Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345299

RESUMEN

Drosophila matrix metalloproteinase 2 (MMP2) is specifically expressed in posterior follicle cells of stage-14 egg chambers (mature follicles) and is crucial for the breakdown of the follicular wall during ovulation, a process that is highly conserved from flies to mammals. The factors that regulate spatiotemporal expression of MMP2 in follicle cells remain unknown. Here, we demonstrate crucial roles for the ETS-family transcriptional activator Pointed (Pnt) and its endogenous repressor Yan in the regulation of MMP2 expression. We found that Pnt is expressed in posterior follicle cells and overlaps with MMP2 expression in mature follicles. Genetic analysis demonstrated that pnt is both required and sufficient for MMP2 expression in follicle cells. In addition, Yan was temporally upregulated in stage-13 follicle cells to fine-tune Pnt activity and MMP2 expression. Furthermore, we identified a 1.1 kb core enhancer that is responsible for the spatiotemporal expression of MMP2 and contains multiple pnt/yan binding motifs. Mutation of pnt/yan binding sites significantly impaired the Mmp2 enhancer activity. Our data reveal a mechanism of transcriptional regulation of Mmp2 expression in Drosophila ovulation, which could be conserved in other biological systems.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transducción de Señal/fisiología , Ovulación/genética , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/genética
2.
Mol Cell Endocrinol ; 585: 112180, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38342135

RESUMEN

The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1ß, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.


Asunto(s)
Superóxidos , Pez Cebra , Animales , Femenino , Pez Cebra/metabolismo , Superóxidos/metabolismo , Ovulación/genética , Folículo Ovárico/metabolismo , Mediadores de Inflamación/metabolismo
3.
Front Immunol ; 14: 1297484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116006

RESUMEN

Introduction: Ovulation dysfunction is now a widespread cause of infertility around the world. Although the impact of immune cells in human reproduction has been widely investigated, systematic understanding of the changes of the immune atlas under female ovulation remain less understood. Methods: Here, we generated single cell transcriptomic profiles of 80,689 PBMCs in three representative statuses of ovulation dysfunction, i.e., polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and menopause (MENO), and identified totally 7 major cell types and 25 subsets of cells. Results: Our study revealed distinct cluster distributions of immune cells among individuals of ovulation disorders and health. In patients with ovulation dysfunction, we observed a significant reduction in populations of naïve CD8 T cells and effector memory CD4 T cells, whereas circulating NK cells and regulatory NK cells increased. Discussion: Our results highlight the significant contribution of cDC-mediated signaling pathways to the overall inflammatory response within ovulation disorders. Furthermore, our data demonstrated a significant upregulation of oxidative stress in patients with ovulation disorder. Overall, our study gave a deeper insight into the mechanism of PCOS, POI, and menopause, which may contribute to the better diagnosis and treatments of these ovulatory disorder.


Asunto(s)
Infertilidad Femenina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/diagnóstico , Transcriptoma , Ovulación/genética , Infertilidad Femenina/terapia
4.
J Ovarian Res ; 16(1): 225, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993893

RESUMEN

BACKGROUND: The oocyte and its surrounding cumulus cells (CCs) exist as an inseparable entity. The maturation of the oocyte relies on communication between the oocyte and the surrounding CCs. However, oocyte evaluation is primarily based on morphological parameters currently, which offer limited insight into the quality and competence of the oocyte. Here, we conducted transcriptomic profiling of oocytes and their CCs from 47 patients undergoing preimplantation genetic testing for aneuploidy (PGT-A). We aimed to investigate the molecular events occurring between oocytes and CCs at different stages of oocyte maturation (germinal vesicle [GV], metaphase I [MI], and metaphase II [MII]). Our goal is to provide new insights into in vitro oocyte maturation (IVM). RESULTS: Our findings indicate that oocyte maturation is a complex and dynamic process and that MI oocytes can be further classified into two distinct subtypes: GV-like-MI oocytes and MII-like-MI oocytes. Human oocytes and cumulus cells at three different stages of maturation were analyzed using RNA-seq, which revealed unique transcriptional machinery, stage-specific genes and pathways, and transcription factor networks that displayed developmental stage-specific expression patterns. We have also identified that both lipid and cholesterol metabolism in cumulus cells is active during the late stage of oocyte maturation. Lipids may serve as a more efficient energy source for oocytes and even embryogenesis. CONCLUSIONS: Overall, our study provides a relatively comprehensive overview of the transcriptional characteristics and potential interactions between human oocytes and cumulus cells at various stages of maturation before ovulation. This study may offer novel perspectives on IVM and provide a reliable reference data set for understanding the transcriptional regulation of follicular maturation.


Asunto(s)
Células del Cúmulo , Transcriptoma , Femenino , Humanos , Metafase , Células del Cúmulo/metabolismo , Oocitos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Ovulación/genética
5.
BMC Genomics ; 24(1): 615, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833670

RESUMEN

Understanding the microflora inhabiting the reproductive tract is important for a better understanding of female physiology and reproductive health. The endometrial fluid from mice in three reproductive stages (A: Unproductive mice; B: Postovulatory mice; C: Postpartum mice) was extracted for microbial DNA extraction and sequencing. Phenotypic and functional analyses of endometrial microbial enrichment was undertaken using LefSe. The results showed 95 genera and 134 species of microorganisms in the uteri of mice. There were differentially distributed genera, among which Lactobacillus, Enterococcus, and Streptococcus were more abundant in the endometrial fluid of mice in the unproductive group. That of mice in the postovulatory group was colonized with Salmonella enterica and Campylobacter and was mainly enriched in metabolic pathways and steroid biosynthesis. The presence of Chlamydia, Enterococcus, Pseudomonadales, Acinetobacter, and Clostridium in the endometrial fluid of postpartum mice, in addition to the enrichment of the endocrine system and the Apelin and FoxO signaling pathways, resulted in a higher number of pathogenic pathways than in the other two groups. The results showed that the microbial diversity characteristics in the endometrium of mice in different reproductive states differed and that they could be involved in the regulation of animal reproduction through metabolic pathways and steroid biosynthesis, suggesting that reproductive diseases induced by microbial diversity alterations in the regulation of animal reproduction cannot be ignored.


Asunto(s)
Endometrio , Microbiota , Femenino , Animales , Ratones , Endometrio/metabolismo , Reproducción , Ovulación/genética , Microbiota/genética , Esteroides
6.
Genes (Basel) ; 14(6)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37372361

RESUMEN

Many reproductive physiological processes, such as folliculogenesis, ovulation, implantation, and fertilization, require the synthesis, remodeling, and degradation of the extracellular matrix (ECM). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) family genes code for key metalloproteinases in the remodeling process of different ECM. Several genes of this family encode for proteins with important functions in reproductive processes; in particular, ADAMTS1, 4, 5 and 9 are genes that are differentially expressed in cell types and the physiological stages of reproductive tissues. ADAMTS enzymes degrade proteoglycans in the ECM of the follicles so that the oocytes can be released and regulate follicle development during folliculogenesis, favoring the action of essential growth factors, such as FGF-2, FGF-7 and GDF-9. The transcriptional regulation of ADAMTS1 and 9 in preovulatory follicles occurs because of the gonadotropin surge in preovulatory follicles, via the progesterone/progesterone receptor complex. In addition, in the case of ADAMTS1, pathways involving protein kinase A (PKA), extracellular signal regulated protein kinase (ERK1/2) and the epidermal growth factor receptor (EGFR) might contribute to ECM regulation. Different Omic studies indicate the importance of genes of the ADAMTS family from a reproductive aspect. ADAMTS genes could serve as biomarkers for genetic improvement and contribute to enhance fertility and animal reproduction; however, more research related to these genes, the synthesis of proteins encoded by these genes, and regulation in farm animals is needed.


Asunto(s)
Proteínas ADAM , Proteínas ADAMTS , Femenino , Animales , Proteínas ADAMTS/genética , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Ovulación/genética , Oocitos/metabolismo , Progesterona
7.
Biol Rev Camb Philos Soc ; 98(5): 1648-1667, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157877

RESUMEN

Ovulation is a cyclical biological rupture event fundamental to fertilisation and endocrine function. During this process, the somatic support cells that surround the germ cell undergo a remodelling process that culminates in breakdown of the follicle wall and release of a mature egg. Ovulation is driven by known proteolytic and inflammatory pathways as well as structural alterations to the follicle vasculature and the fluid-filled antral cavity. Ovulation is one of several types of systematic remodelling that occur in the human body that can be described as rupture. Although ovulation is a physiological form of rupture, other types of rupture occur in the human body which can be pathological, physiological, or both. In this review, we use intracranial aneurysms and chorioamniotic membrane rupture as examples of rupture events that are pathological or both pathological and physiological, respectively, and compare these to the rupture process central to ovulation. Specifically, we compared existing transcriptomic profiles, immune cell functions, vascular modifications, and biomechanical forces to identify common processes that are conserved between rupture events. In our transcriptomic analysis, we found 12 differentially expressed genes in common among two different ovulation data sets and one intracranial aneurysm data set. We also found three genes that were differentially expressed in common for both ovulation data sets and one chorioamniotic membrane rupture data set. Combining analysis of all three data sets identified two genes (Angptl4 and Pfkfb4) that were upregulated across rupture systems. Some of the identified genes, such as Rgs2, Adam8, and Lox, have been characterised in multiple rupture contexts, including ovulation. Others, such as Glul, Baz1a, and Ddx3x, have not yet been characterised in the context of ovulation and warrant further investigation as potential novel regulators. We also identified overlapping functions of mast cells, macrophages, and T cells in the process of rupture. Each of these rupture systems share local vasoconstriction around the rupture site, smooth muscle contractions away from the site of rupture, and fluid shear forces that initially increase and then decrease to predispose one specific region to rupture. Experimental techniques developed to study these structural and biomechanical changes that underlie rupture, such as patient-derived microfluidic models and spatiotemporal transcriptomic analyses, have not yet been comprehensively translated to the study of ovulation. Review of the existing knowledge, transcriptomic data, and experimental techniques from studies of rupture in other biological systems yields a better understanding of the physiology of ovulation and identifies avenues for novel studies of ovulation with techniques and targets from the study of vascular biology and parturition.


Asunto(s)
Folículo Ovárico , Ovulación , Animales , Femenino , Humanos , Ovulación/genética , Folículo Ovárico/fisiología , Mamíferos/fisiología , Biología
8.
Development ; 150(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37218521

RESUMEN

Across species, ovulation is a process induced by a myriad of signaling cascades that ultimately leads to the release of encapsulated oocytes from follicles. Follicles first need to mature and gain ovulatory competency before ovulation; however, the signaling pathways regulating follicle maturation are incompletely understood in Drosophila and other species. Our previous work has shown that the bHLH-PAS transcription factor Single-minded (Sim) plays important roles in follicle maturation downstream of the nuclear receptor Ftz-f1 in Drosophila. Here, we demonstrate that Tango (Tgo), another bHLH-PAS protein, acts as a co-factor of Sim to promote follicle cell differentiation from stages 10 to 12. In addition, we discover that re-upregulation of Sim in stage-14 follicle cells is also essential to promote ovulatory competency by upregulating octopamine receptor in mushroom body (OAMB), matrix metalloproteinase 2 (Mmp2) and NADPH oxidase (NOX), either independently of or in conjunction with the zinc-finger protein Hindsight (Hnt). All these factors are crucial for successful ovulation. Together, our work indicates that the transcriptional complex Sim:Tgo plays multiple roles in late-stage follicle cells to promote follicle maturation and ovulation.


Asunto(s)
Proteínas de Drosophila , Metaloproteinasa 2 de la Matriz , Animales , Femenino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Oogénesis/genética , Ovulación/genética
9.
PLoS Genet ; 19(4): e1010704, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011098

RESUMEN

Saliva plays important roles in insect feeding, but its roles in insect reproduction were rarely reported. Here we reported that the knockdown of a salivary gland-specific gene NlG14 disrupted the reproduction through inhibiting the ovulation of the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most devastating rice pests in Asia. NlG14 knockdown caused the displacement of the lateral oviduct secreted components (LOSC), leading to the ovulation disorder and the accumulation of mature eggs in the ovary. The RNAi-treated females laid much less eggs than their control counterparts, though they had the similar oviposition behavior on rice stems as controls. NlG14 protein was not secreted into the hemolymph, indicating an indirect effect of NlG14 knockdown on BPH reproduction. NlG14 knockdown caused the malformation of A-follicle of the principal gland and affected the underlying endocrine mechanism of salivary glands. NlG14 reduction might promote the secretion of insulin-like peptides NlILP1 and NlILP3 from the brain, which up-regulated the expression of Nllaminin gene and then caused the abnormal contraction of lateral oviduct muscle. Another explanation was NlG14 reduction disrupted the ecdysone biosynthesis and action through the insulin-PI3K-Akt signaling in ovary. Altogether, this study indicated that the salivary gland specific protein NlG14 indirectly mediated BPH ovulation process, which established a connexon in function between insect salivary gland and ovary.


Asunto(s)
Hemípteros , Oryza , Animales , Femenino , Hemípteros/genética , Hemípteros/metabolismo , Insulina/metabolismo , Oviductos , Ovulación/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas y Péptidos Salivales/metabolismo
10.
Reproduction ; 166(1): 13-26, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37096974

RESUMEN

In brief: The bovine high fecundity allele, Trio, results in the occurrence of multiple ovulations and is characterized by antral follicles that develop slower and acquire ovulatory capacity at smaller sizes. This study provides novel information on the effect of the Trio allele on early folliculogenesis. Abstract: The bovine high fecundity allele, Trio, causes overexpression in granulosa cells (GCs) of SMAD6, an inhibitor of BMP15-activated SMAD signalling. Furthermore, the Trio allele results in antral follicles that develop slower, acquire ovulatory capacity at smaller sizes, and have three-fold greater ovulation rate compared to half-sib non-carriers. The present study was designed to determine preantral follicle numbers and size in Trio carrier and non-carrier cattle testing the hypothesis that inhibition of SMAD signalling would alter preantral follicle activation and/or growth. Ovarian tissues from Trio carrier (n = 12) and non-carrier (n = 12) heifers were obtained by laparotomy after follicle wave synchronization. Follicle numbers and dimensions were determined for each stage of development (primordial, transitional, primary, and secondary) from paraffin-embedded sections. There were no differences in the number of primordial, transitional, or secondary follicles or in antral follicle count, circulating AMH, or ovarian volume between carriers and non-carriers. Trio carriers had ~2.5-fold greater (P < 0.01) number of primary follicles than non-carriers, and transitional and primary follicles were larger (~1.2-fold; P < 0.1) in Trio carriers. Oocyte volume of primordial and transitional follicles was not different between genotypes; however, oocytes were larger (P < 0.05) in primary (~1.3-fold) and secondary (~1.8-fold) follicles for Trio carriers. Granulosa cell numbers were not different (P > 0.3) between carriers and non-carriers, irrespective of the stage of development. These results suggest that, after primordial follicle activation, follicles in Trio carrier cattle have slower progression through the primary stage, hence the larger oocyte and greater number of primary follicles.


Asunto(s)
Células de la Granulosa , Folículo Ovárico , Bovinos , Animales , Femenino , Alelos , Ovulación/genética , Oocitos , Fertilidad/genética
11.
Open Vet J ; 13(3): 352-357, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37026064

RESUMEN

Background: Genotyping offers a promising avenue for identifying the healthy reproductive system in cows. The healthy reproductive system in cows is determined by measuring the level of ovulation and by identifying the type polymorphism of specific genes. Aim: The aim of the article is to explore how polymorphism of follicle stimulating hormone Receptor (FSHR) and luteinizing hormone/choriogonadotropin receptor (LHCGR) genes affect the reproduction trait of Holstein cows. Methods: Here we define a reproducible protocol to genotype and identify the polymorphism in specific genes from the extracted DNA of cows. Results: The results of genotyping showed that the only C allele (CC genotype) was observed in 100% of cows at the LHCGR locus, and three genotypes were observed at the FSHR locus (CC-67.74%, CG-9.03%, GG-23.22%). In cows with the CC genotype at the FSHR locus, the hormone concentration during ovulation was 1.1-2.5 ng/ml, which is within the physiological range for healthy reproduction. Conclusion: Cows with the CC genotype at the FSHR locus have a healthy course of the ovulation process, therefore good reproduction.


Asunto(s)
Polimorfismo Genético , Receptores de HFE , Femenino , Bovinos/genética , Animales , Receptores de HFE/genética , Genotipo , Ovulación/genética , Fenotipo
12.
Yi Chuan ; 45(4): 295-305, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37077164

RESUMEN

BMPR1B is the first major gene of litter size identified in sheep. However, the molecular mechanism of the FecB mutation that increases the ovulation rate in sheep is still unclear. In recent years, it has been demonstrated that BMPR1B activity is regulated by the small molecule repressor protein FKBP1A, which acts as a key activity switch of the BMPR1B in the BMP/SMAD pathway. The FecB mutation is located close to the binding site of FKBP1A and BMPR1B. In this review, we summarize the structure of BMPR1B and FKBP1A proteins, and clarify the spatial interactive domains of the two proteins with respect to the location of the FecB mutation. Then the relationship between the FecB mutation and the degree of affinity of the two proteins are predicted. Finally, the hypothesis that FecB mutation causes change of activity in BMP/SMAD pathway by affecting the intensity of the interactions between BMPR1B and FKBP1A is proposed. This hypothesis provides a new clue to investigate the molecular mechanism of FecB mutation affecting ovulation rate and litter size in sheep.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1 , Ovulación , Animales , Femenino , Mutación , Ovulación/genética , Ovinos/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética
13.
Mol Hum Reprod ; 29(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36852862

RESUMEN

Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Caballos , Animales , Humanos , Femenino , Líquido Folicular/metabolismo , MicroARNs/metabolismo , Folículo Ovárico/metabolismo , Ovulación/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Mamíferos
14.
Anim Genet ; 54(3): 225-238, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36811249

RESUMEN

The FecB mutation in the sheep BMPRIB is strongly correlated with high ovulation traits but its mechanism remains unclear. This study explored differentially expressed genes (DEGs) and their associated molecular mechanisms that may be involved in FecB mutation-induced high ovulation from the perspective of the hypothalamic-pituitary-gonadal (HPG) axis by conducting a systematic review and meta-analysis. The PubMed, EMBASE, CNKI, WanFang, and CBM databases were searched for eligible articles published before August 2022, focusing on mRNA sequencing of different tissues in the HPG axis in sheep with different FecB genotypes. A total of 6555 DEGs were identified from the analysis of six published articles and experimental results from our laboratory. The DEGs were screened by vote-counting rank and robust rank aggregation. Among these, in the follicular phase, FKBP5, CDCA7 and CRABP1 were upregulated in the hypothalamus. INSM2 was upregulated, while LDB3 was downregulated in the pituitary. CLU, SERPINA14, PENK, INHA and STAR were upregulated, while FERMT2 and NPY1R were downregulated in the ovary. On the HPG axis, TAC1 was upregulated and NPNT was downregulated. Many DEGs were found in sheep with different FecB genotypes. The genes FKBP5, CDCA7, CRABP1, INSM2, LDB3, CLU, SERPINA14, PENK, INHA, STAR, FERMT2, NPY1R, TAC1 and NPNT, may be associated with FecB mutation-induced high ovulation in different tissues. These candidate genes will further improve the mechanism of multiple fertility traits induced by the FecB mutation from the perspective of the HPG axis.


Asunto(s)
Fertilidad , Ovulación , Femenino , Ovinos/genética , Animales , ARN Mensajero/genética , Genotipo , Fertilidad/genética , Ovulación/genética , Fenotipo
15.
Reproduction ; 165(3): 269-279, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534533

RESUMEN

In brief: Follicle selection is a key event in monovular species. In this manuscript, we demonstrate the role of SMAD6 in promoting decreased granulosa cell proliferation and follicle growth rate in carriers vs noncarriers of the Trio allele and after vs before follicle deviation. Abstract: Cattle are generally considered a monovular species; however, recently, a bovine high fecundity allele, termed the Trio allele, was discovered. Carriers of Trio have an elevated ovulation rate (3-5), while half-sibling noncarriers are monovular. Carriers of the Trio allele have overexpression in granulosa cells of SMAD6, an inhibitor of oocyte-derived regulators of granulosa cell proliferation and differentiation. In experiment 1, follicle size was tracked for each follicle during a follicular wave. Follicle growth rate was greater before vs after follicle deviation in both carriers and noncarriers. Additionally, follicle growth rate was consistently less in carriers vs noncarriers. In experiment 2, we collected granulosa cells from follicles before and after deviation for evaluation of granulosa cell gene expression. Granulosa cell proliferation was less in carriers vs noncarriers and after vs before follicle deviation (decreased expression of cell cycle genes CCNB1 and CCNA2). The decreased granulosa cell proliferation in noncarriers after deviation was associated with increased SMAD6 expression. Similarly, in experiment 3, decreased expression of SMAD6 in granulosa cells of noncarriers cultured in vitro for 60 h was associated with increased expression of cell cycle genes. This suggests that SMAD6 may not just be inhibiting follicle growth rate in carriers of Trio but may also play a role in the decreased follicle growth after deviation in noncarriers. The hypotheses were supported that (1) follicle growth and granulosa cell proliferation decrease after deviation in both carriers and noncarriers and that (2) granulosa cell proliferation is reduced in carriers compared to noncarriers.


Asunto(s)
Folículo Ovárico , Ovulación , Animales , Bovinos , Femenino , Alelos , Proliferación Celular , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , Ovulación/genética , Proteína smad6/metabolismo
16.
Biol Reprod ; 108(1): 107-120, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36345168

RESUMEN

The luteinizing hormone (LH) surge induces paracrine mediators within the ovarian follicle that promote ovulation. The present study explores neurotensin (NTS), a neuropeptide, as a potential ovulatory mediator in the mouse ovary. Ovaries and granulosa cells (GCs) were collected from immature 23-day-old pregnant mare serum gonadotropin primed mice before (0 h) and after administration of human chorionic gonadotropin (hCG; an LH analog) across the periovulatory period (4, 8, 12, and 24 h). In response to hCG, Nts expression rapidly increased 250-fold at 4 h, remained elevated until 8 h, and decreased until 24 h. Expression of Nts receptors for Ntsr1 remained unchanged across the periovulatory period, Ntsr2 was undetectable, whereas Sort1 expression (also called Ntsr3) gradually decreased in both the ovary and GCs after hCG administration. To better understand Nts regulation, inhibitors of the LH/CG signaling pathways were utilized. Our data revealed that hCG regulated Nts expression through the protein kinase A (PKA) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Additionally, epidermal-like-growth factor (EGF) receptor signaling also mediated Nts induction in GCs. To elucidate the role of NTS in the ovulatory process, we used a Nts silencing approach (si-Nts) followed by RNA-sequencing (RNA-seq). RNA-seq analysis of GCs collected after hCG with or without si-Nts identified and qPCR confirmed Ell2, Rsad2, Vps37a, and Smtnl2 as genes downstream of Nts. In summary, these findings demonstrate that hCG induces Nts and that Nts expression is mediated by PKA, p38MAPK, and EGF receptor signaling pathways. Additionally, NTS regulates several novel genes that could potentially impact the ovulatory process.


Asunto(s)
Neurotensina , Ovario , Ovulación , Animales , Femenino , Ratones , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/metabolismo , Células de la Granulosa/metabolismo , Caballos , Hormona Luteinizante/metabolismo , Neurotensina/genética , Neurotensina/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Ovulación/genética , Ovulación/fisiología , Factores de Elongación Transcripcional/metabolismo
17.
Theriogenology ; 195: 122-130, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332371

RESUMEN

Taihang chickens are a domestic breed distributed throughout Hebei province in the Taihang Mountains of China and are characterized by their high meat and egg quality. However, the relatively limited egg production by this breed constrains their more widespread commercial utilization. The follicle selection process is closely linked to oocyte development and ovulation, making it a key determinant of laying performance and fecundity in hens. To understand the biological basis for such follicle selection and to identify the associated regulatory pathways, we conducted a genome-wide analysis of long noncoding RNAs (lncRNAs) and mRNAs from the pre-hierarchical follicles and hierarchical follicles of Taihang laying hens. We identified 81 lncRNAs and 528 mRNAs that were differentially expressed during follicle selection, and integrated network analyses suggested that these RNAs were associated with the cell cycle, focal adhesion, oocyte meiosis, peroxisome proliferator-activated receptor signaling, and steroid hormone biosynthesis pathways. The identified lncRNAs were also predicted to influence a series of target genes in cis and trans, suggesting that they may be important regulators of ovarian follicular development. Overall, the present analysis of lncRNA and mRNA expression patterns associated with ovarian follicle development offers a new foundation for future studies of reproductive physiology in Taihang chickens, highlighting new opportunities to improve the laying performance of this important domestic breed.


Asunto(s)
ARN Largo no Codificante , Animales , Femenino , ARN Largo no Codificante/genética , ARN Mensajero/genética , Pollos/genética , Folículo Ovárico , Ovulación/genética
18.
Genes (Basel) ; 15(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38254930

RESUMEN

Improving the efficiency of hens and extending the egg-laying cycle require maintaining high egg production in the later stages. The ovarian follicles, as the primary functional units for ovarian development and oocyte maturation, play a crucial role in regulating the continuous ovulation of hens. The egg production rate of laying hens is mostly affected by proper follicle growth and ovulation in the ovaries. The objective of this study was to identify the key genes and signaling pathways involved in the development of ovarian follicles in Taihang hens through transcriptome screening. In this study, RNA sequencing was used to compare and analyze the transcriptomes of ovarian follicles at four developmental stages: small white follicles (SWF), small yellow follicles (SYF), F5 follicles, and F2 follicles, from two groups: the high continual production group (H-Group) and the low continual production group (L-Group). A total of 24 cDNA libraries were constructed, and significant differential expression of 96, 199, 591, and 314 mRNAs was detected in the SWF, SYF, F5, and F2 follicles of the H and L groups, respectively. Based on the results of GO and KEGG enrichment analyses, each stage of follicle growth possesses distinct molecular genetic features, which have important effects on follicle development and significantly promote the formation of continuous production traits through the biosynthesis of steroid hormones, cytokine-cytokine receptor interaction, and neuroactive ligand-receptor interaction. Additionally, through STEM analysis, we identified 59 DEGs, including ZP4, KCNH1, IGFs, HMGA2, and CDH1, potentially associated with follicular development within four significant modules. This study represents the first transcriptome investigation of follicles in hens with high and low egg-producing characteristics at four crucial developmental stages. These findings provide important molecular evidence for understanding the regulation of follicular development and its variations.


Asunto(s)
Pollos , Folículo Ovárico , Animales , Femenino , Pollos/genética , Ovario , Ovulación/genética , Citocinas
19.
Commun Biol ; 5(1): 1327, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463362

RESUMEN

As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes-cumulus complexes (OCCs) expressed transforming growth factor-ß ligand 1 (TGFB1), whereas ampullary epithelial cells expressed the TGF-ß receptors, TGFBR1 and TGFBR2, and all were upregulated by luteinizing hormone (LH)/human chorionic gonadotropin (hCG). OCCs and TGFB1 increased natriuretic peptide type C (NPPC) expression in cultured ampullae via TGF-ß signaling, and NPPC treatment promoted spermatozoa moving out of the isthmic reservoir of the preovulatory oviducts. Deletion of Tgfb1 in cumulus cells and Tgfbr2 in ampullary epithelial cells blocked OCC-induced NPPC expression and spermatozoa moving out of the isthmic reservoir, resulting in compromised fertilization and fertility. Oocyte-derived paracrine factors were required for promoting cumulus cell expression of TGFB1. Therefore, oocyte-dependent and cumulus cell-derived TGFB1 promotes the expression of NPPC in oviductal ampulla, which is critical for sperm migration in the oviduct and subsequent fertilization.


Asunto(s)
Péptido Natriurético Tipo-C , Oocitos , Oviductos , Ovulación , Transporte Espermático , Espermatozoides , Animales , Femenino , Masculino , Ratones , Oocitos/metabolismo , Oocitos/fisiología , Oviductos/metabolismo , Oviductos/fisiología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Semen , Espermatozoides/metabolismo , Péptido Natriurético Tipo-C/genética , Péptido Natriurético Tipo-C/metabolismo , Ovulación/genética , Ovulación/metabolismo , Fertilización/genética , Fertilización/fisiología , Transporte Espermático/genética , Transporte Espermático/fisiología
20.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430478

RESUMEN

Adenosine deaminases acting on RNA-(ADAR) comprise one family of RNA editing enzymes that specifically catalyze adenosine to inosine (A-to-I) editing. A granulosa cell (GC) specific Adar depleted mouse model [Adar flox/flox:Cyp19a1-Cre/+ (gcAdarKO)] was used to evaluate the role of ADAR1 during the periovulatory period. Loss of Adar in GCs led to failure to ovulate at 16 h post-hCG, delayed oocyte germinal vesicle breakdown and severe infertility. RNAseq analysis of GC collected from gcAdarKO and littermate control mice at 0 and 4 h post-hCG following a super-ovulatory dose of eCG (48 h), revealed minimal differences after eCG treatment alone (0 h), consistent with normal folliculogenesis observed histologically and uterine estrogenic responses. In contrast, 300 differential expressed genes (DEGs; >1.5-fold change and FDRP < 0.1) were altered at 4 h post-hCG. Ingenuity pathway analysis identified many downstream targets of estrogen and progesterone pathways, while multiple genes involved in inflammatory responses were upregulated in the gcAdarKO GCs. Temporal expression analysis of GCs at 0, 4, 8, and 12 h post-hCG of Ifi44, Ifit1, Ifit3b, and Oas1g and Ovgp1 confirmed upregulation of these inflammatory and interferon genes and downregulation of Ovgp1 a glycoprotein involved in oocyte zona pellucida stability. Thus, loss of ADAR1 in GCs leads to increased expression of inflammatory and interferon response genes which are temporally linked to ovulation failure, alterations in oocyte developmental progression and infertility.


Asunto(s)
Infertilidad , Ovulación , Femenino , Animales , Ratones , Ovulación/genética , Células de la Granulosa , Interferones , Infertilidad/genética , Oocitos , Adenosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...