Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
J Gen Virol ; 105(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39319430

RESUMEN

Fruit bats serve as an important reservoir for many zoonotic pathogens, including Nipah virus, Hendra virus, Marburg virus and Lyssavirus. To gain a deeper insight into the virological characteristics, pathogenicity and zoonotic potential of bat-borne viruses, recovery of infectious viruses from field samples is important. Here, we report the isolation and characterization of a mammalian orthoreovirus (MRV) from a large flying fox (Pteropus vampyrus) in Indonesia, which is the first detection of MRV in Southeast Asia. MRV was recovered from faecal samples of three different P. vampyrus in Central Java. Nucleotide sequence analysis revealed that the genome of the three MRV isolates shared more than 99% nucleotide sequence identity. We tentatively named one isolated strain as MRV12-52 for further analysis and characterization. Among 10 genome segments, MRV12-52 S1 and S4, which encode the cell-attachment protein and outer capsid protein, had 93.6 and 95.1% nucleotide sequence identities with known MRV strains, respectively. Meanwhile, the remaining genome segments of MRV12-52 were divergent with 72.9-80.7 % nucleotide sequence identities. Based on the nucleotide sequence of the S1 segment, MRV12-52 was grouped into serotype 2, and phylogenetic analysis demonstrated evidence of past reassortment events. In vitro characterization of MRV12-52 showed that the virus efficiently replicated in BHK-21, HEK293T and A549 cells. In addition, experimental infection of laboratory mice with MRV12-52 caused severe pneumonia with 75% mortality. This study highlights the presence of pathogenic MRV in Indonesia, which could serve as a potential animal and public health concern.


Asunto(s)
Quirópteros , Heces , Genoma Viral , Orthoreovirus de los Mamíferos , Filogenia , Infecciones por Reoviridae , Animales , Quirópteros/virología , Indonesia , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/veterinaria , Ratones , Heces/virología , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/aislamiento & purificación , Orthoreovirus de los Mamíferos/clasificación , Humanos , Análisis de Secuencia de ADN
2.
Viruses ; 16(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39205247

RESUMEN

In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all family members suggested recent exposure to arthropod-borne viruses. Dengue virus 1 (Genus Orthoflavivirus) was isolated (isolate no. SA397) from the serum of the 45-year-old female via intracerebral injection in neonatal mice and subsequent passage in VeroE6 cells. Phylogenetic analysis of this strain indicated close genetic identity with cosmopolitan genotype 1 DENV1 strains from Southeast Asia, assigned to major lineage K, minor lineage 1 (DENV1I_K.1), such as GZ8H (99.92%) collected in November 2018 from China, and DV1I-TM19-74 isolate (99.72%) identified in Bangkok, Thailand, in 2019. Serum samples from the 46-year-old male yielded a virus isolate that could not be confirmed as DENV1, prompting unbiased metagenomic sequencing for virus identification and characterization. Illumina sequencing identified multiple segments of a mammalian orthoreovirus (MRV), designated as Human/SA395/SA/2017. Genomic and phylogenetic analyses classified Human/SA395/SA/2017 as MRV-3 and assigned a tentative genotype, MRV-3d, based on the S1 segment. Genomic analyses suggested that Human/SA395/SA/2017 may have originated from reassortments of segments among swine, bat, and human MRVs. The closest identity of the viral attachment protein σ1 (S1) was related to a human isolate identified from Tahiti, French Polynesia, in 1960. This indicates ongoing circulation and co-circulation of Southeast Asian and Polynesian strains, but detailed knowledge is hampered by the limited availability of genomic surveillance. This case represents the rare concurrent detection of two distinct viruses with different transmission routes in the same family with similar clinical presentations. It highlights the complexity of diagnosing diseases with similar sequelae in travelers returning from tropical areas.


Asunto(s)
Virus del Dengue , Dengue , Filogenia , Virus Reordenados , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Dengue/virología , Dengue/epidemiología , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Virus del Dengue/clasificación , Genoma Viral , Genotipo , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/aislamiento & purificación , Orthoreovirus de los Mamíferos/clasificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Virus Reordenados/clasificación , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/veterinaria , Sudáfrica , Tailandia , Viaje , Células Vero
3.
Sci Rep ; 14(1): 19887, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191841

RESUMEN

Mammalian orthoreoviruses (MRVs), belonging to the genus Orthoreovirus in the family Spinareoviridae, possess a double-stranded RNA segmented genome. Due to the segmented nature of their genome, MRVs are prone to gene reassortment, which allows for evolutionary diversification. Recently, a genotyping system for each MRV gene segment was proposed based on nucleotide differences. In the present study, MRVs were isolated from the fecal samples of Japanese Black cattle kept on a farm in Japan. Complete genome sequencing and analysis of 41 MRV isolates revealed that these MRVs shared almost identical sequences in the L1, L2, L3, S3, and S4 gene segments, while two different sequences were found in the S1, M1, M2, M3, and S2 gene segments. By plaque cloning, at least six genetic constellation patterns were identified, indicating the occurrence of multiple inter- (S1 and M2) and intra- (M1, M3, and S2) reassortment events. This paper represents the first report describing multiple reassortant MRVs on a single cattle farm. These MRV gene segments exhibited sequence similarity to those of MRVs isolated from cattle in the U.S. and China, rather than to MRVs previously isolated in Japan. Genotypes consisting solely of bovine MRVs were observed in the L1, M1, and M2 segments, suggesting that they might have evolved within the cattle population.


Asunto(s)
Granjas , Genoma Viral , Genotipo , Orthoreovirus de los Mamíferos , Filogenia , Virus Reordenados , Animales , Bovinos , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Japón , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/aislamiento & purificación , Orthoreovirus de los Mamíferos/clasificación , Enfermedades de los Bovinos/virología , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Heces/virología
4.
Cell Host Microbe ; 32(6): 980-995.e9, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38729153

RESUMEN

Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.


Asunto(s)
Proteínas de la Cápside , Neuropilina-1 , Orthoreovirus de los Mamíferos , Receptores Virales , Infecciones por Reoviridae , Internalización del Virus , Animales , Ratones , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/fisiología , Orthoreovirus de los Mamíferos/metabolismo , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/metabolismo , Receptores Virales/metabolismo , Humanos , Cápside/metabolismo , Línea Celular , Células HEK293 , Unión Proteica , Ratones Endogámicos C57BL
5.
mSphere ; 9(6): e0023624, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38757961

RESUMEN

Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE: Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Cápside , Orthoreovirus de los Mamíferos , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Humanos , Orthoreovirus de los Mamíferos/genética , Animales , Apoptosis , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Mitocondrias/metabolismo , Inmunidad Innata , Ratones , Evasión Inmune , Células HEK293 , Receptores Inmunológicos/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Línea Celular , Interacciones Huésped-Patógeno
6.
J Virol ; 98(6): e0030524, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38771042

RESUMEN

Many functions of viral attachment proteins are established, but less is known about the biological importance of viral attachment protein encapsidation efficiency. The mammalian orthoreovirus (reovirus) σ1 attachment protein forms filamentous trimers that incorporate into pentamers of the λ2 capsid protein. Reovirus strains vary in the efficiency of σ1 encapsidation onto progeny virions, which influences viral stability during entry into cells and the efficacy of tumor cell lysis. While the role of σ1 encapsidation has been evaluated in studies using cultured cells, the contribution of attachment protein encapsidation efficiency to viral infection in animals is less clear. Polymorphisms in reovirus σ1 at residues 22 and 249 have been implicated in viral dissemination in mice and susceptibility to proteolysis in the murine intestine, respectively. To determine whether these residues contribute to σ1 encapsidation efficiency, we engineered σ1 mutant viruses with single- and double-residue substitutions at sites 22 and 249. We found that substitutions at these sites alter the encapsidation of σ1 and that reoviruses encapsidating higher amounts of σ1 bind cells more avidly and have a modest replication advantage in a cell-type-specific manner relative to low σ1-encapsidating reoviruses. Furthermore, we found that a high σ1-encapsidating reovirus replicates and disseminates more efficiently in mice relative to a low σ1-encapsidating reovirus. These findings provide evidence of a relationship between viral attachment protein encapsidation efficiency and viral replication in cell culture and animal hosts. IMPORTANCE: Viral attachment proteins can serve multiple functions during viral replication, including attachment to host cells, cell entry and disassembly, and modulation of host immune responses. The relationship between viral attachment protein encapsidation efficiency and viral replication in cells and animals is poorly understood. We engineered and characterized a panel of reoviruses that differ in the capacity to encapsidate the σ1 attachment protein. We found that strains encapsidating σ1 with higher efficiency bind cells more avidly and replicate and spread more efficiently in mice relative to those encapsidating σ1 with lower efficiency. These results highlight a function for σ1 attachment protein capsid abundance in viral replication in cells and animals, which may inform future use of reovirus as an oncolytic therapeutic.


Asunto(s)
Proteínas de la Cápside , Infecciones por Reoviridae , Replicación Viral , Animales , Ratones , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/metabolismo , Acoplamiento Viral , Polimorfismo Genético , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/fisiología , Orthoreovirus de los Mamíferos/metabolismo , Ensamble de Virus , Línea Celular , Cápside/metabolismo , Humanos
7.
Mol Immunol ; 170: 131-143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663254

RESUMEN

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Asunto(s)
Proteínas de la Cápside , Proteína 58 DEAD Box , Factor 3 Regulador del Interferón , Helicasa Inducida por Interferón IFIH1 , Orthoreovirus de los Mamíferos , Receptores Inmunológicos , Transducción de Señal , Animales , Humanos , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteína 58 DEAD Box/metabolismo , Células HEK293 , Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Interferón beta/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Orthoreovirus de los Mamíferos/inmunología , Orthoreovirus de los Mamíferos/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas , Infecciones por Reoviridae/inmunología , Transducción de Señal/inmunología , Proteínas Virales/metabolismo , Proteínas de la Cápside/metabolismo
8.
PLoS Pathog ; 20(2): e1012037, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38394338

RESUMEN

Mammalian orthoreovirus (MRV) is a prototypic member of the Spinareoviridae family and has ten double-stranded RNA segments. One copy of each segment must be faithfully packaged into the mature virion, and prior literature suggests that nucleotides (nts) at the terminal ends of each gene likely facilitate their packaging. However, little is known about the precise packaging sequences required or how the packaging process is coordinated. Using a novel approach, we have determined that 200 nts at each terminus, inclusive of untranslated regions (UTR) and parts of the open reading frame (ORF), are sufficient for packaging S gene segments (S1-S4) individually and together into replicating virus. Further, we mapped the minimal sequences required for packaging the S1 gene segment into a replicating virus to 25 5' nts and 50 3' nts. The S1 UTRs, while not sufficient, were necessary for efficient packaging, as mutations of the 5' or 3' UTRs led to a complete loss of virus recovery. Using a second novel assay, we determined that 50 5' nts and 50 3' nts of S1 are sufficient to package a non-viral gene segment into MRV. The 5' and 3' termini of the S1 gene are predicted to form a panhandle structure and specific mutations within the stem of the predicted panhandle region led to a significant decrease in viral recovery. Additionally, mutation of six nts that are conserved across the three major serotypes of MRV that are predicted to form an unpaired loop in the S1 3' UTR, led to a complete loss of viral recovery. Overall, our data provide strong experimental proof that MRV packaging signals lie at the terminal ends of the S gene segments and offer support that the sequence requirements for efficient packaging of the S1 segment include a predicted panhandle structure and specific sequences within an unpaired loop in the 3' UTR.


Asunto(s)
Orthoreovirus de los Mamíferos , Animales , Orthoreovirus de los Mamíferos/genética , Regiones no Traducidas 3'/genética , Sistemas de Lectura Abierta/genética , ARN Viral/genética , Mutación , Genoma Viral , Mamíferos
9.
PLoS Pathog ; 20(1): e1011637, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206991

RESUMEN

Several egress pathways have been defined for many viruses. Among these pathways, extracellular vesicles (EVs) have been shown to function as vehicles of non-lytic viral egress. EVs are heterogenous populations of membrane-bound structures released from cells as a form of intercellular communication. EV-mediated viral egress may enable immune evasion and collective viral transport. Strains of nonenveloped mammalian orthoreovirus (reovirus) differ in cell lysis phenotypes, with T3D disrupting cell membranes more efficiently than T1L. However, mechanisms of reovirus egress and the influence of transport strategy on infection are only partially understood. To elucidate reovirus egress mechanisms, we infected murine fibroblasts (L cells) and non-polarized human colon epithelial (Caco-2) cells with T1L or T3D reovirus and enriched cell culture supernatants for large EVs, medium EVs, small EVs, and free reovirus. We found that both reovirus strains exit cells in association with large and medium EVs and as free virus particles, and that EV-enriched fractions are infectious. While reovirus visually associates with large and medium EVs, only medium EVs offer protection from antibody-mediated neutralization. EV-mediated protection from neutralization is virus strain- and cell type-specific, as medium EVs enriched from L cell supernatants protect T1L and T3D, while medium EVs enriched from Caco-2 cell supernatants largely fail to protect T3D and only protect T1L efficiently. Using genetically barcoded reovirus, we provide evidence that large and medium EVs can convey multiple particles to recipient cells. Finally, T1L or T3D infection increases the release of all EV sizes from L cells. Together, these findings suggest that in addition to exiting cells as free particles, reovirus promotes egress from distinct cell types in association with large and medium EVs during lytic or non-lytic infection, a mode of exit that can mediate multiparticle infection and, in some cases, protection from antibody neutralization.


Asunto(s)
Vesículas Extracelulares , Orthoreovirus Mamífero 3 , Orthoreovirus de los Mamíferos , Orthoreovirus , Reoviridae , Animales , Ratones , Humanos , Células CACO-2 , Reoviridae/genética , Orthoreovirus Mamífero 3/genética , Mamíferos
10.
Microbiol Spectr ; 12(3): e0176223, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38289932

RESUMEN

Mammalian orthoreoviruses (MRVs) infect a wide range of hosts, including humans, livestock, and wildlife. In the present study, we isolated a novel Mammalian orthoreovirus from the intestine of a microbat (Myotis aurascens) and investigated its biological and pathological characteristics. Phylogenetic analysis indicated that the new isolate was serotype 2, sharing the segments with those from different hosts. Our results showed that it can infect a wide range of cell lines from different mammalian species, including human, swine, and non-human primate cell lines. Additionally, media containing trypsin, yeast extract, and tryptose phosphate broth promoted virus propagation in primate cell lines and most human cell lines, but not in A549 and porcine cell lines. Mice infected with this strain via the intranasal route, but not via the oral route, exhibited weight loss and respiratory distress. The virus is distributed in a broad range of organs and causes lung damage. In vitro and in vivo experiments also suggested that the new virus could be a neurotropic infectious strain that can infect a neuroblastoma cell line and replicate in the brains of infected mice. Additionally, it caused a delayed immune response, as indicated by the high expression levels of cytokines and chemokines only at 14 days post-infection (dpi). These data provide an important understanding of the genetics and pathogenicity of mammalian orthoreoviruses in bats at risk of spillover infections.IMPORTANCEMammalian orthoreoviruses (MRVs) have a broad range of hosts and can cause serious respiratory and gastroenteritis diseases in humans and livestock. Some strains infect the central nervous system, causing severe encephalitis. In this study, we identified BatMRV2/SNU1/Korea/2021, a reassortment of MRV serotype 2, isolated from bats with broad tissue tropism, including the neurological system. In addition, it has been shown to cause respiratory syndrome in mouse models. The given data will provide more evidence of the risk of mammalian orthoreovirus transmission from wildlife to various animal species and the sources of spillover infections.


Asunto(s)
Quirópteros , Orthoreovirus de los Mamíferos , Ratones , Animales , Porcinos , Orthoreovirus de los Mamíferos/genética , Filogenia , Virulencia , Animales Salvajes , República de Corea , Primates
11.
Virol Sin ; 38(6): 877-888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931840

RESUMEN

Emerging and re-emerging viruses from wild animals have seriously threatened the health of humans and domesticated animals in recent years. Herein, we isolated a new mammalian orthoreovirus (MRV), Pika/MRV/GCCDC7/2019 (PMRV-GCCDC7), in the Qinghai-Tibet Plateau wild pika (Ochotona curzoniae). Though the PMRV-GCCDC7 shows features of a typical reovirus with ten gene segments arranged in 3:3:4 in length, the virus belongs to an independent evolutionary branch compared to other MRVs based on phylogenetic tree analysis. The results of cellular susceptibility, species tropism, and replication kinetics of PMRV-GCCDC7 indicated the virus could infect four human cell lines (A549, Huh7, HCT, and LoVo) and six non-human cell lines, including Vero-E6, LLC-MK2, BHK-21, N2a, MDCK, and RfKT cell, derived from diverse mammals, i.e. monkey, mice, canine and bat, which revealed the potential of PMRV-GCCDC7 to infect a variety of hosts. Infection of BALB/c mice with PMRV-GCCDC7 via intranasal inoculation led to relative weight loss, lung tissue damage and inflammation with the increase of virus titer, but no serious respiratory symptoms and death occurred. The characterization of the new reovirus from a plateau-based wild animal has expanded our knowledge of the host range of MRV and provided insight into its risk of trans-species transmission and zoonotic diseases.


Asunto(s)
Lagomorpha , Orthoreovirus de los Mamíferos , Animales , Perros , Ratones , Lagomorpha/metabolismo , Orthoreovirus de los Mamíferos/genética , Filogenia , Virulencia , Animales Salvajes , Genómica
12.
Virology ; 587: 109871, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634292

RESUMEN

Mammalian orthoreovirus (MRV) is an oncolytic virus that has been tested in over 30 clinical trials. Increased clinical success has been achieved when MRV is used in combination with other onco-immunotherapies. This has led the field to explore the creation of recombinant MRVs which incorporate immunotherapeutic sequences into the virus genome. This work focuses on creation and characterization of a recombinant MRV, S1/HER2nhd, which encodes a truncated σ1 protein fused in frame with three human epidermal growth factor receptor 2 (HER2) peptides (E75, AE36, and GP2) known to induce HER2 specific CD8+ and CD4+ T cells. We show S1/HER2nhd expresses the σ1 fusion protein containing HER2 peptides in infected cells and on the virion, and infects, replicates in, and reduces survival of HER2+ breast cancer cells. The oncolytic properties of MRV combined with HER2 peptide expression holds potential as a vaccine to prevent recurrences of HER2 expressing cancers.


Asunto(s)
Neoplasias , Orthoreovirus de los Mamíferos , Animales , Humanos , Orthoreovirus de los Mamíferos/genética , Proteínas Recombinantes de Fusión/genética , Péptidos , Mamíferos
13.
Emerg Microbes Infect ; 12(1): 2208683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37143369

RESUMEN

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.


Asunto(s)
Orthoreovirus de los Mamíferos , Orthoreovirus , Infecciones por Reoviridae , Animales , Humanos , Orthoreovirus/genética , Indonesia , Malasia , Orthoreovirus de los Mamíferos/genética , Mamíferos
14.
J Virol ; 97(5): e0058523, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37167564

RESUMEN

Structural metastability of viral capsids is pivotal for viruses to survive in harsh environments and to undergo timely conformational changes required for cell entry. Mammalian orthoreovirus (reovirus) is a model to study capsid metastability. Following initial disassembly of the reovirus particle mediated by proteases, a metastable intermediate called the infectious subvirion particle (ISVP) is generated. Using a σ1 monoreassortant virus, we recently showed that σ1 properties affect its encapsidation on particles and the metastability of ISVPs. How metastability is impacted by σ1 and whether the lower encapsidation level of σ1 is connected to this property is unknown. To define a correlation between encapsidation of σ1 and ISVP stability, we generated mutant viruses with single amino acid polymorphisms in σ1 or those that contain chimeric σ1 molecules composed of σ1 portions from type 1 and type 3 reovirus strains. We found that under most conditions where σ1 encapsidation on the particle was lower, ISVPs displayed lower stability. Characterization of mutant viruses selected for enhanced stability via a forward genetic approach also revealed that in some cases, σ1 properties influence stability without influencing σ1 encapsidation. These data indicate that σ1 can also influence ISVP stability independent of its level of incorporation. Together, our work reveals an underappreciated effect of the σ1 attachment protein on the properties of the reovirus capsid. IMPORTANCE Reovirus particles are comprised of eight proteins. Among them, the reovirus σ1 protein functions engages cellular receptors. σ1 also influences the stability of an entry intermediate called ISVP. Here, we sought to define the basis of the link between σ1 properties and stability of ISVPs. Using variety of mutant strains, we determined that when virus preparations contain particles with a high amount of encapsidated σ1, ISVP stability is higher. Additionally, we identified portions of σ1 that impact its encapsidation and consequently the stability of ISVPs. We also determined that in some cases, σ1 properties alter stability of ISVPs without affecting encapsidation. This work highlights that proteins of these complex particles are arranged in an intricate, interconnected manner such that changing the properties of these proteins has a profound impact on the remainder of the particle.


Asunto(s)
Orthoreovirus Mamífero 3 , Orthoreovirus de los Mamíferos , Internalización del Virus , Cápside/metabolismo , Línea Celular , Orthoreovirus de los Mamíferos/fisiología , Orthoreovirus Mamífero 3/fisiología
15.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147336

RESUMEN

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Asunto(s)
Orthoreovirus de los Mamíferos , Receptores Inmunológicos , Receptores Virales , Infecciones por Reoviridae , Animales , Humanos , Ratones , Anticuerpos Antivirales , Orthoreovirus de los Mamíferos/fisiología , Receptores Inmunológicos/metabolismo , Infecciones por Reoviridae/metabolismo , Receptores Virales/metabolismo
16.
Arch Virol ; 168(6): 165, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210458

RESUMEN

Throughout East Asia, Europe, and North America, mammalian orthoreovirus (MRV), for which bats have been proposed to be natural reservoirs, has been detected in a variety of domestic and wild mammals, as well as in humans. Here, we isolated a novel MRV strain (designated as Kj22-33) from a fecal sample from Vespertilio sinensis bats in Japan. Strain Kj22-33 has a 10-segmented genome with a total length of 23,580 base pairs. Phylogenetic analysis indicated that Kj22-33 is a serotype 2 strain, the segmented genome of which has undergone reassortment with that of other MRV strains.


Asunto(s)
Quirópteros , Orthoreovirus de los Mamíferos , Orthoreovirus , Infecciones por Reoviridae , Animales , Humanos , Japón , Filogenia , Europa (Continente) , Orthoreovirus/genética , Genoma Viral
17.
DNA Cell Biol ; 42(6): 289-304, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37015068

RESUMEN

Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.


Asunto(s)
Virus Oncolíticos , Orthoreovirus de los Mamíferos , Orthoreovirus , Reoviridae , Animales , Humanos , Orthoreovirus/genética , Reoviridae/genética , Orthoreovirus de los Mamíferos/genética , Virus Oncolíticos/genética , Mamíferos
18.
Curr Protoc ; 3(4): e716, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37039704

RESUMEN

Mammalian reoviruses are pathogens that cause gastrointestinal and respiratory infections. In humans, the mammalian reoviruses usually cause mild or subclinical disease, and they are ubiquitous, with most people mounting immunity at a young age. Reoviruses are prototypic representations of the Reoviridae family, which contains many highly pathogenic viruses. This article describes techniques for culturing mouse fibroblast L929 cell lines, the preferred cell line in which most mammalian reovirus studies take place. In addition, mammalian reovirus propagation, quantification, purification, and storage are described. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Propagation of mammalian reoviruses in cell culture from virus stocks Alternate Protocol 1: Large-scale propagation (and purification) of mammalian reoviruses in cell culture from virus stocks Basic Protocol 2: Quantification of mammalian reoviruses by plaque assay with neutral red staining Alternate Protocol 2: Quantification of mammalian reoviruses by plaque assay with crystal violet staining Basic Protocol 3: Storage of mammalian reoviruses Support Protocol 1: Growth and maintenance of mouse L929 cells Support Protocol 2: Plating L929 cells.


Asunto(s)
Orthoreovirus de los Mamíferos , Orthoreovirus , Reoviridae , Humanos , Animales , Ratones , Línea Celular , Técnicas de Cultivo de Célula/métodos , Mamíferos
19.
Infect Genet Evol ; 110: 105421, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871695

RESUMEN

Mammalian orthoreoviruses (reoviruses) are currently classified based on properties of the attachment protein, σ1. Four reovirus serotypes have been identified, three of which are represented by well-studied prototype human reovirus strains. Reoviruses contain ten segments of double-stranded RNA that encode 12 proteins and can reassort during coinfection. To understand the breadth of reovirus genetic diversity and its potential influence on reassortment, the sequence of the entire genome should be considered. While much is known about the prototype strains, a thorough analysis of all ten reovirus genome segment sequences has not previously been conducted. We analyzed phylogenetic relationships and nucleotide sequence conservation for each of the ten segments of more than 60 complete or nearly complete reovirus genome sequences, including those of the prototype strains. Using these relationships, we defined genotypes for each segment, with minimum nucleotide identities of 77-88% for most genotypes that contain several representative sequences. We applied segment genotypes to determine reovirus genome constellations, and we propose implementation of an updated reovirus genome classification system that incorporates genotype information for each segment. For most sequenced reoviruses, segments other than S1, which encodes σ1, cluster into a small number of genotypes and a limited array of genome constellations that do not differ greatly over time or based on animal host. However, a small number of reoviruses, including prototype strain Jones, have constellations in which segment genotypes differ from those of most other sequenced reoviruses. For these reoviruses, there is little evidence of reassortment with the major genotype. Future basic research studies that focus on the most genetically divergent reoviruses may provide new insights into reovirus biology. Analysis of available partial sequences and additional complete reovirus genome sequencing may also reveal reassortment biases, host preferences, or infection outcomes that are based on reovirus genotype.


Asunto(s)
Orthoreovirus de los Mamíferos , Animales , Humanos , Filogenia , Secuencia de Bases , Secuencia de Aminoácidos , Orthoreovirus de los Mamíferos/genética , Genoma Viral , Genotipo , Mamíferos
20.
Viruses ; 15(2)2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851777

RESUMEN

The movement of viruses in aquatic systems is rarely studied over large geographic scales. Oceanic currents, host migration, latitude-based variation in climate, and resulting changes in host life history are all potential drivers of virus connectivity, adaptation, and genetic structure. To expand our understanding of the genetic diversity of Callinectes sapidus reovirus 1 (CsRV1) across a broad spatial and host life history range of its blue crab host (Callinectes sapidus), we obtained 22 complete and 96 partial genomic sequences for CsRV1 strains from the US Atlantic coast, Gulf of Mexico, Caribbean Sea, and the Atlantic coast of South America. Phylogenetic analyses of CsRV1 genomes revealed that virus genotypes were divided into four major genogroups consistent with their host geographic origins. However, some CsRV1 sequences from the US mid-Atlantic shared high genetic similarity with the Gulf of Mexico genotypes, suggesting potential human-mediated movement of CsRV1 between the US mid-Atlantic and Gulf coasts. This study advances our understanding of how climate, coastal geography, host life history, and human activity drive patterns of genetic structure and diversity of viruses in marine animals and contributes to the capacity to infer broadscale host population connectivity in marine ecosystems from virus population genetic data.


Asunto(s)
Braquiuros , Orthoreovirus de los Mamíferos , Reoviridae , Animales , Humanos , Ecosistema , Filogenia , Estructuras Genéticas , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA