Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.448
Filtrar
1.
PLoS One ; 19(5): e0296547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753661

RESUMEN

Endophytic bacteria, recognized as eco-friendly biofertilizers, have demonstrated the potential to enhance crop growth and yield. While the plant growth-promoting effects of endophytic bacteria have been extensively studied, the impact of weed endophytes remains less explored. In this study, we aimed to isolate endophytic bacteria from native weeds and assess their plant growth-promoting abilities in rice under varying chemical fertilization. The evaluation encompassed measurements of mineral phosphate and potash solubilization, as well as indole-3-acetic acid (IAA) production activity by the selected isolates. Two promising strains, tentatively identified as Alcaligenes faecalis (BTCP01) from Eleusine indica (Goose grass) and Metabacillus indicus (BTDR03) from Cynodon dactylon (Bermuda grass) based on 16S rRNA gene phylogeny, exhibited noteworthy phosphate and potassium solubilization activity, respectively. BTCP01 demonstrated superior phosphate solubilizing activity, while BTDR03 exhibited the highest potassium (K) solubilizing activity. Both isolates synthesized IAA in the presence of L-tryptophan, with the detection of nifH and ipdC genes in their genomes. Application of isolates BTCP01 and BTDR03 through root dipping and spraying at the flowering stage significantly enhanced the agronomic performance of rice variety CV. BRRI dhan29. Notably, combining both strains with 50% of recommended N, P, and K fertilizer doses led to a substantial increase in rice grain yields compared to control plants receiving 100% of recommended doses. Taken together, our results indicate that weed endophytic bacterial strains BTCP01 and BTDR03 hold promise as biofertilizers, potentially reducing the dependency on chemical fertilizers by up to 50%, thereby fostering sustainable rice production.


Asunto(s)
Alcaligenes faecalis , Endófitos , Fertilizantes , Oryza , Fosfatos , Malezas , Oryza/microbiología , Oryza/crecimiento & desarrollo , Endófitos/metabolismo , Alcaligenes faecalis/metabolismo , Alcaligenes faecalis/crecimiento & desarrollo , Malezas/microbiología , Malezas/crecimiento & desarrollo , Fosfatos/metabolismo , Ácidos Indolacéticos/metabolismo , ARN Ribosómico 16S/genética , Filogenia , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Eleusine/microbiología , Eleusine/crecimiento & desarrollo , Cynodon/microbiología , Cynodon/crecimiento & desarrollo , Potasio/metabolismo
2.
ACS Nano ; 18(20): 13084-13097, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727520

RESUMEN

In the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.


Asunto(s)
Nanoestructuras , Oryza , Enfermedades de las Plantas , Rhizoctonia , Selenio , Oryza/microbiología , Oryza/metabolismo , Oryza/efectos de los fármacos , Selenio/farmacología , Selenio/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Humanos , Rhizoctonia/efectos de los fármacos , Nanoestructuras/química , Valor Nutritivo , Resistencia a la Enfermedad/efectos de los fármacos
3.
PeerJ ; 12: e17323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726377

RESUMEN

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Xanthomonas , Xanthomonas/genética , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas
4.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729111

RESUMEN

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Asunto(s)
Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Fosforilación , Oryza/microbiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteómica , Transducción de Señal
5.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732268

RESUMEN

Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Ascomicetos/patogenicidad , Regiones Promotoras Genéticas , Magnaporthe/patogenicidad , Transactivadores/genética , Transactivadores/metabolismo , Mutación
6.
Carbohydr Polym ; 337: 122149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710571

RESUMEN

Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was ß-1,3-linked Glcp, both the α and ß-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.


Asunto(s)
Pared Celular , Quitina , Quitosano , Glucanos , Oryza , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/efectos de los fármacos , Oryza/microbiología , Oryza/química , Pared Celular/química , Quitosano/química , Quitosano/farmacología , Quitina/química , Quitina/farmacología , Glucanos/química , Glucanos/farmacología , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad , Especies Reactivas de Oxígeno/metabolismo
8.
Mol Biol Rep ; 51(1): 626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717621

RESUMEN

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS: Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS: The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Genes de Plantas , Genes Recesivos , Oryza , Enfermedades de las Plantas , Xanthomonas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Oryza/genética , Oryza/microbiología , Xanthomonas/patogenicidad , Mapeo Cromosómico/métodos , Genes de Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Cromosomas de las Plantas/genética , Genotipo , Regulación de la Expresión Génica de las Plantas/genética
9.
Mol Biol Rep ; 51(1): 619, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709339

RESUMEN

BACKGROUND: Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS: An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS: Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Oryza/genética , Oryza/microbiología , Genes de Plantas/genética , Xanthomonas/patogenicidad , Xanthomonas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Fitomejoramiento/métodos
10.
Plant Signal Behav ; 19(1): 2350869, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38722963

RESUMEN

Fungal pathogens deliver effector proteins into living plant cells to suppress plant immunity and control plant processes that are needed for infection. During plant infection, the devastating rice blast fungus, Magnaporthe oryzae, forms the specialized biotrophic interfacial complex (BIC), which is essential for effector translocation. Cytoplasmic effectors are first focally secreted into BICs, and subsequently packaged into dynamic membranous effector compartments (MECs), then translocated via clathrin-mediated endocytosis (CME) into the host cytoplasm. This study demonstrates that clathrin-heavy chain inhibitors endosidin-9 (ES9) and endosidin-9-17 (ES9-17) blocked the internalization of the fluorescently labeled effectors Bas1 and Pwl2 in rice cells, leading to swollen BICs lacking MECs. In contrast, ES9-17 treatment had no impact on the localization pattern of the apoplastic effector Bas4. This study provides further evidence that cytoplasmic effector translocation occurs by CME in BICs, suggesting a potential role for M. oryzae effectors in co-opting plant endocytosis.


Asunto(s)
Endocitosis , Oryza , Oryza/microbiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Ascomicetos , Interacciones Huésped-Patógeno , Transporte de Proteínas , Proteínas Fúngicas/metabolismo , Clatrina/metabolismo
11.
Commun Biol ; 7(1): 607, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769168

RESUMEN

A critical step to maximize the usefulness of genome-wide association studies (GWAS) in plant breeding is the identification and validation of candidate genes underlying genetic associations. This is of particular importance in disease resistance breeding where allelic variants of resistance genes often confer resistance to distinct populations, or races, of a pathogen. Here, we perform a genome-wide association analysis of rice blast resistance in 500 genetically diverse rice accessions. To facilitate candidate gene identification, we produce de-novo genome assemblies of ten rice accessions with various rice blast resistance associations. These genome assemblies facilitate the identification and functional validation of novel alleles of the rice blast resistance genes Ptr and Pia. We uncover an allelic series for the unusual Ptr rice blast resistance gene, and additional alleles of the Pia resistance genes RGA4 and RGA5. By linking these associations to three thousand rice genomes we provide a useful tool to inform future rice blast breeding efforts. Our work shows that GWAS in combination with whole-genome sequencing is a powerful tool for gene cloning and to facilitate selection of specific resistance alleles for plant breeding.


Asunto(s)
Alelos , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Oryza , Enfermedades de las Plantas , Oryza/genética , Oryza/inmunología , Oryza/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Genoma de Planta , Genes de Plantas , Fitomejoramiento/métodos
12.
PeerJ ; 12: e16943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770100

RESUMEN

The aim of the current study was to assess the potency of the exopolymeric substances (EPS)-secreting purple non-sulfur bacteria (PNSB) on rice plants on acidic salt-affected soil under greenhouse conditions. A two-factor experiment was conducted following a completely randomized block design. The first factor was the salinity of the irrigation, and the other factor was the application of the EPS producing PNSB (Luteovulum sphaeroides EPS18, EPS37, and EPS54), with four replicates. The result illustrated that irrigation of salt water at 3-4‰ resulted in an increase in the Na+ accumulation in soil, resulting in a lower rice grain yield by 12.9-22.2% in comparison with the 0‰ salinity case. Supplying the mixture of L. sphaeroides EPS18, EPS37, and EPS54 increased pH by 0.13, NH4+ by 2.30 mg NH4+ kg-1, and available P by 8.80 mg P kg-1, and decreased Na+ by 0.348 meq Na+ 100 g-1, resulting in improvements in N, P, and K uptake and reductions in Na uptake, in comparison with the treatment without bacteria. Thus, the treatments supplied with the mixture of L. sphaeroides EPS18, EPS37, and EPS54 resulted in greater yield by 27.7% than the control treatment.


Asunto(s)
Oryza , Microbiología del Suelo , Suelo , Oryza/microbiología , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Suelo/química , Salinidad , Estrés Salino , Proteobacteria/metabolismo , Concentración de Iones de Hidrógeno , Sodio/metabolismo , Sodio/farmacología
13.
J Agric Food Chem ; 72(20): 11415-11428, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727515

RESUMEN

Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.


Asunto(s)
Alcanfor , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Oryza , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/efectos de los fármacos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Animales , Alcanfor/farmacología , Alcanfor/química , Abejas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Relación Estructura-Actividad
14.
World J Microbiol Biotechnol ; 40(6): 188, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702590

RESUMEN

Methanol, the second most abundant volatile organic compound, primarily released from plants, is a major culprit disturbing atmospheric chemistry. Interestingly, ubiquitously found methanol-utilizing bacteria, play a vital role in mitigating atmospheric methanol effects. Despite being extensively characterized, the effect of nitrogen sources on the richness of methanol-utilizers in the bulk soil and rhizosphere is largely unknown. Therefore, the current study was planned to isolate, characterize and explore the richness of cultivable methylotrophs from the bulk soil and rhizosphere of a paddy field using media with varying nitrogen sources. Our data revealed that more genera of methylotrophs, including Methylobacterium, Ancylobacter, Achromobacter, Xanthobacter, Moraxella, and Klebsiella were enriched with the nitrate-based medium compared to only two genera, Hyphomicrobium and Methylobacterium, enriched with the ammonium-based medium. The richness of methylotrophic bacteria also differed substantially in the bulk soil as compared to the rhizosphere. Growth characterization revealed that majority of the newly isolated methanol-utilizing strains in this study exhibited better growth at 37 °C instead of 30 or 45 °C. Moreover, Hyphomicrobium sp. FSA2 was the only strain capable of utilizing methanol even at elevated temperature 45 °C, showing its adaptability to a wide range of temperatures. Differential carbon substrate utilization profiling revealed the facultative nature of all isolated methanol-utilizer strains with Xanthobacter sp. TS3, being an important methanol-utilizer capable of degrading toxic compounds such as acetone and ethylene glycol. Overall, our study suggests the role of nutrients and plant-microbial interaction in shaping the composition of methanol-utilizers in terrestrial environment.


Asunto(s)
Bacterias , Metanol , Nitrógeno , Oryza , Rizosfera , Microbiología del Suelo , Nitrógeno/metabolismo , Metanol/metabolismo , Oryza/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Suelo/química , ARN Ribosómico 16S/genética , Filogenia , Minerales/metabolismo , Temperatura , Carbono/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-38713185

RESUMEN

An aerobic, Gram-stain-negative and short rod-shaped bacterial strain, designated M6-31T, was isolated from rice paddy soil sampled in Miryang, Republic of Korea. Growth was observed at 4-35 °C (optimum, 28 °C), pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-4 % (w/v) NaCl (optimum, 0 % w/v). Phylogenetic analysis based on 16S rRNA gene sequences grouped strain M6-31T with Sphingobacterium bambusae IBFC2009T, Sphingobacterium griseoflavum SCU-B140T and Sphingobacterium solani MLS-26-JM13-11T in the same clade, with the 16S rRNA gene sequence similarities ranging from 95.8 to 96.6 %. A genome-based phylogenetic tree reconstructed by using all publicly available Sphingobacterium genomes placed strain M6-31T with S. bambusae KACC 22910T, 'Sphingobacterium deserti' ACCC 05744T, S. griseoflavum CGMCC 1.12966T and Sphingobacterium paludis CGMCC 1.12801T. Orthologous average nucleotide identity and digital DNA-DNA hybridization values between strain M6-31T and its closely related strains were lower than 74.6 and 22.0 %, respectively. The respiratory quinone was menaquinone-7, and the major polar lipid was phosphatidylethanolamine. The major fatty acids (>10 %) were C15 : 0 iso, C17 : 0 iso 3OH and summed feature 3. The phenotypic, chemotaxonomic and genotypic data obtained in this study showed that strain M6-31T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium oryzagri sp. nov. (type strain M6-31T=KACC 22765T=JCM 35893T) is proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Oryza , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , Sphingobacterium , Vitamina K 2 , Vitamina K 2/análogos & derivados , Oryza/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Sphingobacterium/genética , Sphingobacterium/aislamiento & purificación , Sphingobacterium/clasificación , ADN Bacteriano/genética , República de Corea , Vitamina K 2/análisis , Composición de Base , Fosfatidiletanolaminas
16.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714914

RESUMEN

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas Fúngicas , Oryza , Proteómica , Oryza/microbiología , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Mutación , Multiómica , Ascomicetos
17.
Braz J Biol ; 84: e282495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747865

RESUMEN

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses. The aim of this work was to screen and select cold and blast resistant rice breeding lines (RBLs) using molecular markers. Molecular screening of RBLs and parental varieties to cold tolerance was carried out using markers RM24545, RM1377, RM231 and RM569 associated with QTLs (qPSST-3, qPSST-7, qPSST-9). It was discovered that the presence of three QTLs characterizes the cold resistance of studied genotypes, and the absence of one of them leads to cold sensitivity. As a result, 21 cold-resistant out of the 28 studied RBLs were identified. These cold resistant 21 RBLs were further tested to blast resistance using markers Pi-ta, Pita3, Z56592, 195R-1, NMSMPi9-1, TRS26, Pikh MAS, MSM6, 9871.T7E2b, RM224 and RM1233. It was revealed that 16 RBLs from 21 studied lines contain 5-6 blast resistance genes. In accordance with the blast resistance strategy, the presence of 5 or more genes ensures the formation of stable resistance to Magnaporthe oryzae. Thus, 16 lines resistant to multiple stresses, such as cold and blast disease were developed. It should be noted that 6 of these selected lines are high-yielding, which is very important in rice breeding program. These RBLs can be used in breeding process as starting lines, germplasm exchange as a source of resistant genes for the development of new rice varieties resistant to multiple stress factors.


Asunto(s)
Oryza , Fitomejoramiento , Estrés Fisiológico , Oryza/genética , Oryza/microbiología , Oryza/fisiología , Estrés Fisiológico/genética , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Genotipo , Marcadores Genéticos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Frío
18.
Microb Biotechnol ; 17(4): e14441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568774

RESUMEN

Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.


Asunto(s)
Metionina Sulfóxido Reductasas , Oryza , Rhizoctonia , Oryza/microbiología , Metionina , Peróxido de Hidrógeno/farmacología , Racemetionina/farmacología , Enfermedades de las Plantas/microbiología
19.
PLoS One ; 19(4): e0301519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578751

RESUMEN

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Magnaporthe , Oryza , Ácido Quínico/análogos & derivados , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Quercetina/farmacología , Simulación del Acoplamiento Molecular , Oryza/microbiología , Flavonoides/farmacología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
20.
Pestic Biochem Physiol ; 200: 105807, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582579

RESUMEN

Recently, nanotechnology is among the most promising technologies used in all areas of research. The production of metal nanoparticles using plant parts has received significant attention for its environmental friendliness and effectiveness. Therefore, we investigated the possible applications of biological synthesized nickel oxide nanoparticles (NiONPs). In this study, NiONPs were synthesized through biological method using an aqueous extract of saffron stigmas (Crocus sativus L). The structure, morphology, purity, and physicochemical properties of the obtained NPs were confirmed through Scanning/Transmission Electron Microscopy attached with Energy Dispersive Spectrum, X-ray Diffraction, and Fourier transform infrared. The spherically shaped NiONPs were found by Debye Scherer's formula to have a mean dimension of 41.19 nm. The application of NiONPs in vitro at 50, 100, and 200 µg/mL, respectively, produced a clear region of 2.0, 2.2, and 2.5 cm. Treatment of Xoo cell with NiONPs reduced the growth and biofilm formation, respectively, by 88.68% and 83.69% at 200 µg/mL. Adding 200 µg/mL NiONPs into Xoo cells produced a significant amount of ROS in comparison with the control. Bacterial apoptosis increased dramatically from 1.05% (control) to 99.80% (200 µg/mL NiONPs). When compared to the control, rice plants treated with 200 µg/mL NiONPs significantly improved growth characteristics and biomass. Interestingly, the proportion of diseased leaf area in infected plants with Xoo treated with NiONPs reduced to 22% from 74% in diseased plants. Taken together, NiONPs demonstrates its effectiveness as a promising tool as a nano-bactericide in managing bacterial infection caused by Xoo.


Asunto(s)
Nanopartículas del Metal , Níquel , Oryza , Xanthomonas , Oryza/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...