Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.970
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731416

RESUMEN

The synthesis of stereochemically pure oximes, amines, saturated and unsaturated cyanomethyl compounds, and methylaminomethyl compounds at the C9 position in 3-hydroxy-N-phenethyl-5-phenylmorphans provided µ-opioid receptor (MOR) agonists with varied efficacy and potency. One of the most interesting compounds, (2-((1S,5R,9R)-5-(3-hydroxyphenyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-9-yl)acetonitrile), was found to be a potent partial MOR agonist (EC50 = 2.5 nM, %Emax = 89.6%), as determined in the forskolin-induced cAMP accumulation assay. Others ranged in potency and efficacy at the MOR, from nanomolar potency with a C9 cyanomethyl compound (EC50 = 0.85 nM) to its totally inactive diastereomer, and three compounds exhibited weak MOR antagonist activity (the primary amine 3, the secondary amine 8, and the cyanomethyl compound 41). Many of the compounds were fully efficacious; their efficacy and potency were affected by both the stereochemistry of the molecule and the specific C9 substituent. Most of the MOR agonists were selective in their receptor interactions, and only a few had δ-opioid receptor (DOR) or κ-opioid receptor (KOR) agonist activity. Only one compound, a C9-methylaminomethyl-substituted phenylmorphan, was moderately potent and fully efficacious as a KOR agonist (KOR EC50 = 18 nM (% Emax = 103%)).


Asunto(s)
Aminas , Oximas , Oximas/química , Oximas/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Aminas/química , Aminas/farmacología , Receptores Opioides mu/metabolismo , Receptores Opioides mu/agonistas , Humanos , Animales , Estructura Molecular , Células CHO , Morfinanos/química , Morfinanos/farmacología
2.
Biomed Pharmacother ; 174: 116581, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636394

RESUMEN

Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 µg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.


Asunto(s)
Membrana Celular , Flavanonas , Oximas , Staphylococcus aureus , Flavanonas/farmacología , Flavanonas/química , Oximas/farmacología , Oximas/química , Staphylococcus aureus/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Enterococcus faecalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Liposomas Unilamelares/metabolismo , Liposomas Unilamelares/química , Rastreo Diferencial de Calorimetría , Permeabilidad de la Membrana Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
3.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646697

RESUMEN

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Asunto(s)
Botrytis , Fungicidas Industriales , Oximas , Enfermedades de las Plantas , Pirazoles , Rhizoctonia , Succinato Deshidrogenasa , Rhizoctonia/efectos de los fármacos , Rhizoctonia/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Pirazoles/farmacología , Pirazoles/química , Relación Estructura-Actividad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Oximas/química , Oximas/farmacología , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Simulación del Acoplamiento Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/química , Estructura Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
4.
Protein Sci ; 33(5): e4977, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38591646

RESUMEN

Chemical warfare nerve agents and pesticides, known as organophosphorus compounds inactivate cholinesterases (ChEs) by phosphorylating the serine hydroxyl group located at the active site of ChEs. Over the course of time, phosphorylation is followed by loss of an organophosphate-leaving group and the bond with ChEs becomes irreversible, a process known as aging. Differently, structurally related irreversible catalytic poisons bearing sulfur instead of phosphorus convert ChEs in its aged form only by covalently binding to the key catalytic serine. Kinetic and crystallographic studies of the interaction between Torpedo californica acetylcholinesterase (TcAChE) and a small organosulfonate, methanesulfonyl fluoride (MSF), indeed revealed irreversibly methylsulfonylated serine 200, to be isosteric with the bound aged sarin/soman analogues. The potent bulky reversible inhibitor 7-bis-tacrine (BTA) adopts, in the active site of the crystal structure of the MSF-enzyme adduct, a location and an orientation that closely resemble the one being found in the crystal structure of the BTA-enzyme complex. Remarkably, the presence of BTA accelerates the rate of methanesulfonylation by a factor of two. This unexpected result can be explained on the basis of two facts: i) the steric hindrance exerted by BTA to MSF in accessing the active site and ii) the acceleration of the MSF-enzyme adduct formation as a consequence of the lowering of the rotational and translational degrees of freedom in the proximity of the catalytic serine. It is well known that pralidoxime (2-Pyridine Aldoxime Methyl chloride, 2-PAM) alone or in the presence of the substrate acetylcholine cannot reactivate the active site serine of the TcAChE-MSF adduct. We show that the simultaneous presence of 2-PAM and the additional neutral oxime, 2-[(hydroxyimino)methyl]-l-methylimidazol (2-HAM), triggers the reactivation process of TcAChE within the hour timescale. Overall, our results pave the way toward the likely use of a cocktail of distinctive oximes as a promising recipe for an effective and fast reactivation of aged cholinesterases.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Compuestos de Pralidoxima , Sulfonas , Taurina/análogos & derivados , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/química , Oximas/química , Serina
5.
Int J Biol Macromol ; 267(Pt 2): 131608, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621558

RESUMEN

Amidoxime-based fiber adsorbents hold significant promise for uranium extraction. However, a notable issue is that these adsorbents primarily originate from synthetic polymer materials, which, aside from providing good mechanical support, have no other functions. In recent study, we shifted our focus to silk fiber (SF), a natural protein fiber known for its unique core-shell structure and rich amino acids. The shell layer, due to its abundant functional groups, makes it easily modifiable, while the core layer provides excellent mechanical strength. Leveraging these inherent properties, an amidoxime-based fiber adsorbent was developed. This adsorbent utilizes amino and carboxyl groups for enhanced performance synergistically. This method involves establishing uranium affinity sites on the outer sericin layer of SF via chemical initiation of graft polymerization (CIGP) and amidoximation (SF-g-PAO). The water absorption ratio of SF-g-PAO is as high as 601.16 % (DG = 97.17 %). Besides, SF-g-PAO demonstrates an exceptional adsorption capacity of 15.69 mg/g in simulated seawater, achieving a remarkable removal rate of uranyl ions at 95.06 %. It can withstand a minimum of five adsorption-elution cycles. Over a 4-week period in natural seawater, SF-g-PAO displayed an adsorption capacity of 4.95 mg/g. Furthermore, SF-g-PAO also exhibits impressive uranium removal efficiency in real nuclear wastewater, with a removal rate of 63 % in just 15 min and a final removal rate of 90 %. It is hoped that this SF-g-PAO, prepared through this straightforward method and characterized by the synergistic action of amino and carboxyl groups, can offer innovative insights into the development of uranium extraction adsorbents.


Asunto(s)
Oximas , Seda , Uranio , Uranio/química , Adsorción , Oximas/química , Seda/química , Fibroínas/química
6.
J Org Chem ; 89(9): 6364-6370, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38650458

RESUMEN

Introducing glycans represents an efficient chemical approach to improve the pharmacological properties of therapeutic biomolecules. Herein, we report an efficient synthesis of glycoconjugates through chlorooxime-thiol conjugation. The reactive glycosyl chlorooximes, derived from pyranoses or furanoses, readily couple to a wide range of thiol-containing substrates, including peptides, sugars, and thiophenols. This method features mild reaction conditions and fast kinetics. Capability for aqueous media and gram-scale synthesis demonstrates the potential of this method in the bioconjugation of saccharides with biologically active molecules.


Asunto(s)
Glicoconjugados , Oximas , Compuestos de Sulfhidrilo , Oximas/química , Glicoconjugados/química , Glicoconjugados/síntesis química , Compuestos de Sulfhidrilo/química , Estructura Molecular
7.
Bioorg Med Chem Lett ; 106: 129773, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677561

RESUMEN

Hypoxia is a common phenomenon in solid tumors, and its presence inhibits the efficacy of tumor chemotherapy and radiotherapy. Accurate measurement of hypoxia before tumor treatment is essential. Three propylene amine oxime (PnAO) derivatives with different substituents attached to 2-nitroimidazole were synthesized in the work, they are 3,3,9,9-tetramethyl-1,11-bis(4-bromo-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Br2P2), 3,3,9,9-tetramethyl-1,11-bis(4-methyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (Me2P2) and 3,3,9,9-tetramethyl-1,11-bis(4,5-dimethyl-2-nitro-1H-imidazol-1-yl)-4,8-diazaundecane-2,10-dione dioxime (2Me2P2). The three compounds were radiolabeled with 99mTc to give three complexes([99mTc]Tc-Br2P2, [99mTc]Tc-Me2P2 and [99mTc]Tc-2Me2P2) with good in vitro stability. [99mTc]Tc-Me2P2 with a more suitable reduction potential had the highest hypoxic cellular uptake, compared with [99mTc]Tc-2P2 that have been previously reported, [99mTc]Tc-Br2P2 and [99mTc]Tc-2Me2P2. Biodistribution results in S180 tumor-bearing mice demonstrated that [99mTc]Tc-Me2P2 had the highest tumor-to-muscle (T/M) ratio (12.37 ± 1.16) at 2 h in the four complexes. Autoradiography and immunohistochemical staining results revealed that [99mTc]Tc-Me2P2 specifically targeted tumor hypoxic regions. The SPECT/CT imaging results showed that [99mTc]Tc-Me2P2 could target the tumor site. [99mTc]Tc-Me2P2 may become a potential hypoxia imaging agent.


Asunto(s)
Nitroimidazoles , Compuestos de Organotecnecio , Oximas , Hipoxia Tumoral , Oximas/química , Oximas/síntesis química , Nitroimidazoles/química , Nitroimidazoles/síntesis química , Animales , Ratones , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/síntesis química , Hipoxia Tumoral/efectos de los fármacos , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacología , Humanos , Distribución Tisular , Estructura Molecular , Línea Celular Tumoral , Relación Estructura-Actividad
8.
Chem Biodivers ; 21(5): e202400355, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38453645

RESUMEN

In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 µM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 µM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 µM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.


Asunto(s)
Antifúngicos , Diseño de Fármacos , Fusarium , Pruebas de Sensibilidad Microbiana , Oximas , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Fusarium/efectos de los fármacos , Oximas/química , Oximas/farmacología , Oximas/síntesis química , Relación Estructura-Actividad , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Phytophthora/efectos de los fármacos , Estructura Molecular , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/síntesis química , Relación Dosis-Respuesta a Droga , Ascomicetos/efectos de los fármacos
9.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493910

RESUMEN

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Asunto(s)
Butirilcolinesterasa , Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Oximas , Oximas/química , Oximas/farmacología , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Humanos , Intoxicación por Organofosfatos/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Antídotos/química , Antídotos/farmacología , Cinética , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Animales , Compuestos Organofosforados/química
10.
Int J Biol Macromol ; 266(Pt 2): 131112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537863

RESUMEN

In this work, the modified­sodium alginate gel beads were prepared by sol-gel method. Due to the presence of water channels in the sodium alginate gel bead, amidoxime groups and PO43- were exposed to the surface of the adsorbent to the maximum extent, resulting in the excellent adsorption capacity of modified­sodium alginate gel beads. The introduction of amidoxime-modified hydroxyapatite significantly improved the adsorption capacity and the adsorption rate of the gel beads. The adsorption capacity increased from 308.7 to 466.0 mg/g and the adsorption equilibrium time was shortened from 300 min to 120 min. The modified­sodium alginate gel bead possessed the advantages of short adsorption time, high adsorption efficiency and large adsorption capacity, which could be regarded as a potential adsorbent for uranium. Moreover, the uranium removal ability on the modified gel beads was mainly attributed to the Coulomb force between PO43- and uranium and the complexation between uranium and amidoxime groups. In summary, this work would provide a new idea for the modification and application of sodium alginate-based materials.


Asunto(s)
Alginatos , Durapatita , Geles , Oximas , Uranio , Alginatos/química , Uranio/química , Uranio/aislamiento & purificación , Adsorción , Durapatita/química , Oximas/química , Geles/química , Microesferas , Cinética , Concentración de Iones de Hidrógeno
11.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417730

RESUMEN

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Asunto(s)
Sustancias para la Guerra Química , Reactivadores de la Colinesterasa , Agentes Nerviosos , Humanos , Ratones , Animales , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/uso terapéutico , Reactivadores de la Colinesterasa/química , Agentes Nerviosos/toxicidad , Nivel sin Efectos Adversos Observados , Sustancias para la Guerra Química/toxicidad , Oximas/farmacología , Oximas/uso terapéutico , Oximas/química , Compuestos de Piridinio/farmacología , Inhibidores de la Colinesterasa/toxicidad , Inhibidores de la Colinesterasa/química , Colinesterasas , Acetilcolinesterasa , Antídotos/farmacología , Antídotos/uso terapéutico
12.
J Biotechnol ; 384: 12-19, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38373531

RESUMEN

Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.


Asunto(s)
Hidroliasas , Odorantes , Hidroliasas/metabolismo , Nitrilos/metabolismo , Oximas/química , Oximas/metabolismo , Enzimas Inmovilizadas
13.
Int J Nanomedicine ; 19: 307-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229703

RESUMEN

Introduction: Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods: We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion: In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion: Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.


Asunto(s)
Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Paraoxon , Compuestos de Pralidoxima , Animales , Ratones , Acetilcolinesterasa/metabolismo , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Organofosfatos , Oximas/farmacología , Oximas/química , Paraoxon/toxicidad , Paraoxon/química , Compuestos de Pralidoxima/química , Compuestos de Pralidoxima/farmacología
14.
J Neurochem ; 168(4): 370-380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36786545

RESUMEN

Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.


Asunto(s)
Acetamidas , Cloropirifos , Reactivadores de la Colinesterasa , Insecticidas , Agentes Nerviosos , Paratión , Animales , Ratones , Acetilcolinesterasa/química , Butirilcolinesterasa/química , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/química , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Insecticidas/toxicidad , Macaca , Compuestos Organofosforados/toxicidad , Oximas/farmacología , Oximas/química , Oximas/uso terapéutico , Paratión/efectos adversos , Paratión/toxicidad
15.
J Neurochem ; 168(4): 355-369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37429600

RESUMEN

This review presents recent studies of the chemical and molecular regulators of acetylcholine (ACh) signaling and the complexity of the small molecule and RNA regulators of those mechanisms that control cholinergic functioning in health and disease. The underlying structural, neurochemical, and transcriptomic concepts, including basic and translational research and clinical studies, shed new light on how these processes inter-change under acute states, age, sex, and COVID-19 infection; all of which modulate ACh-mediated processes and inflammation in women and men and under diverse stresses. The aspect of organophosphorus (OP) compound toxicity is discussed based on the view that despite numerous studies, acetylcholinesterase (AChE) is still a vulnerable target in OP poisoning because of a lack of efficient treatment and the limitations of oxime-assisted reactivation of inhibited AChE. The over-arching purpose of this review is thus to discuss mechanisms of cholinergic signaling dysfunction caused by OP pesticides, OP nerve agents, and anti-cholinergic medications; and to highlight new therapeutic strategies to combat both the acute and chronic effects of these chemicals on the cholinergic and neuroimmune systems. Furthermore, OP toxicity was examined in view of cholinesterase inhibition and beyond in order to highlight improved small molecules and RNA therapeutic strategies and assess their predicted pitfalls to reverse the acute toxicity and long-term deleterious effects of OPs.


Asunto(s)
Reactivadores de la Colinesterasa , Femenino , Humanos , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/química , Compuestos Organofosforados , Oximas/química , Oximas/farmacología , Oximas/uso terapéutico , Acetilcolina , ARN
16.
Chem Biol Interact ; 387: 110789, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37931869

RESUMEN

The kinetic analysis of esterase inhibition by acylating compounds (organophosphorus, carbamates and sulfonylfluorides) sometimes cannot yield consistent results by fitting simple inhibition kinetic models to experimental data of complex systems. In this work kinetic data were obtained for demeton-S-methyl (DSM) with human acetylcholinesterase in two kinds of experiments: (a) time progressive inhibition with a range of concentrations, (b) progressive spontaneous reactivation starting with pre-inhibited enzyme. DSM is an organophosphorus compound used as pesticide and considered a model for studying the dermal exposure of nerve agents such as VX gas. A kinetic model equation was deduced with four different molecular phenomena occurring simultaneously: (1) inhibition; (2) spontaneous reactivation; (3) aging; and (4) ongoing inhibition (inhibition during the substrate reaction). A 3D fit of the model was applied to analyze the inhibition experimental data. The best-fitting model is compatible with a sensitive enzymatic entity. The second-order rate constant of inhibition (ki = 0.0422 µM-1 min-1), the spontaneous reactivation constant (ks = 0.0202 min-1) and the aging constant (kg = 0.0043 min-1) were simultaneously estimated. As an example for testing the model and approach, it was tested also in the presence of 5 % ethanol (conditions as previously used in the literature), the best fitting model is compatible with two apparent sensitive enzymatic entities (17 % and 83 %) and only one spontaneously reactivates and ages. The corresponding second-order rate constants of inhibition (ki = 0.0354 and 0.0119 µM-1 min-1) and the spontaneous reactivation and aging constants for the less sensitive component (kr = 0.0203 min-1 and kg = 0.0088 min-1) were estimated. The results were also consistent with a significant ongoing inhibition. These parameters were similar to those deduced in spontaneous reactivation experiments of the pre-inhibited samples with DSM in the absence or presence of ethanol. The two apparent components fit was interpreted by an equilibrium between ethanol-free and ethanol-bound enzyme. The consistency of results in inhibition and in spontaneous reactivation experiments was considered an internal validation of the methodology and the conclusions.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Organofosfatos , Humanos , Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/farmacología , Etanol , Cinética , Oximas/química , Activación Enzimática , Organofosfatos/farmacología
17.
Environ Pollut ; 344: 123269, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159627

RESUMEN

The removal and recovery of uranium [U(VI)] from organic containing wastewater has been a challenging in radioactive wastewater purification. Here, we designed a polyamine/amidoxime polyacrylonitrile fiber (PAN-AO-A) with high removal efficiency, excellent selectivity, excellent organic resistance and low cost by combining the anti-organic properties of amidoxime polyacrylonitrile fiber (PAN-AO-A) with the high adsorption capacity of polyamine polyacrylonitrile fiber, which is used to extract U(VI) from low-level uranium-containing wastewater with high ammonia nitrogen and organic content. PAN-AO-A adsorbent with high grafting rate (86.52%), high adsorption capacity (qe = 618.8 mg g-1), and strong resistance to organics and impurity interference is achieved. The adsorption rate of U(VI) in both real organic and laundry wastewater containing uranium is as high as 99.7%, and the partition coefficients (Kd) are 7.61 × 105 mL g-1 and 9.16 × 106 mL g-1, respectively. The saturated adsorption capacity of PAN-AO-A in the continuous system solution can reach up to 505.5 mg g-1, and the concentration of U(VI) in the effluent is as low as 1 µg L-1. XPS analysis and Density functional theory (DFT) studies the coordination form between U(VI) and PAN-AO-A, where the most stable structure is η2-AO(UO2)(CO3)2. The -NH-/-NH2 and -C(NH2)N-OH groups of PAN-AO-A exhibit a synergistic complex effect in the U(VI) adsorption process. PAN-AO-A is a material with profound influence and limitless potential that can be used for wastewater containing U(VI) and organic matter.


Asunto(s)
Uranio , Aguas Residuales , Uranio/análisis , Poliaminas , Oximas/química , Adsorción
19.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069175

RESUMEN

The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.


Asunto(s)
Éter , Oximas , Oximas/farmacología , Oximas/química , Éteres/farmacología , Éteres/química , Relación Estructura-Actividad , Éteres de Etila
20.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37950699

RESUMEN

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Asunto(s)
Reactivadores de la Colinesterasa , Humanos , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Células Hep G2 , Inhibidores de la Colinesterasa/toxicidad , Oximas/farmacología , Oximas/química , Antídotos/farmacología , Organofosfatos/toxicidad , Estrés Oxidativo , Carbono , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...