Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.180
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731947

RESUMEN

Estrogen plays an important role in osteoporosis prevention. We herein report the possible novel signaling pathway of 17ß-estradiol (E2) in the matrix mineralization of MC3T3-E1, an osteoblast-like cell line. In the culture media-containing stripped serum, in which small lipophilic molecules such as steroid hormones including E2 were depleted, matrix mineralization was significantly reduced. However, the E2 treatment induced this. The E2 effects were suppressed by ICI182,780, the estrogen receptor (ER)α, and the ERß antagonist, as well as their mRNA knockdown, whereas Raloxifene, an inhibitor of estrogen-induced transcription, and G15, a G-protein-coupled estrogen receptor (GPER) 1 inhibitor, had little or no effect. Furthermore, the E2-activated matrix mineralization was disrupted by PMA, a PKC activator, and SB202190, a p38 MAPK inhibitor, but not by wortmannin, a PI3K inhibitor. Matrix mineralization was also induced by the culture media from the E2-stimulated cell culture. This effect was hindered by PMA or heat treatment, but not by SB202190. These results indicate that E2 activates the p38 MAPK pathway via ERs independently from actions in the nucleus. Such activation may cause the secretion of certain signaling molecule(s), which inhibit the PKC pathway. Our study provides a novel pathway of E2 action that could be a therapeutic target to activate matrix mineralization under various diseases, including osteoporosis.


Asunto(s)
Estradiol , Osteoblastos , Transducción de Señal , Animales , Ratones , Estradiol/farmacología , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Línea Celular , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Estrógenos/farmacología , Estrógenos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732057

RESUMEN

Implant therapy is a common treatment option in dentistry and orthopedics, but its application is often associated with an increased risk of microbial contamination of the implant surfaces that cause bone tissue impairment. This study aims to develop two silver-enriched platelet-rich plasma (PRP) multifunctional scaffolds active at the same time in preventing implant-associated infections and stimulating bone regeneration. Commercial silver lactate (L) and newly synthesized silver deoxycholate:ß-Cyclodextrin (B), were studied in vitro. Initially, the antimicrobial activity of the two silver soluble forms and the PRP enriched with the two silver forms has been studied on microbial planktonic cells. At the same time, the biocompatibility of silver-enriched PRPs has been assessed by an MTT test on human primary osteoblasts (hOBs). Afterwards, an investigation was conducted to evaluate the activity of selected concentrations and forms of silver-enriched PRPs in inhibiting microbial biofilm formation and stimulating hOB differentiation. PRP-L (0.3 µg/mm2) and PRP-B (0.2 µg/mm2) counteract Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans planktonic cell growth and biofilm formation, preserving hOB viability without interfering with their differentiation capability. Overall, the results obtained suggest that L- and B-enriched PRPs represent a promising preventive strategy against biofilm-related implant infections and demonstrate a new silver formulation that, together with increasing fibrin binding protecting silver in truncated cone-shaped cyclic oligosaccharides, achieved comparable inhibitory results on prokaryotic cells at a lower concentration.


Asunto(s)
Biopelículas , Osteoblastos , Plasma Rico en Plaquetas , Plata , Humanos , Biopelículas/efectos de los fármacos , Plata/química , Plata/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Relacionadas con Prótesis/microbiología , Staphylococcus epidermidis/efectos de los fármacos
3.
J Orthop Surg Res ; 19(1): 294, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745231

RESUMEN

BACKGROUND: Osteonecrosis of the femoral head caused by glucocorticoids (GIONFH) is a significant issue resulting from prolonged or excessive clinical glucocorticoid use. Astaxanthin, an orange-red carotenoid present in marine organisms, has been the focus of this study to explore its impact and mechanism on osteoblast apoptosis induced by dexamethasone (Dex) and GIONFH. METHODS: In this experiment, bioinformatic prediction, molecular docking and dynamics simulation, cytotoxicity assay, osteogenic differentiation, qRT-PCR analysis, terminal uridine nickend labeling (TUNEL) assay, determination of intracellular ROS, mitochondrial function assay, immunofluorescence, GIONFH rat model construction, micro-computed tomography (micro-CT) scans were performed. RESULTS: Our research demonstrated that a low dose of astaxanthin was non-toxic to healthy osteoblasts and restored the osteogenic function of Dex-treated osteoblasts by reducing oxidative stress, mitochondrial dysfunction, and apoptosis. Furthermore, astaxanthin rescued the dysfunction in poor bone quality, bone metabolism and angiogenesis of GIONFH rats. The mechanism behind this involves astaxanthin counteracting Dex-induced osteogenic damage by activating the Nrf2 pathway. CONCLUSION: Astaxanthin shields osteoblasts from glucocorticoid-induced oxidative stress and mitochondrial dysfunction via Nrf2 pathway activation, making it a potential therapeutic agent for GIONFH treatment.


Asunto(s)
Necrosis de la Cabeza Femoral , Glucocorticoides , Mitocondrias , Factor 2 Relacionado con NF-E2 , Osteoblastos , Osteogénesis , Estrés Oxidativo , Xantófilas , Animales , Xantófilas/farmacología , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Glucocorticoides/efectos adversos , Glucocorticoides/toxicidad , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/metabolismo , Osteogénesis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Masculino , Dexametasona/farmacología , Dexametasona/efectos adversos , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad
4.
Pak J Pharm Sci ; 37(1(Special)): 223-229, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747273

RESUMEN

In this study, the anti-osteogenic properties of the volatile oil extracted from Homalomena gigantea rhizome using ethyl acetate (EtOAc) and methanol (MeOH) were examined. Gas chromatography-mass spectrometry (GC-MS) was employed for the identification of volatile components. Following this, bioassays were performed to evaluate their effects on osteogenesis, encompassing parameters like cell viability, osteoblast differentiation, collagen synthesis and mineralization. The GC-MS analysis revealed 19 compounds in the EtOAc extract and 36 compounds in the MeOH extract. In the MeOH extract, major constituents included bis(2-ethylhexyl) terephthalate (13.83%), linalool (9.58%), palmitic acid (6.55%) and stearic acid (4.29%). The EtOAc extract contained bis(2-ethylhexyl) terephthalate (16.64%), palmitic acid (5.60%) and stearic acid (3.11%) as the predominant components. Both the EtOAc and MeOH extracts of H. gigantea exhibited promising potential for further investigation in anti-osteoporosis research. These findings contribute to the exploration of natural compounds with potential anti-osteoporotic properties, expanding our understanding of their therapeutic potential.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Osteogénesis , Extractos Vegetales , Rizoma , Osteogénesis/efectos de los fármacos , Rizoma/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Animales , Supervivencia Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratones , Ácido Palmítico/farmacología , Monoterpenos Acíclicos/farmacología
5.
J Physiol Pharmacol ; 75(2): 173-183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736264

RESUMEN

Quercetin is widely distributed in plants as a flavonol compound with multiple biological activities. It has been found that quercetin can regulate bone homeostasis through multiple pathways and targets. This study investigated the role and specific molecular mechanisms of quercetin in regulating osteoblast viability, proliferation, migration and osteogenic differentiation. A mouse model of traumatic fracture was established and then 100 mg/kg quercetin corn oil suspension was gavaged at the same time every day for 28 days. miR-6089 and E2F transcription factor 2 (E2F2) expression levels in mice were measured. Fracture healing in mice was observed. MC3T3-E1 cells were transfected with plasmids targeting miR-6089 and E2F2, and cell viability, proliferation, migration, apoptosis, and osteogenic differentiation were determined. The targeting relationship between miR-6089 and E2F2 was verified. In vivo experiments showed that quercetin significantly increased osteocalcin (OCN) expression (P<0.05) and promoted fracture healing in traumatic fracture (TF) mice. miR-6089 expression was down-regulated (P<0.05) and E2F2 expression was up-regulated (P<0.05) in TF mice. Quercetin promoted miR-6089 expression and inhibited E2F2 expression (both P<0.05). In vitro results showed that quercetin promoted miR-6089 expression and inhibited E2F2 expression in a dose-dependent manner (both P<0.05). Quercetin dose-dependently promoted MC3T3-E1 cell viability, proliferation, migration, and osteogenic differentiation, and inhibited MC3T3-E1 cell apoptosis (all P<0.05). Up-regulating miR-6089 further promoted MC3T3-E1 cell viability, proliferation, migration and osteogenic differentiation, and inhibited MC3T3-E1 cell apoptosis (all P<0.05). miR-6089 targeted and regulated E2F2 expression. Up-regulating E2F2 attenuated the promoting effect of up-regulated miR-6089 on MC3T3-E1 cell viability, proliferation, migration, osteogenic differentiation, and inhibition of apoptosis (all P<0.05). We conclude that quercetin enhances osteoblast viability, proliferation, migration, and osteogenic differentiation by modulating the miR-6089/E2F2 axis, thereby promoting fracture healing.


Asunto(s)
Factor de Transcripción E2F2 , Curación de Fractura , MicroARNs , Osteoblastos , Osteogénesis , Quercetina , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F2/genética , Curación de Fractura/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Quercetina/farmacología
6.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732267

RESUMEN

Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome's influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment.


Asunto(s)
Productos Biológicos , Remodelación Ósea , Osteoporosis , Humanos , Remodelación Ósea/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Huesos/metabolismo , Huesos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Animales
7.
Pak J Pharm Sci ; 37(1): 123-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741408

RESUMEN

The study aimed to investigate the effects of aspirin on patients with metastatic colorectal cancer, focusing on circulating tumor DNA levels and bone tissue. Two groups (A and B) of ten patients with osteoporosis were selected for the study. Bone tissue samples were obtained from the patients and cultured under sterile conditions. The aspirin group showed a significant decrease in circulating tumor DNA levels and an increase in bone tissue density compared to the control group. Additionally, osteoblast apoptosis was reduced, while proliferation was enhanced in the aspirin group. The protein pAkt related to the PI3K/Akt signaling pathway was upregulated in the aspirin group. These results indicate that aspirin can effectively lower circulating tumor DNA levels, promote bone tissue proliferation, inhibit apoptosis, and activate the PI3K/Akt signaling pathway, thereby influencing bone cell function. These findings provide a basis for aspirin's potential application in treating metastatic colorectal cancer and encourage further research on its mechanism and clinical use.


Asunto(s)
Apoptosis , Aspirina , ADN Tumoral Circulante , Neoplasias Colorrectales , Humanos , Aspirina/farmacología , Aspirina/uso terapéutico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Masculino , Femenino , Persona de Mediana Edad , Apoptosis/efectos de los fármacos , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Anciano , Transducción de Señal/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/patología , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Densidad Ósea/efectos de los fármacos , Osteoporosis/tratamiento farmacológico
8.
Biol Open ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38742438

RESUMEN

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.


Asunto(s)
Regulación de la Expresión Génica , Glucosa , Osteoblastos , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Animales , Glucosa/metabolismo , Ratas , Regulación de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Hiperglucemia/metabolismo , Hiperglucemia/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Transcriptoma , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Supervivencia Celular/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos
9.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732172

RESUMEN

Fibrous dysplasia (FD) poses a therapeutic challenge due to the dysregulated extracellular matrix (ECM) accumulation within affected bone tissues. In this study, we investigate the therapeutic potential of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in managing FD by examining its effects on FD-derived cells in vitro. Our findings demonstrate that 1,25(OH)2D3 treatment attenuates the pro-fibrotic phenotype of FD-derived cells by suppressing the expression of key pro-fibrotic markers and inhibiting cell proliferation and migration. Moreover, 1,25(OH)2D3 enhances mineralization by attenuating pre-osteoblastic cellular hyperactivity and promoting maturation towards an osteocytic phenotype. These results offer valuable insights into potential treatments for FD, highlighting the role of 1,25(OH)2D3 in modulating the pathological properties of FD-derived cells.


Asunto(s)
Proliferación Celular , Displasia Fibrosa Ósea , Humanos , Proliferación Celular/efectos de los fármacos , Displasia Fibrosa Ósea/metabolismo , Displasia Fibrosa Ósea/patología , Displasia Fibrosa Ósea/tratamiento farmacológico , Fenotipo , Vitamina D/farmacología , Vitamina D/metabolismo , Fibrosis , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Movimiento Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Calcitriol/farmacología , Células Cultivadas
10.
ACS Biomater Sci Eng ; 10(5): 2983-2994, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38634615

RESUMEN

Calcified cartilage digested by chondroclasts provides an excellent scaffold to initiate bone formation. We analyzed bioactive proteins and microarchitecture of calcified cartilage either separately or in combination and evaluated biomimetic osteogenic culture conditions of surface-coated micropatterning. To do so, we prepared a crude extract from porcine femoral growth plates, which enhanced in vitro mineralization when coated on flat-bottom culture dishes, and identified four candidate proteins by fractionation and mass spectrometry. Murine homologues of two candidates, desmoglein 4 (DSG4) and peroxiredoxin 6 (PRDX6), significantly promoted osteogenic activity based on in vitro mineralization and osteoblast differentiation. Moreover, we observed DSG4 and PRDX6 protein expression in mouse femur. In addition, we designed circular, triangular, and honeycomb micropatterns with 30 or 50 µm units, either isolated or connected, to mimic hypertrophic chondrocyte-sized compartments. Isolated, larger honeycomb patterns particularly enhanced osteogenesis in vitro. Mineralization on micropatterns was positively correlated with the reduction of osteoblast migration distance in live cell imaging. Finally, we evaluated possible combinatorial effects of coat proteins and micropatterns and observed an additive effect of DSG4 or PRDX6 coating with micropatterns. These data suggest that combining a bioactive surface coating with osteogenic micropatterns may recapitulate initiation of bone formation during endochondral ossification.


Asunto(s)
Osteogénesis , Animales , Osteogénesis/efectos de los fármacos , Ratones , Porcinos , Osteoblastos/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cartílago/metabolismo , Cartílago/citología , Peroxiredoxina VI/metabolismo , Calcificación Fisiológica/efectos de los fármacos
11.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673956

RESUMEN

For a wide range of chronic autoimmune and inflammatory diseases in both adults and children, synthetic glucocorticoids (GCs) are one of the most effective treatments. However, besides other adverse effects, GCs inhibit bone mass at multiple levels, and at different ages, especially in puberty. Although extensive studies have investigated the mechanism of GC-induced osteoporosis, their target cell populations still be obscure. Here, our data show that the osteoblast subpopulation among Gli1+ metaphyseal mesenchymal progenitors (MMPs) is responsive to GCs as indicated by lineage tracing and single-cell RNA sequencing experiments. Furthermore, the proliferation and differentiation of Gli1+ MMPs are both decreased, which may be because GCs impair the oxidative phosphorylation(OXPHOS) and aerobic glycolysis of Gli1+ MMPs. Teriparatide, as one of the potential treatments for GCs in bone mass, is sought to increase bone volume by increasing the proliferation and differentiation of Gli1+ MMPs in vivo. Notably, our data demonstrate teriparatide ameliorates GC-caused bone defects by targeting Gli1+ MMPs. Thus, Gli1+ MMPs will be the potential mesenchymal progenitors in response to diverse pharmaceutical administrations in regulating bone formation.


Asunto(s)
Glucocorticoides , Células Madre Mesenquimatosas , Osteoporosis , Animales , Ratones , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glucocorticoides/efectos adversos , Glucocorticoides/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Osteoporosis/patología , Teriparatido/farmacología , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética
12.
Int J Biol Macromol ; 267(Pt 1): 131480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599427

RESUMEN

Bone regeneration remains a major clinical challenge, especially when infection necessitates prolonged antibiotic treatment. This study presents a membrane composed of self-assembled and interpenetrating GL13K, an antimicrobial peptide (AMP) derived from a salivary protein, in a collagen membrane for antimicrobial activity and enhanced bone regeneration. Commercially available collagen membranes were immersed in GL13K solution, and self-assembly was initiated by raising the solution pH to synthesize the multifunctional membrane called COL-GL. COL-GL was composed of interpenetrating large collagen fibers and short GL13K nanofibrils, which increased hydrophobicity, reduced biodegradation from collagenase, and stiffened the matrix compared to control collagen membranes. Incorporation of GL13K led to antimicrobial and anti-fouling activity against early oral surface colonizer Streptococcus gordonii while not affecting fibroblast cytocompatibility or pre-osteoblast osteogenic differentiation. GL13K in solution also reduced macrophage inflammatory cytokine expression and increased pro-healing cytokine expression. Bone formation in a rat calvarial model was accelerated at eight weeks with COL-GL compared to the gold-standard collagen membrane based on microcomputed tomography and histology. Interpenetration of GL13K within collagen sidesteps challenges with antimicrobial coatings on bone regeneration scaffolds while increasing bone regeneration. This strength makes COL-GL a promising approach to reduce post-surgical infections and aid bone regeneration in dental and orthopedic applications. STATEMENT OF SIGNIFICANCE: The COL-GL membrane, incorporating the antimicrobial peptide GL13K within a collagen membrane, signifies a noteworthy breakthrough in bone regeneration strategies for dental and orthopedic applications. By integrating self-assembled GL13K nanofibers into the membrane, this study successfully addresses the challenges associated with antimicrobial coatings, exhibiting improved antimicrobial and anti-fouling activity while preserving compatibility with fibroblasts and pre-osteoblasts. The accelerated bone formation observed in a rat calvarial model emphasizes the potential of this innovative approach to minimize post-surgical infections and enhance bone regeneration outcomes. As a promising alternative for future therapeutic interventions, this material tackles the clinical challenges of extended antibiotic treatments and antibiotic resistance in bone regeneration scenarios.


Asunto(s)
Péptidos Antimicrobianos , Regeneración Ósea , Colágeno , Membranas Artificiales , Nanofibras , Regeneración Ósea/efectos de los fármacos , Animales , Ratas , Nanofibras/química , Colágeno/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Osteogénesis/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Streptococcus gordonii/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Fibroblastos/efectos de los fármacos
13.
Cells ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667271

RESUMEN

Even with the best infection control protocols in place, the risk of a hospital-acquired infection of the surface of an implanted device remains significant. A bacterial biofilm can form and has the potential to escape the host immune system and develop resistance to conventional antibiotics, ultimately causing the implant to fail, seriously impacting patient well-being. Here, we demonstrate a 4 log reduction in the infection rate by the common pathogen S. aureus of 3D-printed polyaryl ether ketone (PAEK) polymeric surfaces by covalently binding the antimicrobial peptide Mel4 to the surface using plasma immersion ion implantation (PIII) treatment. The surfaces with added texture created by 3D-printed processes such as fused deposition-modelled polyether ether ketone (PEEK) and selective laser-sintered polyether ketone (PEK) can be equally well protected as conventionally manufactured materials. Unbound Mel4 in solution at relevant concentrations is non-cytotoxic to osteoblastic cell line Saos-2. Mel4 in combination with PIII aids Saos-2 cells to attach to the surface, increasing the adhesion by 88% compared to untreated materials without Mel4. A reduction in mineralisation on the Mel4-containing surfaces relative to surfaces without peptide was found, attributed to the acellular portion of mineral deposition.


Asunto(s)
Péptidos Antimicrobianos , Benzofenonas , Polímeros , Impresión Tridimensional , Prótesis e Implantes , Staphylococcus aureus , Humanos , Staphylococcus aureus/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/metabolismo , Prótesis e Implantes/efectos adversos , Polímeros/química , Polímeros/farmacología , Biopelículas/efectos de los fármacos , Cetonas/química , Cetonas/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Polietilenglicoles/química , Polietilenglicoles/farmacología , Propiedades de Superficie , Huesos/efectos de los fármacos , Huesos/metabolismo , Ortopedia
14.
J Indian Prosthodont Soc ; 24(2): 175-185, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38650343

RESUMEN

AIM: To evaluate the potential of iron nanoparticles (FeNPs) in conjunction with magnetic fields (MFs) to enhance osteoblast cytomechanics, promote cell homing, bone development activity, and antibacterial capabilities, and to assess their in vivo angiogenic viability using the chicken egg chorioallantoic membrane (CAM) model. SETTINGS AND DESIGN: Experimental study conducted in a laboratory setting to investigate the effects of FeNPs and MFs on osteoblast cells and angiogenesis using a custom titanium (Ti) substrate coated with FeNPs. MATERIALS AND METHODS: A custom titanium (Ti) was coated with FeNPs. Evaluations were conducted to analyze the antibacterial properties, cell adhesion, durability, physical characteristics, and nanoparticle absorption associated with FeNPs. Cell physical characteristics were assessed using protein markers, and microscopy, CAM model, was used to quantify blood vessel formation and morphology to assess the FeNP-coated Ti's angiogenic potential. This in vivo study provided critical insights into tissue response and regenerative properties for biomedical applications. STATISTICAL ANALYSIS: Statistical analysis was performed using appropriate tests to compare experimental groups and controls. Significance was determined at P < 0.05. RESULTS: FeNPs and MFs notably improved osteoblast cell mechanical properties facilitated the growth and formation of new blood vessels and bone tissue and promoted cell migration to targeted sites. In the group treated with FeNPs and exposed to MFs, there was a significant increase in vessel percentage area (76.03%) compared to control groups (58.11%), along with enhanced mineralization and robust antibacterial effects (P < 0.05). CONCLUSION: The study highlights the promising potential of FeNPs in fostering the growth of new blood vessels, promoting the formation of bone tissue, and facilitating targeted cell migration. These findings underscore the importance of further investigating the mechanical traits of FeNPs, as they could significantly advance the development of effective bone tissue engineering techniques, ultimately enhancing clinical outcomes in the field.


Asunto(s)
Membrana Corioalantoides , Campos Magnéticos , Neovascularización Fisiológica , Osteoblastos , Ingeniería de Tejidos , Titanio , Animales , Ingeniería de Tejidos/métodos , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Osteoblastos/efectos de los fármacos , Titanio/química , Titanio/farmacología , Embrión de Pollo , Pollos , Hierro/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Adhesión Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Angiogénesis
15.
Int J Biol Macromol ; 267(Pt 2): 131412, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593894

RESUMEN

The synthesis of ideal bioceramics to guide the fate of cells and subsequent bone regeneration within the chemical, biological, and physical microenvironment is a challenging long-term task. This study developed amorphous calcium magnesium phosphate (ACMP) bioceramics via a simple co-precipitation method. The role of Mg2+ in the formation of ACMP is investigated using physicochemical and biological characterization at different Ca/Mg molar ratio of the initial reaction solution. Additionally, ACMP bioceramics show superior cytocompatibility and improved osteogenic differentiation of co-cultured MC3T3-E1 cells. Regulation of the microenvironment with Mg2+ can promote early-stage bone regeneration. For this, bioprinting technology is employed to prepare ACMP-modified 3D porous structures. Our hypothesis is that the incorporation of ACMP into methacrylated gelatin (GelMA) bioink can trigger the osteogenic differentiation of encapsulated preosteoblast and stimulate bone regeneration. The cell-laden ACMP composite structures display stable printability and superior cell viability and cell proliferation. Also, constructs loading the appropriate amount of ACMP bioceramic showed significant osteogenic differentiation activity compared to the pure GelMA. We demonstrate that the dissolved Mg2+ cation microenvironment in ACMP-modified composite constructs plays an effective biochemical role, and can regulate cell fate. Our results predict that GelMA/ACMP bioink has significant potential in patient-specific bone tissue regeneration.


Asunto(s)
Bioimpresión , Regeneración Ósea , Fosfatos de Calcio , Diferenciación Celular , Osteogénesis , Impresión Tridimensional , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Ratones , Animales , Osteogénesis/efectos de los fármacos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Bioimpresión/métodos , Andamios del Tejido/química , Proliferación Celular/efectos de los fármacos , Compuestos de Magnesio/química , Compuestos de Magnesio/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Línea Celular , Ingeniería de Tejidos/métodos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Fosfatos/química , Fosfatos/farmacología
16.
Int J Biol Macromol ; 267(Pt 2): 131519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608985

RESUMEN

Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.


Asunto(s)
Materiales Biocompatibles , Tornillos Óseos , Quitosano , Fibroínas , Células Endoteliales de la Vena Umbilical Humana , Ensayo de Materiales , Quitosano/química , Quitosano/farmacología , Fibroínas/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hidrogeles/química , Proliferación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Fuerza Compresiva , Módulo de Elasticidad
17.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675559

RESUMEN

The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.


Asunto(s)
Apoptosis , Osteoblastos , Osteoclastos , Ligando RANK , Rhodophyta , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Etanol/química , Peróxido de Hidrógeno/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Ligando RANK/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Rhodophyta/química
18.
J Orthop Surg Res ; 19(1): 255, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650022

RESUMEN

Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze-thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze-thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze-thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.


Asunto(s)
Tejido Adiposo , Osteoblastos , Osteogénesis , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Osteoblastos/efectos de los fármacos , Humanos , Tejido Adiposo/citología , Células Madre/efectos de los fármacos , Células Cultivadas , Diferenciación Celular/efectos de los fármacos , Extractos Celulares/farmacología , Animales
19.
Biomed Mater ; 19(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626780

RESUMEN

Wool derived keratin, due to its demonstrated ability to promote bone formation, has been suggested as a potential bioactive material for implant surfaces. The aim of this study was to assess the effects of keratin-coated titanium on osteoblast functionin vitroand bone healingin vivo. Keratin-coated titanium surfaces were fabricated via solvent casting and molecular grafting. The effect of these surfaces on the attachment, osteogenic gene, and osteogenic protein expression of MG-63 osteoblast-like cells were quantifiedin vitro. The effect of these keratin-modified surfaces on bone healing over three weeks using an intraosseous calvaria defect was assessed in rodents. Keratin coating did not affect MG-63 proliferation or viability, but enhanced osteopontin, osteocalcin and bone morphogenetic expressionin vitro. Histological analysis of recovered calvaria specimens showed osseous defects covered with keratin-coated titanium had a higher percentage of new bone area two weeks after implantation compared to that in defects covered with titanium alone. The keratin-coated surfaces were biocompatible and stimulated osteogenic expression in adherent MG-63 osteoblasts. Furthermore, a pilot preclinical study in rodents suggested keratin may stimulate earlier intraosseous calvaria bone healing.


Asunto(s)
Regeneración Ósea , Proliferación Celular , Materiales Biocompatibles Revestidos , Queratinas , Osteoblastos , Osteogénesis , Cráneo , Titanio , Titanio/química , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/metabolismo , Regeneración Ósea/efectos de los fármacos , Animales , Queratinas/química , Queratinas/metabolismo , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Proliferación Celular/efectos de los fármacos , Cráneo/efectos de los fármacos , Cráneo/lesiones , Osteogénesis/efectos de los fármacos , Ratas , Propiedades de Superficie , Masculino , Línea Celular , Adhesión Celular/efectos de los fármacos , Ensayo de Materiales , Supervivencia Celular/efectos de los fármacos , Ratas Sprague-Dawley
20.
Carbohydr Polym ; 336: 122115, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670750

RESUMEN

To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.


Asunto(s)
Proliferación Celular , Quitosano , Hidrogeles , Liposomas , Osteoblastos , Quercetina , Quercetina/análogos & derivados , Cráneo , Vía de Señalización Wnt , Animales , Quitosano/análogos & derivados , Quitosano/química , Quitosano/farmacología , Quercetina/farmacología , Quercetina/química , Liposomas/química , Vía de Señalización Wnt/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Proliferación Celular/efectos de los fármacos , Ratones , Cráneo/efectos de los fármacos , Cráneo/patología , Cráneo/metabolismo , Ratas , Regeneración Ósea/efectos de los fármacos , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Diferenciación Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...