Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Redox Biol ; 71: 103100, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484644

RESUMEN

Th2-high asthma is characterized by elevated levels of type 2 cytokines, such as interleukin 13 (IL-13), and its prevalence has been increasing worldwide. Ferroptosis, a recently discovered type of programmed cell death, is involved in the pathological process of Th2-high asthma; however, the underlying mechanisms remain incompletely understood. In this study, we demonstrated that the serum level of malondialdehyde (MDA), an index of lipid peroxidation, positively correlated with IL-13 level and negatively correlated with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. Furthermore, we showed that IL-13 facilitates ferroptosis by upregulating of suppressor of cytokine signaling 1 (SOCS1) through analyzing immortalized airway epithelial cells, human airway organoids, and the ovalbumin (OVA)-challenged asthma model. We identified that signal transducer and activator of transcription 6 (STAT6) promotes the transcription of SOCS1 upon IL-13 stimulation. Moreover, SOCS1, an E3 ubiquitin ligase, was found to bind to solute carrier family 7 member 11 (SLC7A11) and catalyze its ubiquitinated degradation, thereby promoting ferroptosis in airway epithelial cells. Last, we found that inhibiting SOCS1 can decrease ferroptosis in airway epithelial cells and alleviate airway hyperresponsiveness (AHR) in OVA-challenged wide-type mice, while SOCS1 overexpression exacerbated the above in OVA-challenged IL-13-knockout mice. Our findings reveal that the IL-13/STAT6/SOCS1/SLC7A11 pathway is a novel molecular mechanism for ferroptosis in Th2-high asthma, confirming that targeting ferroptosis in airway epithelial cells is a potential therapeutic strategy for Th2-high asthma.


Asunto(s)
Asma , Interleucina-13 , Animales , Humanos , Ratones , Sistema de Transporte de Aminoácidos y+ , Asma/genética , Asma/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Pulmón/metabolismo , Ratones Endogámicos BALB C , Ovalbúmina/metabolismo , Ovalbúmina/uso terapéutico , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/uso terapéutico , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Células Th2/metabolismo , Células Th2/patología
2.
Iran J Immunol ; 21(1): 53-64, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38310368

RESUMEN

Background: Neutrophilic asthma is characterized by the predominant infiltration of neutrophils in airway inflammation. Objective: To explore the therapeutic potential of an antibody against the inducible T cell co-stimulator ligand (ICOSL) in a mouse model of neutrophilic asthma. Methods: Female BALB/c mice were randomly assigned to different groups. They were then injected with ovalbumin (OVA)/lipopolysaccharides (LPS) to induce neutrophilic asthma. The mice were then treated with either anti-ICOSL (the I group), control IgG (the G group), or no treatment (the N group). Additionally, a control group of mice received vehicle PBS and was labeled as the C group (n=6 per group). One day after the last allergen exposure, cytokine levels were measured in plasma and bronchoalveolar lavage fluid (BALF) using ELISA. After analyzing and categorizing BALF cells, the lung tissues were examined histologically and immunohistochemically. Results: Administering anti-ICOSL resulted in a significant decrease in the total number of inflammatory infiltrates and neutrophils found in BALF. Moreover, it led to a decrease in the levels of interleukin (IL)-6, IL-13, and IL-17 in both BALF and plasma. Additionally, there was an increase in IFN-γ levels in the BALF of asthmatic mice (p<0.05 for all). Treatment with anti-ICOSL also reduced lung interstitial inflammation, mucus secretion, and ICOSL expression in asthmatic mice. Conclusion: The treatment of anti-ICOSL effectively improved lung interstitial inflammation and mucus secretion in mice with neutrophilic asthma by restoring the balance of Th1/Th2/Th17 responses. These findings indicate that blocking the ICOS/ICOSL signaling could be an effective way to manage neutrophilic asthma.


Asunto(s)
Asma , Femenino , Animales , Ratones , Ligando Coestimulador de Linfocitos T Inducibles , Asma/tratamiento farmacológico , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar , Inflamación/patología , Anticuerpos , Ratones Endogámicos BALB C , Ovalbúmina/uso terapéutico , Modelos Animales de Enfermedad
3.
Eur J Med Res ; 29(1): 65, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245791

RESUMEN

Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.


Asunto(s)
Asma , Chalcona , Chalconas , Humanos , Ratones , Animales , Chalcona/uso terapéutico , Ovalbúmina/uso terapéutico , FN-kappa B/genética , FN-kappa B/metabolismo , Chalconas/farmacología , Chalconas/uso terapéutico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/uso terapéutico , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/patología , Pulmón/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
4.
Allergol Int ; 73(1): 94-106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37336695

RESUMEN

BACKGROUND: Mepolizumab treatment improves symptom control and quality of life and reduces exacerbations in patients with severe eosinophilic asthma. However, biomarkers that predict therapeutic effectiveness must be determined for use in precision medicine. Herein, we elucidated the dynamics of various parameters before and after treatment as well as patient characteristics predictive of clinical responsiveness to mepolizumab after 1-year treatment. METHODS: Twenty-seven patients with severe asthma were treated with mepolizumab for one year. Asthma control test scores, pulmonary function tests, fractional exhaled nitric oxide levels, and blood samples were evaluated. Additionally, we explored the role of CD69-positive mucosal-associated invariant T (MAIT) cells as a candidate biomarker for predicting treatment effectiveness by evaluating an OVA-induced asthma murine model using MR1 knockout mice, where MAIT cells were absent. RESULTS: The frequencies of CD69-positive group 1 innate lymphoid cells, group 3 innate lymphoid cells, natural killer cells, and MAIT cells decreased after mepolizumab treatment. The frequency of CD69-positive MAIT cells and neutrophils was lower and serum periostin levels were higher in responders than in non-responders. In the OVA-induced asthma murine model, CD69-positive MAIT cell count in the whole mouse lung was significantly higher than that in the control mice. Moreover, OVA-induced eosinophilic airway inflammation was exacerbated in the MAIT cell-deficient MR1 knockout mice. CONCLUSIONS: This study shows that circulating CD69-positive MAIT cells, neutrophils, and serum periostin might predict the real-world response after 1-year mepolizumab treatment. Furthermore, MAIT cells potentially have a protective role against type 2 airway inflammation.


Asunto(s)
Asma , Células T Invariantes Asociadas a Mucosa , Humanos , Animales , Ratones , Neutrófilos , Periostina , Inmunidad Innata , Modelos Animales de Enfermedad , Ovalbúmina/uso terapéutico , Calidad de Vida , Linfocitos , Inflamación , Biomarcadores , Ratones Noqueados
5.
PLoS Negl Trop Dis ; 17(10): e0011625, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788409

RESUMEN

INTRODUCTION: Excretory/secretory products (ESPs) derived from helminths have been reported to effectively control allergic inflammation, which have better therapeutic prospects than live parasite infections. However, it remains unknown whether ESPs from schistosome eggs can protect against allergies, despite reports alleging that schistosome infection could alleviate disordered allergic inflammation. METHOD: In the present study, we investigated the protective effects of ESPs from Schistosoma japonicum eggs (ESP-SJE) on asthmatic inflammation. Firstly, we successfully established an allergic airway inflammation model in mice by alum-adjuvanted ovalbumin (OVA) sensitization and challenge. ESP-SJE were administered intraperitoneally on days -1 and 13 (before sensitization), on day 20 (before challenge), and on days 21-24 (challenge phase). RESULTS: The results showed that ESP-SJE treatment significantly reduced the infiltration of inflammatory cells, especially eosinophils into the lung tissue, inhibited the production of the total and OVA-specific IgE during OVA-sensitized and -challenged phases, respectively, and suppressed the secretion of Th2-type inflammatory cytokines (IL-4). Additionally, ESP-SJE treatment significantly upregulated the regulatory T cells (Tregs) in the lung tissue during OVA challenge. Furthermore, using liquid chromatography-mass spectrometry analysis and Treg induction experiments in vitro, we might identify nine potential therapeutic proteins against allergic inflammation in ESP-SJE. The targets of these candidate proteins included glutathione S-transferase, egg protein CP422 precursor, tubulin alpha-2/alpha-4 chain, actin-2, T-complex protein 1 subunit beta, histone H4, whey acidic protein core region, and molecular chaperone HtpG. CONCLUSION: Taken together, the results discussed herein demonstrated that ESP-SJE could significantly alleviate OVA-induced asthmatic inflammation in a murine model, which might be mediated by the upregulation of Treg in lung tissues that may be induced by the potential modulatory proteins. Therefore, potential proteins in ESP-SJE might be the best candidates to be tested for therapeutic application of asthma, thus pointing out to a possible new therapy for allergic airway inflammation.


Asunto(s)
Asma , Hipersensibilidad al Huevo , Schistosoma japonicum , Animales , Ratones , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Asma/inducido químicamente , Asma/tratamiento farmacológico , Pulmón , Citocinas , Inflamación/tratamiento farmacológico , Ratones Endogámicos BALB C , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad
6.
Kaohsiung J Med Sci ; 39(12): 1213-1221, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819590

RESUMEN

Mulberroside F is isolated from the leaves and roots of Morus alba L. Here, we investigated whether mulberroside F could alleviate airway inflammation and eosinophil infiltration in the lungs of asthmatic mice. We also examined whether mulberroside F attenuated inflammatory responses in human tracheal epithelial BEAS-2B cells. Female BALB/c mice were sensitized and challenged with ovalbumin (OVA), and administered different doses of mulberroside F via intraperitoneal injection. Additionally, tumor necrosis factor (TNF)-α-stimulated BEAS-2B cells were treated with various doses of mulberroside F, followed by detection of the expressions of inflammatory cytokines and chemokines. The results demonstrated that mulberroside F mitigated the levels of proinflammatory cytokines and chemokines, and CCL11, in inflammatory BEAS-2B cells. Mulberroside F also suppressed reactive oxygen species (ROS) production and ICAM-1 expression in TNF-α-stimulated BEAS-2B cells, which effectively suppressed monocyte cell adherence. In an animal model of asthma, mulberroside F treatment attenuated airway hyperresponsiveness, eosinophil infiltration, and goblet cell hyperplasia. Mulberroside F treatment also decreased lung fibrosis and airway inflammation in OVA-sensitized mice. Moreover, mulberroside F significantly reduced expressions of Th2-associated cytokines (including interleukin(IL)-4, IL-5, and IL-13) in bronchoalveolar lavage fluid compared to OVA-sensitized mice. Our results confirmed that mulberroside F is a novel bioactive compound that can effectively reduce airway inflammation and eosinophil infiltration in asthmatic mice via inhibition of Th2-cell activation.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , Femenino , Humanos , Animales , Ratones , Ovalbúmina/metabolismo , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/patología , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Citocinas/metabolismo , Quimiocinas/metabolismo , Inflamación/patología , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
7.
Front Cell Infect Microbiol ; 13: 1143950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346033

RESUMEN

Helminth derived excretory/secretory molecules have shown efficacy in the treatment of allergic asthma in mice, but their roles in allergic rhinitis (AR) are little known. In this study, we aimed to determine the intervention effect of SJMHE1, a Schistosoma japonicum derived small molecular peptide, on ovalbumin (OVA)-induced AR mice and investigate its possible mechanism. AR was induced in BALB/c mice, following which the mice were treated with phosphate-buffered saline (PBS), OVA323-339 and SJMHE1 respectively. SJMHE1 treatment improved clinical symptoms (rubbing and sneezing), suppressed infiltrates of inflammatory cells and eosinophils in nasal mucosa, modulated the production of type-2 (IL-4 and IL-13) and anti-inflammatory (IL-10) cytokines in the nasal lavage fluids (NLF), spleen, and serum. To investigate the underlying mechanism, fluorescein isothiocyanate (FITC)-labeled SJMHE1 was subcutaneously injected into AR mice, and we found that the FITC-SJMHE1 could accumulate in spleen, but not in nasal mucosa. FITC-SJMHE1 mainly bound to CD19 positive cells (B cells), and the SJMHE1 treatment significantly increased the proportion of regulatory B cells (Bregs) and B10 cells, along with the enhancement of PR domain containing protein 1 (Prdm1) protein levels. SJMHE1 may alleviate AR by upregulating Bregs, and has great potential as a new avenue for the AR treatment.


Asunto(s)
Rinitis Alérgica , Schistosoma japonicum , Animales , Ratones , Fluoresceína-5-Isotiocianato/farmacología , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Citocinas/metabolismo , Mucosa Nasal/metabolismo , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
8.
Int Immunopharmacol ; 118: 110127, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030118

RESUMEN

Atopic dermatitis (AD) is an allergic skin disease, triggered by excessive type 2 immune reactions. Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that induces type 2 immune response through dendritic cell activation. Therefore, TSLP inhibitors may serve as novel antiallergic drugs. Hypoxia-inducible factor (HIF) activation in the epithelia contributes to several homeostatic phenomena, such as re-epithelialization. However, the effects of HIF activation on TSLP production and immune activation in the skin remain unclear. In this study, we found that selective HIF prolyl hydroxylase inhibitors (PHD inhibitors), which induce HIF activation, suppressed TSLP production in a mouse ovalbumin (OVA) sensitization model. PHD inhibitors also suppressed the production of tumor necrosis factor-alpha (TNF-α), which is a major inducer of TSLP production, in this mouse model and in a macrophage cell line. Consistent with these findings, PHD inhibitors suppressed OVA-specific IgE levels in the serum and OVA-induced allergic responses. Furthermore, we found a direct suppressive effect on TSLP expression in a human keratinocyte cell line mediated by HIF activation. Taken together, our findings suggest that PHD inhibitors exert antiallergic effects by suppressing TSLP production. Controlling the HIF activation system has therapeutic potential in AD.


Asunto(s)
Dermatitis Atópica , Inhibidores de Prolil-Hidroxilasa , Animales , Humanos , Ratones , Citocinas/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Hipoxia , Ovalbúmina/uso terapéutico , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Linfopoyetina del Estroma Tímico/metabolismo
9.
Int Immunopharmacol ; 118: 110051, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989896

RESUMEN

To investigate the role of the costimulatory molecule CD226 in asthma pathogenesis, we produced a CD4+ T-cell-specific CD226 knockout mice model (Cd226ΔCD4) and induced airway allergic inflammation by administering ovalbumin (OVA). Our results revealed alleviated lung inflammation, decreased levels of OVA-specific IgE, and increased levels of IL-10 in the serum of Cd226ΔCD4 mice (P < 0.05). Moreover, IL-10 levels in CD4+ T cells were significantly elevated in the mediastinal lymph node, spleen, and Peyer's patches in the Cd226ΔCD4 mice compared with those in controls (P < 0.05 to P < 0.01). Notably, there was a significantly higher IL-10 mRNA levels in the large intestine of the mice (P < 0.05). The protective effect of CD226 deficiency is also associated with the accumulation of gut TCRγδ+ intraepithelial lymphocytes and reversion of the gut microbiome dysbiosis. The Bacteroidetes-to-Firmicutes ratio and the abundance of Akkermansia increased in the absence of CD226 after OVA treatment. Our data reveal the synchronous changes in the lung and intestine in OVA-treated CD226-knockout mice, supporting the gut-lung axis concept and providing evidence for novel therapeutic approaches for asthma.


Asunto(s)
Asma , Microbioma Gastrointestinal , Ratones , Animales , Interleucina-10/genética , Interleucina-10/uso terapéutico , Asma/tratamiento farmacológico , Ratones Noqueados , Linfocitos T CD4-Positivos , Ovalbúmina/uso terapéutico , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Citocinas/uso terapéutico , Líquido del Lavado Bronquioalveolar
10.
Int Immunopharmacol ; 115: 109670, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36603356

RESUMEN

Acupuncture has been frequently used in China for the treatment asthma for thousands of years. Ferroptosis was recently revealed to be involved in several pathological conditions including asthma. However, the detailed links between ferroptosis and airway inflammation in asthma, as well as the detailed regulation of acupuncture on these disorders remains unclear. Our results demonstrated that the non-haem Fe2+ level increased markedly in the lung tissue of mouse asthma model, and positively correlated with RL and IL-4 level in BALF. Furthermore, lipid peroxidation markers MDA and GSSG increased remarkably in OVA-induced experimental asthma mice. Up-regulation of lipid peroxidation associated proteins ACSL4 and15-LO1 was also observed in OVA-induced experimental asthma mice. To demonstrate the role of ferroptosis in asthma and the effect of acupuncture on these disorders, ferroptosis-induction agent erastin and ferroptosis-inhibition agent fer-1 were used, and our data demonstrated that erastin could augment lung inflammation and lipid peroxidation in OVA induced asthma model. Fer-1 was able to relieve AHR, lung inflammation, non-haem Fe2+ level, lipid peroxidation and ferroptosis related pathway ACSL4-15LO1 in OVA-induced experimental asthma mice. Acupuncture treatment alleviated RL, lung inflammation as well as type 2 cytokines IL-4 and IL-13 levels induced by OVA inhalation. What's more, acupuncture significantly reduced the MDA and GSSG levels, the non-haem Fe2+ level and ACSL4-15-LO1 proteins expression. Acupuncture also relieved erastin-induced exacerbation in lung inflammation and lipid peroxidation in ferroptosis. Acupuncture treatment could relieve ferroptosis related exacerbation in airway inflammation. Our study provided insights into the underlying mechanisms for the protective effects of acupuncture and highlighted a therapeutic potential of acupuncture treatment in the attenuation of lipid peroxidation and ferroptosis in asthma.


Asunto(s)
Terapia por Acupuntura , Antiasmáticos , Asma , Ferroptosis , Neumonía , Animales , Ratones , Antiasmáticos/uso terapéutico , Antiasmáticos/farmacología , Asma/terapia , Asma/tratamiento farmacológico , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/farmacología , Modelos Animales de Enfermedad , Disulfuro de Glutatión/efectos adversos , Inflamación , Interleucina-4/farmacología , Ovalbúmina/uso terapéutico , Neumonía/tratamiento farmacológico , Araquidonato 15-Lipooxigenasa/metabolismo
11.
Microb Pathog ; 174: 105918, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455750

RESUMEN

BACKGROUND: Allergic rhinitis (AR) is one of the most common inflammatory diseases. IgE, inflammatory cytokine production and Th17/Tregs imbalance have been implicated in AR pathogenesis. Bufotalin, a component extracted from toad venom skin secretions and auricular glands, has anti-inflammatory activity and regulates Th17/Tregs balance. Here, the effects of bufotalin on AR were explored. METHODS: The AR mice model was established using ovalbumin (OVA). AR mice were treated with bufotalin started on Day 22 with various doses (1, 10, 100 µg or 1 mg per mouse) every day to Day 30. The sneezing and rubbing frequencies were counted. Serum levels of IL-1ß, IL-10 and OVA-specific IgE were measured. The superficial cervical lymph nodes were harvested and the percentage of Tregs in lymph node was determined using CD4 and Foxp3 markers. RESULTS: OVA treatment successfully induced AR model in mice with significantly increased sneezing and rubbing frequency, elevated levels of serum histamine, IL-1ß, IL-10 and OVA-specific IgE. Bufotalin treatment significantly ameliorated AR symptoms, with reduced histamine, IgE and IL-1ß levels, as well as sneezing and rubbing frequency. Moreover, bufotalin treatment decreased the serum levels of IL-1ß, IL-10 and OVA-specific IgE in AR mice. CONLCUSION: Bufotalin ameliorated allergic rhinitis symptoms in AR mice by restoring Tregs in lymph node.


Asunto(s)
Interleucina-10 , Rinitis Alérgica , Animales , Ratones , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Histamina/farmacología , Histamina/uso terapéutico , Estornudo , Citocinas , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/patología , Inmunoglobulina E/farmacología , Inmunoglobulina E/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Mucosa Nasal
12.
Int Immunopharmacol ; 114: 109483, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36463697

RESUMEN

Leonurine (Leo) is a natural alkaloid extracted from Herba leonuri, which has many biological activities. However, whether leonurine has a protective effect on asthma remains unknown. The purpose of this study was to investigate the protective effect of leonurine on asthma. We evaluated its therapeutic effect and related signal transduction in LPS-induced RAW264.7 cells and OVA-induced asthmatic mice. In addition, we used network pharmacology, molecular docking and molecular dynamics simulation to verify the experimental results. In LPS-induced RAW 264.7 cells, leonurine significantly reduced the production of TNF-α and IL-6, andinhibited the activation of p38 MAPK/NF-κB signaling pathway. In OVA-induced asthmatic mice, leonurine decreased the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF), particularly neutrophils and eosinophils. Leonurine also reduced the contents of IL-4, IL-5, IL-13 in the BALF and OVA-IgE in the serum. Leonurine remarkly improved OVA-induced inflammatory cell infiltration and significantly inhibited mucus overproduction. In addition, leonurine inhibited the activation of p38 MAPK/NF-κB signaling pathway in the lung tissues of asthmatic mice. Network pharmacology suggested that p38 MAPKα was a potential target of leonurine in the treatment of asthma. Molecular docking and molecular dynamics simulations indicated that leonurine could stably bind to p38 MAPKα protein. In summary, leonurine attenuated asthma by regulating p38 MAPK/NF-κB signaling pathway.


Asunto(s)
Asma , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Ovalbúmina/uso terapéutico , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Asma/inducido químicamente , Asma/tratamiento farmacológico , Transducción de Señal , Líquido del Lavado Bronquioalveolar , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
13.
Balkan Med J ; 40(1): 57-65, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36571426

RESUMEN

Background: Allergic rhinitis is a chronic inflammatory disease of the nasal mucosa affecting the quality of life of patients. SRY-box transcription factor 11 (SOX11) was reported to play important roles in inflammatory responses, but its role in AR is poorly understood. Aims: To explore the role of SOX11 in the development of allergic rhinitis. Study Design: Cell culture and animal study. Methods: An in vivo murine allergic rhinitis model was established using ovalbumin treatment in female mice. Interleukin-13-stimulated human nasal mucosa epithelial cells were used for in vitro studies. Expression levels of SOX11, epithelial-derived cytokines, and mucin were determined in both modesls. Results: SOX11 was highly expressed in allergic rhinitis mice. Allergy symptoms, serum ovalbumin-specific IgE, histamine, eosinophils, goblet cells, and type 2 cytokine secretion were increased in ovalbumin-treated mice. Furthermore, allergic rhinitis mice exhibited overproduction of epithelial-derived cytokines (thymic stromal lymphopoietin, interleukin-25, interleukin-33), C-C motif chemokine ligand 26 (CCL26), and mucin 5 AC (MUC5AC). Silencing SOX11 alleviated the behavioral symptoms and upregulation of epithelial-derived cytokines, CCL26, and MUC5AC. In human nasal mucosa epithelial cells, interleukin-13 enhanced SOX11 expression in a time-dependent manner, and signal transducer and activator of transcription 6 (STAT6) was involved in the interleukin-13-mediated expression of SOX11 by regulating transcription. Knockdown of SOX11 reduced epithelial-derived cytokine expression and MUC5AC levels in interleukin-13-treated human nasal mucosa epithelial cells. Conclusion: SOX11 plays a critical role in allergic rhinitis development by regulating epithelial-derived cytokines and might be a new therapeutic target for allergic rhinitis.


Asunto(s)
Citocinas , Rinitis Alérgica , Humanos , Femenino , Ratones , Animales , Citocinas/metabolismo , Citocinas/uso terapéutico , Interleucina-13/farmacología , Interleucina-13/uso terapéutico , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Calidad de Vida , Mucinas/uso terapéutico , Factores de Transcripción SOXC
14.
Int Immunopharmacol ; 113(Pt A): 109347, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36332451

RESUMEN

Lymphocytes infiltration is a key mechanism that drives asthma lung inflammation. Our previous results demonstrated a significant increase in the frequency and persistence of central memory T (TCM) cells in inflamed lung tissue. This could be due to an increase in the infiltration of TCM in the lung tissue, or the possible differentiation of lung effector memory T (TEM) cells into TCM during lung inflammation. Thus, targeting the accumulation of memory T cells provides a potential approach for asthma treatment. Simvastatin and other statins were shown to impact both the structural and immune lung cells, presenting a distinct immunomodulatory effect on T lymphocyte activation, infiltration, and function. Therefore, we sought to evaluate the effect of simvastatin on the frequency and function of CD4 and CD8 TEM and TCM cells in an ovalbumin (OVA)-induced mouse model of asthma. Simvastatin treatment significantly attenuated the infiltration of both TEM and TCM memory subtypes, along with their production of IL-4 and IL-13 cytokines in a T helper 2 (Th2) OVA-sensitized mouse model. Furthermore, we detected a reduction in ICAM-1 and VCAM-1 levels in the lung homogenate of OVA-sensitized and challenged mice, as well as in human umbilical vein endothelial cells (HUVECs) following treatment with simvastatin. The reduction in leucocyte homing receptors following simvastatin treatment might have contributed to the observed decrease in infiltrated memory T cell numbers. In conclusion, this study demonstrated how statin drug may attenuate allergic asthma lung inflammation by targeting memory T cells and reducing their numbers, whilst limiting their cytokine production at the site of inflammation. Longer clinical trials are required to assess the effectiveness and safety of statin treatment in different asthma phenotypes.


Asunto(s)
Asma , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Ratones , Humanos , Animales , Ovalbúmina/uso terapéutico , Simvastatina/farmacología , Simvastatina/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Células Endoteliales , Ratones Endogámicos BALB C , Pulmón , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad , Células Th2 , Líquido del Lavado Bronquioalveolar
15.
Int Immunopharmacol ; 113(Pt B): 109410, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371864

RESUMEN

BACKGROUND: Severe neutrophilic asthma is often characterized by persistent airway inflammation and irreversible airway remodeling, which are overstimulated by the high-mobility group box protein 1 (HMGB1). Although wogonin, an O-methylated flavone, has been widely used to treat inflammatory and allergic diseases, its therapeutic effects and potential mechanisms on severe neutrophilic asthma remain elusive. OBJECTIVE: To evaluate whether wogonin alleviates airway neutrophilia through inducing neutrophil apoptosis and attenuates airway smooth muscle cells (ASMCs) proliferation and migration. METHODS: The effect of wogonin on reducing neutrophilic airway inflammation, including neutrophil infiltration and inflammatory mediators, was examined in a mouse model of severe neutrophilic asthma sensitized with ovalbumin and lipopolysaccharide. Also, the effect of wogonin on inducing human neutrophil apoptosis was manifested using cellular morphology, flow cytometry, and caspase inhibition assays. Furthermore, the effect of wogonin on inhibiting HMGB1-mediated ASMCs proliferation and migration was determined. RESULTS: Wogonin reduced the frequency of neutrophils and inhibited the production of multiple inflammatory mediators, including ovalbumin-specific IgE, tumor necrosis factor-α, interleukin-6, and HMGB1, in bronchoalveolar lavage fluid and lung tissues of the neutrophilic asthmatic mouse model. These data strongly support a significantly suppressed neutrophilic airway inflammation, functionally consistent to the relieved airway hyperresponsiveness by wogonin in vivo. Wogonin induced human neutrophil apoptosis in a dose-dependent manner by activating caspase-8 and caspase-3 in vitro. Wogonin pretreatment abolished HMGB1-induced ASMCs proliferation and migration, which can be explained by the inhibition of phosphorylation in the mitogen-activated protein kinase (MAPK) /Akt singling pathways. CONCLUSION: Our findings demonstrate that wogonin augments caspase-dependent apoptosis in neutrophils to alleviate neutrophilic inflammatory responses and regulates intracellular signaling to inhibit HMGB1-mediated ASMCs activation, providing a promising therapeutic agent for severe neutrophilic asthma.


Asunto(s)
Asma , Proteína HMGB1 , Hipersensibilidad , Ratones , Animales , Humanos , Ovalbúmina/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Activadas por Mitógenos , Ratones Endogámicos BALB C , Inflamación/tratamiento farmacológico , Inflamación/patología , Asma/metabolismo , Apoptosis , Mediadores de Inflamación , Músculo Liso/metabolismo , Músculo Liso/patología , Proliferación Celular
16.
Kaohsiung J Med Sci ; 38(12): 1203-1212, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169192

RESUMEN

The role of the calcium-sensitive receptor (CaSR) was assessed in a juvenile mouse model of asthma induced by ovalbumin (OVA). The experiment was divided into normal control, OVA, and OVA +2.5/5 mg/kg NPS2143 (a CaSR antagonist) groups. OVA induction was performed in all groups except the normal control, followed by assessing airway hyperresponsiveness (AHR) and lung pathological changes. Serum OVA-specific IgE and IgG1 were detected with an enzyme-linked immunosorbent assay (ELISA), and inflammatory cells were counted in bronchoalveolar lavage fluid (BALF). Real-time quantitative polymerase chain reaction, ELISA, and western blotting were performed to detect gene and protein expression. NPS2143 improved the OVA-induced AHR in mice, and AHR was higher in the OVA +2.5 mg/kg NPS2143 group than in the OVA +5 mg/kg NPS2143 group. Furthermore, NPS2143 reduced the production of OVA-specific IgE and IgG1 in serum and the number of eosinophils and lymphocytes in BALF in OVA mice with reduced CaSR expression in lung tissues. Besides, OVA-induced mice exhibited peribronchial and perivascular inflammatory cell infiltration, which was accompanied by severe goblet cell hyperplasia/hyperplasia and airway mucus hypersecretion. Furthermore, these mice exhibited increased levels of Interleukin (IL)-5, IL-13, MCP-1, and eotaxin, which were alleviated by NPS2143. The 5 mg/kg NPS2143 showed more effective than the 2.5 mg/kg treatment. CaSR expression was elevated in the lung tissues of OVA-induced asthmatic juvenile mice, whereas the CaSR antagonist NPS2143 reduced AHR and attenuated the inflammatory response in OVA-induced juvenile mice, possibly exerting therapeutic effects on childhood asthma.


Asunto(s)
Asma , Calcio , Ratones , Animales , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Hiperplasia/patología , Ratones Endogámicos BALB C , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/genética , Pulmón/patología , Inflamación/patología , Inmunoglobulina E/farmacología , Inmunoglobulina E/uso terapéutico , Modelos Animales de Enfermedad , Inmunoglobulina G
17.
ACS Biomater Sci Eng ; 8(10): 4566-4576, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36054652

RESUMEN

Asthma is a common chronic lung disease without absolute treatment, and hypersensitivity reactions and type 2 immune responses are responsible for asthma pathophysiology. ADAM10 as a metalloproteinase transmembrane protein is critical for development of Th2 responses, and levamisole as an anthelmintic drug has immunomodulatory effects, which not only regulates ADAM10 activity but also can suppress the bone marrow and neutrophil production. Therefore, in the present study, nanoparticles were used as a levamisole delivery system to reduce bone marrow suppression, and the immunomodulatory and ADAM10 inhibitory effects of levamisole were studied in allergic asthma. Asthmatic mice were treated with PLGA-levamisole nanoparticles. Then, AHR, BALF, and blood cell counts, levels of the IgG1 subclass, total and OVA-specific IgE, IL2, IL-4, IL-5, IL-10, IL-13, IL-17, IL-25, IL-33, INF-γ, and TNF-α, gene expression of FoxP3, T-bet, RORγt, PU.1, GATA3, FcεRII, CysLT1R, eotaxin, and ADAM10, and lung histopathology were evaluated. PLGA-LMHCl with considered characteristics could control airway hyper-responsiveness, eosinophils in the BALF, levels of immunoglobulins, Th2-, Th9-, and Th17-derived cytokines and pivotal genes, eosinophilic inflammation, hyperplasia of the goblet cell, and hyperproduction of mucus and could increase Th1- and Treg-derived cytokines and also pivotal genes. It could also modulate the ADAM10 activity and had no effect on the number of neutrophils in the bloodstream. The novel safe nanodrug had no side effect on the bone marrow to produce neutrophils and could control the allegro-immuno-inflammatory response of asthma.


Asunto(s)
Asma , Nanopartículas , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/farmacología , Factores de Transcripción Forkhead/uso terapéutico , Inmunoglobulina E/farmacología , Inmunoglobulina E/uso terapéutico , Inmunoglobulina G/farmacología , Inmunoglobulina G/uso terapéutico , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Interleucina-10/farmacología , Interleucina-10/uso terapéutico , Interleucina-13/farmacología , Interleucina-13/uso terapéutico , Interleucina-17/farmacología , Interleucina-17/uso terapéutico , Interleucina-2/farmacología , Interleucina-2/uso terapéutico , Interleucina-33/farmacología , Interleucina-33/uso terapéutico , Interleucina-4/farmacología , Interleucina-4/uso terapéutico , Interleucina-5/farmacología , Interleucina-5/uso terapéutico , Levamisol/farmacología , Levamisol/uso terapéutico , Pulmón/patología , Proteínas de la Membrana , Ratones , Nanopartículas/uso terapéutico , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/uso terapéutico , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/uso terapéutico
18.
Nihon Yakurigaku Zasshi ; 157(5): 299-304, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-36047139

RESUMEN

There is a certain population of intractable asthma patients, who can not be controlled by corticosteroid therapy. It has been suggested that 5-10% of asthma patients have been suffered from steroid resistance. Since it has been difficult to develop a steroid-resistant asthma model, the detailed mechanisms have been unclear. Recently, an intractable asthma model showing steroid insensitivity was developed by the author and colleagues. We found that pathogenic changes in type 2 innate lymphoid cells (ILC2) were induced in the intractable asthma. When ovalbumin (OVA) + Al(OH)3-sensitized BALB/c mice were intratracheally challenged with OVA at 5 µg/animal, development of airway remodeling as well as lung eosinophilia and neutrophilia were markedly suppressed by treatment with dexamethasone. In contrast, when increasing the dose of OVA for challenges to 500 µg/animal, those asthmatic responses turned to be steroid insensitive. When Th2 cells and ILC2 in the lung were stimulated in vitro, ILC2 produced larger amounts of type 2 cytokines than Th2 cells. Interestingly, amounts of type 2 cytokines produced by the steroid-insensitive model-derived ILC2 were significantly larger than those by the steroid-sensitive, and that the former ILC2 exhibited higher expression of thymic stromal lymphopoietin (TSLP) receptor and signal transducer and activator of transcription (STAT) 5a gene. Treatment with anti-IL-5 antibody improved the steroid sensitivity. Taken together, ILC2 have been transformed to be pathogenic in the intractable asthma. IL-5 hyper-produced from ILC2 may be involved in the development of steroid resistance. The molecules related to the above mentioned are expected to be targets for development of new therapeutic drugs for intractable asthma.


Asunto(s)
Asma , Inmunidad Innata , Animales , Asma/tratamiento farmacológico , Citocinas , Pulmón , Linfocitos , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/metabolismo , Ovalbúmina/uso terapéutico , Esteroides/uso terapéutico
19.
Nutrients ; 14(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35631208

RESUMEN

The inner shell of the chestnut (Castanea crenata) contains various polyphenols, which exert beneficial biological effects. Hence, we assessed the anti-inflammatory efficacy of a chestnut inner shell extract (CIE) in ovalbumin (OVA)-induced allergic asthma. We intraperitoneally injected 20 µg of OVA with 2 mg of aluminum hydroxide on days 0 and 14. On test days 21, 22, and 23, the mice were treated with aerosolized 1% (w/v) OVA in saline. CIE was administered orally at 100 and 300 mg/kg on days 18-23. CIE significantly reduced inflammatory cytokines and cells and immunoglobulin-E increased by OVA. Anti-inflammatory efficacy was revealed by reduction of inflammatory cell migration and mucus secretion in lung tissue. Further, CIE suppressed the OVA-induced nuclear factor kappa B (NF-κB) phosphorylation. Accordingly, the expression of cyclooxygenase (COX-2), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9) were decreased sequentially in lung tissues. CIE alleviated OVA-induced airway inflammation by restraining phosphorylation of NF-κB and the sequentially reduced expression of iNOS, COX-2, leading to reduced MMP-9 expression. These results indicate that CIE has potential as a candidate for alleviating asthma.


Asunto(s)
Asma , Fagaceae , Extractos Vegetales , Animales , Antiinflamatorios/uso terapéutico , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Ciclooxigenasa 2 , Modelos Animales de Enfermedad , Fagaceae/química , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Ovalbúmina/uso terapéutico , Extractos Vegetales/farmacología , Semillas/química
20.
Expert Opin Ther Targets ; 26(5): 487-506, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35549595

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory lung disease that universally affects millions of people. Despite numerous well-defined medications, asthma is poorly managed. This study aims to clarify the potential therapeutic effect of Dapagliflozin (DAPA) against lung inflammation, oxidative stress, and associated bronchospasm in OVA-sensitized rat asthma model. RESEARCH DESIGN AND METHODS: Twenty-five rats were allocated into (Control, Asthma, DEXA, DAPA, and DAPA+DEXA). All treatments were administered orally once a day for two weeks. The BALF levels of IL-17, TNFα, IL-1ß, and MCP-1 were determined to assess airway inflammation. For oxidative stress determination, BALF MDA levels and TAC were measured. The BALF S100A4 level and NO/sGC/cGMP pathway were detected. Lung histopathological findings and immunohistochemical investigation of eNOS and iNOS activities were recorded. RESULTS: DAPA significantly reduced (p < 0.001) airway inflammatory-oxidative markers (IL-17, TNFα, IL-1ß, MCP1, and MDA), but increased (p < 0.001) TAC, and mitigated bronchospasm by activating NO/sGC/cGMP and reducing S100A4 (p < 0.001). The biochemical and western blot studies were supported by histopathological and immunohistochemical investigations. CONCLUSIONS: DAPA presents a new prospective possibility for future asthma therapy due to its anti-inflammatory, anti-oxidant, and bronchodilator properties. DAPA has the property of reducing Dexamethasone (DEXA)-associated unfavorable effects during asthma treatment.


Asunto(s)
Asma , Espasmo Bronquial , Animales , Asma/tratamiento farmacológico , Compuestos de Bencidrilo , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glucósidos , Humanos , Interleucina-17 , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/metabolismo , Ovalbúmina/farmacología , Ovalbúmina/uso terapéutico , Estrés Oxidativo , Estudios Prospectivos , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...