screening, cancer diagnostics and/or tissue engineering.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Modelos Biológicos , Invasividad Neoplásica/patología , Organoides/citología , Esferoides Celulares/citología , Animales , Comunicación Celular , Línea Celular Tumoral , Embrión de Pollo , Pollos , Humanos , Organoides/ultraestructura , Esferoides Celulares/ultraestructura , Técnicas de Cultivo de Tejidos
7.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34314701

RESUMEN

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Asunto(s)
Cerebro/patología , Proteína 4 Similar a ELAV/genética , Ácido Glutámico/metabolismo , Mutación/genética , Neuronas/patología , Organoides/metabolismo , Empalme del ARN/genética , Proteínas tau/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Biomarcadores/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Muerte Celular/efectos de los fármacos , Línea Celular , Humanos , Hidrazonas/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Organoides/efectos de los fármacos , Organoides/ultraestructura , Fosforilación/efectos de los fármacos , Pirimidinas/farmacología , Empalme del ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Gránulos de Estrés/efectos de los fármacos , Gránulos de Estrés/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
8.
Cell Rep ; 36(3): 109351, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289360

RESUMEN

Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.


Asunto(s)
Antibacterianos/farmacología , Modelos Biológicos , Neutrófilos/patología , Organoides/microbiología , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Femenino , Humanos , Imagenología Tridimensional , Ratones Endogámicos C57BL , Viabilidad Microbiana/efectos de los fármacos , Movimiento , Neutrófilos/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/ultraestructura , Vejiga Urinaria/patología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/ultraestructura
9.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34160561

RESUMEN

Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.


Asunto(s)
Drosophila melanogaster/ultraestructura , Células de la Granulosa/ultraestructura , Glándulas Mamarias Animales/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Coloración y Etiquetado/métodos , Células Tecales/ultraestructura , Tráquea/ultraestructura , Animales , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Femenino , Expresión Génica , Genes Reporteros , Células de la Granulosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Larva/metabolismo , Larva/ultraestructura , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Microscopía Electrónica de Rastreo/instrumentación , Organoides/metabolismo , Organoides/ultraestructura , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Células Tecales/metabolismo , Tráquea/metabolismo , Flujo de Trabajo , Proteína Fluorescente Roja
10.
Dev Cell ; 56(9): 1346-1358.e6, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33945785

RESUMEN

Myelination is essential for central nervous system (CNS) formation, health, and function. Emerging evidence of oligodendrocyte heterogeneity in health and disease and divergent CNS gene expression profiles between mice and humans supports the development of experimentally tractable human myelination systems. Here, we developed human iPSC-derived myelinating organoids ("myelinoids") and quantitative tools to study myelination from oligodendrogenesis through to compact myelin formation and myelinated axon organization. Using patient-derived cells, we modeled a monogenetic disease of myelinated axons (Nfasc155 deficiency), recapitulating impaired paranodal axo-glial junction formation. We also validated the use of myelinoids for pharmacological assessment of myelination-both at the level of individual oligodendrocytes and globally across whole myelinoids-and demonstrated reduced myelination in response to suppressed synaptic vesicle release. Our study provides a platform to investigate human myelin development, disease, and adaptive myelination.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Vaina de Mielina/fisiología , Organoides/fisiología , Axones/metabolismo , Axones/ultraestructura , Humanos , Vaina de Mielina/ultraestructura , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/metabolismo , Organoides/ultraestructura , Toxina Tetánica/farmacología , Factores de Tiempo
11.
Stem Cells Dev ; 30(8): 399-417, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33677999

RESUMEN

Progressive vision loss, caused by retinal degenerative (RD) diseases such as age-related macular degeneration, retinitis pigmentosa, and Leber congenital amaurosis, severely impacts quality of life and affects millions of people. Finding efficient treatment for blinding diseases is among the greatest unmet clinical needs. The evagination of optic vesicles from developing pluripotent stem cell-derived neuroepithelium and self-organization, lamination, and differentiation of retinal tissue in a dish generated considerable optimism for developing innovative approaches for treating RD diseases, which previously were not feasible. Retinal organoids may be a limitless source of multipotential retinal progenitors, photoreceptors (PRs), and the whole retinal tissue, which are productive approaches for developing RD disease therapies. In this study we compared the distribution and expression level of molecular markers (genetic and epigenetic) in human fetal retina (age 8-16 weeks) and human embryonic stem cell (hESC)-derived retinal tissue (organoids) by immunohistochemistry, RNA-seq, flow cytometry, and mass-spectrometry (to measure methylated and hydroxymethylated cytosine level), with a focus on PRs to evaluate the clinical application of hESC-retinal tissue for vision restoration. Our results revealed high correlation in gene expression profiles and histological profiles between human fetal retina (age 8-13 weeks) and hESC-derived retinal tissue (10-12 weeks). The transcriptome signature of hESC-derived retinal tissue from retinal organoids maintained for 24 weeks in culture resembled the transcriptome of human fetal retina of more advanced developmental stages. The histological profiles of 24 week-old hESC-derived retinal tissue displayed mature PR immunophenotypes and presence of developing inner and outer segments. Collectively, our work highlights the similarity of hESC-derived retinal tissue at early stages of development (10 weeks), and human fetal retina (age 8-13 weeks) and it supports the development of regenerative medicine therapies aimed at using tissue from hESC-derived retinal organoids (hESC-retinal implants) for mitigating vision loss.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias Humanas/metabolismo , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Retina/metabolismo , Transcriptoma/genética , Línea Celular , Metilación de ADN , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Organoides/citología , Organoides/ultraestructura , Factor de Transcripción PAX6/metabolismo , Células Madre Pluripotentes/citología , RNA-Seq/métodos , Retina/citología , Retina/embriología , Factores de Tiempo , Factores de Transcripción/metabolismo
12.
Cells ; 10(2)2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525555

RESUMEN

Humans with biallelic inactivating mutations in Epithelial Cell Adhesion Molecule (EpCAM) develop congenital tufting enteropathy (CTE). To gain mechanistic insights regarding EpCAM function in this disorder, we prepared intestinal epithelial cell (IEC) organoids and spheroids. IEC organoids and spheroids were generated from ROSA-CreERT2 EpCAMfl/fl mice. Proliferation, tight junctions, cell polarity and epithelial integrity were assessed in tamoxifen-induced EpCAM-deficient organoids via confocal immunofluorescence microscopy and Western blotting. Olfm4-expressing stem cells were assessed in IEC cells in vitro and in vivo via fluorescence in situ hybridization. To determine if existing drugs could ameliorate effects of EpCAM deficiency in IEC cells, a variety of pharmacologic inhibitors were screened. Deletion of EpCAM resulted in increased apoptosis and attenuated growth of organoids and spheroids. Selected claudins were destabilized and epithelial integrity was severely compromised. Epithelial integrity was improved by treatment with Rho-associated coiled-coil kinase (ROCK) inhibitors without restoration of claudin expression. Correspondingly, enhanced phosphorylation of myosin light chain, a serine/threonine ROCK substrate, was observed in EpCAM-deficient organoids. Strikingly, frequencies of Olfm4-expressing stem cells in EpCAM-deficient IEC cells in vitro and in vivo were decreased. Treatment with ROCK inhibitors increased numbers of stem cells in EpCAM-deficient organoids and spheroids. Thus, EpCAM regulates intestinal epithelial homeostasis via a signaling pathway that includes ROCK.


Asunto(s)
Molécula de Adhesión Celular Epitelial/metabolismo , Células Epiteliales/metabolismo , Intestinos/citología , Células Madre/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Claudinas/metabolismo , Células Epiteliales/efectos de los fármacos , Silenciador del Gen , Mucosa Intestinal/metabolismo , Ratones Noqueados , Cadenas Ligeras de Miosina/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/ultraestructura , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Células Madre/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores
13.
Sci Rep ; 11(1): 1944, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479301

RESUMEN

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Técnicas de Cultivo de Célula , Organoides/patología , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Matriz Extracelular/patología , Matriz Extracelular/ultraestructura , Humanos , Organoides/ultraestructura , Páncreas/patología , Páncreas/ultraestructura , Microambiente Tumoral/genética
14.
Nat Protoc ; 16(1): 239-262, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33247285

RESUMEN

Advances in light-sheet and confocal microscopy now allow imaging of cleared large biological tissue samples and enable the 3D appreciation of cell and protein localization in their native organ environment. However, the sample preparations for such imaging are often onerous, and their capability for antigen detection is limited. Here, we describe FLASH (fast light-microscopic analysis of antibody-stained whole organs), a simple, rapid, fully customizable technique for molecular phenotyping of intact tissue volumes. FLASH utilizes non-degradative epitope recovery and membrane solubilization to enable the detection of a multitude of membranous, cytoplasmic and nuclear antigens in whole mouse organs and embryos, human biopsies, organoids and Drosophila. Retrieval and immunolabeling of epithelial markers, an obstacle for previous clearing techniques, can be achieved with FLASH. Upon volumetric imaging, FLASH-processed samples preserve their architecture and integrity and can be paraffin-embedded for subsequent histopathological analysis. The technique can be performed by scientists trained in light microscopy and yields results in <1 week.


Asunto(s)
Antígenos/análisis , Técnica del Anticuerpo Fluorescente/métodos , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Animales , Drosophila , Epítopos/análisis , Femenino , Humanos , Riñón/ultraestructura , Aparato Lagrimal/ultraestructura , Hígado/ultraestructura , Pulmón/ultraestructura , Masculino , Glándulas Mamarias Humanas/ultraestructura , Ratones , Organoides/ultraestructura , Páncreas/ultraestructura , Estómago/ultraestructura
15.
J Mol Med (Berl) ; 99(4): 449-462, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33221939

RESUMEN

Organoids constitute biological systems which are used to model organ development, homeostasis, regeneration, and disease in vitro and hold promise for use in therapy. Reflecting in vivo development, organoids form from tissue cells or pluripotent stem cells. Cues provided from the media and individual cells promote self-organization of these uniform starting cells into a structure, with emergent differentiated cells, morphology, and often functionality that resemble the tissue of origin. Therefore, organoids provide a complement to two-dimensional in vitro culture and in vivo animal models of development, providing the experimental control and flexibility of in vitro methods with the three-dimensional context of in vivo models, with fewer ethical restraints than human or animal work. However, using organoids, we are only just beginning to understand on the cellular level how the external conditions and signaling between individual cells promote the emergence of cells and structures. In this review, we focus specifically on organoids derived from endodermal tissues: the starting conditions of the cells, signaling mechanisms, and external media that allow the emergence of higher order self-organization.


Asunto(s)
Endodermo/citología , Organoides/citología , Células Madre Adultas/citología , Animales , Comunicación Celular , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Retroalimentación Fisiológica , Humanos , Células Madre Pluripotentes Inducidas/citología , Intestinos/citología , Ratones , Morfogénesis , Especificidad de Órganos , Organogénesis , Organoides/ultraestructura , Transducción de Señal
16.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333020

RESUMEN

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Asunto(s)
Corteza Cerebral/fisiología , Corteza Motora/fisiología , Organoides/fisiología , Animales , Calcio/metabolismo , Diferenciación Celular , Células Cultivadas , Vértebras Cervicales , Regulación de la Expresión Génica , Glutamatos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Músculos/fisiología , Mioblastos/metabolismo , Red Nerviosa/fisiología , Optogenética , Organoides/ultraestructura , Rombencéfalo/fisiología , Esferoides Celulares/citología , Médula Espinal/citología
17.
Sci Rep ; 10(1): 20937, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262363

RESUMEN

The endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of ER membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to distinguish ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and allow for better understanding of how ER morphology changes due to viral infection.


Asunto(s)
Aprendizaje Profundo , Retículo Endoplásmico/metabolismo , Microscopía/métodos , Virus Zika/fisiología , Encéfalo/patología , Encéfalo/virología , Línea Celular Tumoral , Retículo Endoplásmico/ultraestructura , Matriz Extracelular/metabolismo , Humanos , Organoides/metabolismo , Organoides/ultraestructura , Organoides/virología , ARN Bicatenario/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus Zika/ultraestructura , Infección por el Virus Zika/virología
18.
Sci Rep ; 10(1): 20292, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219246

RESUMEN

To elucidate molecular pharmacology of Rho-associated coiled-coil containing protein kinase inhibitors (ROCK-i, Ripasudil and Y27632) on their efficiency for aqueous outflow, 2D or 3D cultures of a human trabecular meshwork (HTM) were prepared in the presence of TGFß2. Those were examined by transendothelial electrical resistance (TEER, 2D), electronic microscopy (EM, 2D and 3D), expression of the extracellular matrix (ECM) including collagen1 (COL1), COL4 and COL6, and fibronectin (FN) by immunolabeling and/or quantitative PCR (3D), and solidity of 3D organoids by a micro-squeezer. TGFß2 significantly increased the TEER values in 2D cultures, and the ECM expression indicated that the 3D organoids assumed a more densely packed shape. ROCK-i greatly reduced the TGFß2-induced enhancement of TEER and the immunolabeled ECM expression of the 3D organoids. In contrast, the mRNA expression of COL1 was increased, and those of COL4 and FN were unchanged. EM revealed that TGFß2 caused the HTM cells to become more compact and abundant ECM deposits within the 3D organoids were observed. These were significantly inhibited by ROCK-i. The dense solids caused by the presence of TGFß2 were significantly suppressed by ROCK-i. Current study indicates that ROCK-i cause beneficial effects toward the spatial configuration of TGFß2-induced HTM 3D organoids.


Asunto(s)
Antihipertensivos/farmacología , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Enfermedades del Nervio Óptico/prevención & control , Malla Trabecular/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Amidas/farmacología , Amidas/uso terapéutico , Antihipertensivos/uso terapéutico , Técnicas de Cultivo de Célula , Línea Celular , Glaucoma de Ángulo Abierto/complicaciones , Humanos , Presión Intraocular/efectos de los fármacos , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Microscopía Electrónica de Rastreo , Enfermedades del Nervio Óptico/etiología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/ultraestructura , Piridinas/farmacología , Piridinas/uso terapéutico , Esferoides Celulares , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Malla Trabecular/citología , Malla Trabecular/metabolismo , Malla Trabecular/ultraestructura , Factor de Crecimiento Transformador beta2/metabolismo , Quinasas Asociadas a rho/metabolismo
19.
Nat Commun ; 11(1): 4283, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883967

RESUMEN

Our understanding of the spatiotemporal regulation of cardiogenesis is hindered by the difficulties in modeling this complex organ currently by in vitro models. Here we develop a method to generate heart organoids from mouse embryonic stem cell-derived embryoid bodies. Consecutive morphological changes proceed in a self-organizing manner in the presence of the laminin-entactin (LN/ET) complex and fibroblast growth factor 4 (FGF4), and the resulting in vitro heart organoid possesses atrium- and ventricle-like parts containing cardiac muscle, conducting tissues, smooth muscle and endothelial cells that exhibited myocardial contraction and action potentials. The heart organoids exhibit ultrastructural, histochemical and gene expression characteristics of considerable similarity to those of developmental hearts in vivo. Our results demonstrate that this method not only provides a biomimetic model of the developing heart-like structure with simplified differentiation protocol, but also represents a promising research tool with a broad range of applications, including drug testing.


Asunto(s)
Matriz Extracelular/metabolismo , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Corazón , Células Madre Embrionarias de Ratones/metabolismo , Organoides , Potenciales de Acción , Aminoácidos Diaminos/metabolismo , Animales , Biomimética/métodos , Diferenciación Celular , Línea Celular , Células Endoteliales , Corazón/crecimiento & desarrollo , Corazón/fisiología , Glicoproteínas de Membrana/metabolismo , Ratones , Contracción Miocárdica , Miocardio , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/ultraestructura
20.
Cell ; 182(6): 1623-1640.e34, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946783

RESUMEN

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.


Asunto(s)
Diferenciación Celular/genética , Organoides/citología , Organoides/metabolismo , Retina/citología , Retina/metabolismo , Análisis de la Célula Individual/métodos , Sinapsis/fisiología , Transcriptoma/genética , Técnicas de Cultivo de Célula/métodos , Línea Celular , Electrofisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Hibridación in Situ , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Electrónica , Familia de Multigenes , Naftoquinonas , Organoides/efectos de la radiación , Organoides/ultraestructura , Retina/patología , Retina/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...