Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 11(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33772542

RESUMEN

The germline-soma divide is a fundamental distinction in developmental biology, and different genes are expressed in germline and somatic cells throughout metazoan life cycles. Ciliates, a group of microbial eukaryotes, exhibit germline-somatic nuclear dimorphism within a single cell with two different genomes. The ciliate Oxytricha trifallax undergoes massive RNA-guided DNA elimination and genome rearrangement to produce a new somatic macronucleus (MAC) from a copy of the germline micronucleus (MIC). This process eliminates noncoding DNA sequences that interrupt genes and also deletes hundreds of germline-limited open reading frames (ORFs) that are transcribed during genome rearrangement. Here, we update the set of transcribed germline-limited ORFs (TGLOs) in O. trifallax. We show that TGLOs tend to be expressed during nuclear development and then are absent from the somatic MAC. We also demonstrate that exposure to synthetic RNA can reprogram TGLO retention in the somatic MAC and that TGLO retention leads to transcription outside the normal developmental program. These data suggest that TGLOs represent a group of developmentally regulated protein-coding sequences whose gene expression is terminated by DNA elimination.


Asunto(s)
Oxytricha , Animales , Oxytricha/genética , Reordenamiento Génico , Células Germinativas , ADN/metabolismo , ARN/metabolismo
2.
J Phys Chem B ; 124(49): 11055-11066, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33238706

RESUMEN

G-quadruplexes (GQs) are highly stable noncanonical forms of nucleic acids that are present in important genomic regions. The central core of the GQ is lined up by four closely spaced carbonyl groups from the G-quartets, and the resulting electrostatic repulsion is neutralized by the coordinating cations. In spite of several reports on GQ structure and cation-GQ interactions, the atomic- to molecular-level understanding of the ion dynamics and ion exchange in the GQ core is quite poor. Here, we attempt to elucidate the mechanism of Na+ and K+ binding to the GQ core and trace the exchange of these ions with the ions in bulk by means of all-atomic molecular dynamics (MD) simulations. One of the most studied GQs, Oxytricha nova telomeric G-quadruplex (OxyGQ), is taken as the representative GQ. Subsequently, umbrella sampling MD simulations were performed to elucidate the energetics of ion translocation from one end to the other end of the GQ central core. Our study highlights the importance of ion hydration for the uptake and correct positioning of the cations in the core. The free-energy landscape of ion transport has shown favorable in-plane binding of Na+ ions with GQ quartets, which matches very well with the crystal structure. The binding of K+ ions, on the other hand, was out-of-plane and its translocation required a larger barrier to cross.


Asunto(s)
G-Cuádruplex , Oxytricha , ADN , Conformación de Ácido Nucleico , Oxytricha/genética , Potasio , Sodio
3.
J Theor Biol ; 494: 110215, 2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112806

RESUMEN

DNA recombinant processes can involve gene segments that overlap or interleave with gene segments of another gene. Such gene segment appearances relative to each other are called here gene segment organization. We use graphs to represent the gene segment organization in a chromosome locus. Vertices of the graph represent contigs resulting after the recombination and the edges represent the gene segment organization prior to rearrangement. To each graph we associate a vector whose entries correspond to graph properties, and consider this vector as a point in a higher dimensional Euclidean space such that cluster formations and analysis can be performed with a hierarchical clustering method. The analysis is applied to a recently sequenced model organism Oxytricha trifallax, a species of ciliate with highly scrambled genome that undergoes massive rearrangement process after conjugation. The analysis shows some emerging star-like graph structures indicating that segments of a single gene can interleave, or even contain all of the segments from fifteen or more other genes in between its segments. We also observe that as many as six genes can have their segments mutually interleaving or overlapping.


Asunto(s)
Genoma , Modelos Genéticos , Cromosomas/genética , Orden Génico , Genoma/genética , Oxytricha/genética
4.
Eur J Protistol ; 71: 125641, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31639568

RESUMEN

A new hypotrichous ciliate, Oxytricha seokmoensis sp. nov., was discovered in a soil from a forest in South Korea and described based on the observations of living and stained specimens. In addition, phylogenetic analyses were performed using the small subunit ribosomal RNA (18S rRNA) gene sequence. Morphologically, the new species is similar to the O. granulifera-complex in terms of ciliary structure and arrangement of cortical granules, but dorsal kineties 3 and 4 (not completely separated vs. separated) and macronuclear nodules in the cyst (separated vs. fused) differ. Oxytricha seokmoensis is most similar to O. pulvillus, but can be distinguished by the number of adoral membranelles (30-40 vs. 23-27), contractile vacuole (present vs. absent), number of left (27-37 vs. 17-25) and right (27-35 vs. 18-23) marginal cirri, and lepidosomes on the cyst surface (present vs. absent). In a phylogenetic tree, O. seokmoensis is distinctly separated from the O. granulifera clade, but is sister to the Paroxytricha clade. In addition, O. seokmoensis and P. longigranulosa have the smallest genetic difference (d = 0.015, 23 of 1579 nt difference). This close relationship is supported by incomplete dorsal kinety 3 fragmentation and separated macronuclear nodules in resting cysts.


Asunto(s)
Oxytricha/clasificación , Filogenia , Oxytricha/citología , Oxytricha/genética , Oxytricha/crecimiento & desarrollo , ARN Ribosómico 18S/genética , Especificidad de la Especie
5.
Nucleic Acids Res ; 47(18): 9741-9760, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31504770

RESUMEN

Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci. We verified their bona fide circular topology using circular DNA deep-sequencing, 2D gel electrophoresis and inverse polymerase chain reaction. In contrast to the precise circular excision of transposable elements, we report widespread heterogeneity in the circular excision of non-repetitive germline-limited loci. We also demonstrate that circular DNAs are transcribed in Oxytricha, producing rearrangement-specific long non-coding RNAs. The programmed formation of thousands of eccDNA molecules makes Oxytricha a model system for studying nucleic acid topology. It also suggests involvement of eccDNA in programmed genome rearrangement.


Asunto(s)
ADN Circular/genética , Reordenamiento Génico/genética , Oxytricha/genética , Recombinación Genética , Citoplasma/genética , Elementos Transponibles de ADN/genética , ADN Protozoario/genética , Células Eucariotas , Genoma de Protozoos/genética , Secuenciación de Nucleótidos de Alto Rendimiento
6.
G3 (Bethesda) ; 9(10): 3105-3118, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31506317

RESUMEN

The ciliate Oxytricha trifallax contains two nuclei: a germline micronucleus and a somatic macronucleus. These two nuclei diverge significantly in genomic structure. The micronucleus contains approximately 100 chromosomes of megabase scale, while the macronucleus contains 16,000 gene-sized, high ploidy "nanochromosomes." During its sexual cycle, a copy of the zygotic germline micronucleus develops into a somatic macronucleus via DNA excision and rearrangement. The rearrangement process is guided by multiple RNA-based pathways that program the epigenetic inheritance of sequences in the parental macronucleus of the subsequent generation. Here, we show that the introduction of synthetic DNA molecules homologous to a complete native nanochromosome during the rearrangement process results in either loss or heavy copy number reduction of the targeted nanochromosome in the macronucleus of the subsequent generation. This phenomenon was tested on a variety of nanochromosomes with different micronuclear structures, with deletions resulting in all cases. Deletion of the targeted nanochromosome results in the loss of expression of the targeted genes, including gene knockout phenotypes that were phenocopied using alternative knockdown approaches. Further investigation of the chromosome deletion showed that, although the full length nanochromosome was lost, remnants of the targeted chromosome remain. We were also able to detect the presence of telomeres on these remnants. The chromosome deletions and remnants are epigenetically inherited when backcrossed to wild type strains, suggesting that an undiscovered mechanism programs DNA elimination and cytoplasmically transfers to both daughter cells during conjugation. Programmed deletion of targeted chromosomes provides a novel approach to investigate genome rearrangement and expands the available strategies for gene knockout in Oxytricha trifallax.


Asunto(s)
Deleción Cromosómica , Oxytricha/genética , Fragmentación del ADN , Epigénesis Genética , Reordenamiento Génico , Genoma de Protozoos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
7.
G3 (Bethesda) ; 9(10): 3119-3127, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31506318

RESUMEN

Oxytricha trifallax, like other ciliates, has separate germline and somatic nuclei. The diploid germline genome in the micronucleus is composed of long conventional chromosomes. The macronucleus contains a somatic genome which is naturally fragmented into thousands of kilobase-sized chromosomes. Here, we develop a method to stably incorporate artificial chromosomes into the macronucleus. We report two cases of successful transformation and demonstrate the use of somatic transformation to investigate gene regulation and gene function in Oxytricha We show that the transformed artificial chromosomes are maintained through multiple asexual divisions. Furthermore, they support the transcriptional regulation of the native chromosome from which they were derived and are translated to produce functional proteins. To test if transformed chromosomes are amenable to practical applications, we generated a tagged version of a representative gene (AL1) and used it to co-precipitate associated proteins. This revealed an association with nucleic acid binding proteins, specifically RNA-binding proteins, and RNA immunoprecipitation of AL1 revealed its association with multiple RNAs. The use of artificial chromosomes in Oxytricha enables an array of genetic and molecular biological assays, as well as new avenues of inquiry into the epigenetic programming of macronuclear development and genome rearrangement.


Asunto(s)
Cromosomas Artificiales , Oxytricha/genética , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Reordenamiento Génico , Genes Protozoarios , Genoma de Protozoos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
Cell ; 177(7): 1781-1796.e25, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31104845

RESUMEN

DNA N6-adenine methylation (6mA) has recently been described in diverse eukaryotes, spanning unicellular organisms to metazoa. Here, we report a DNA 6mA methyltransferase complex in ciliates, termed MTA1c. It consists of two MT-A70 proteins and two homeobox-like DNA-binding proteins and specifically methylates dsDNA. Disruption of the catalytic subunit, MTA1, in the ciliate Oxytricha leads to genome-wide loss of 6mA and abolishment of the consensus ApT dimethylated motif. Mutants fail to complete the sexual cycle, which normally coincides with peak MTA1 expression. We investigate the impact of 6mA on nucleosome occupancy in vitro by reconstructing complete, full-length Oxytricha chromosomes harboring 6mA in native or ectopic positions. We show that 6mA directly disfavors nucleosomes in vitro in a local, quantitative manner, independent of DNA sequence. Furthermore, the chromatin remodeler ACF can overcome this effect. Our study identifies a diverged DNA N6-adenine methyltransferase and defines the role of 6mA in chromatin organization.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Nucleosomas/enzimología , Oxytricha/enzimología , Proteínas Protozoarias/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Tetrahymena thermophila/enzimología , Complejos Multienzimáticos/genética , Nucleosomas/genética , Oxytricha/genética , Proteínas Protozoarias/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Tetrahymena thermophila/genética
9.
Environ Pollut ; 239: 189-197, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29655065

RESUMEN

Conventional assessment and evaluation of sediment quality are based on laboratory-based ecotoxicological and chemical measurements with lack of concern for ecological relevance. Microbiotas in sediment are responsive to pollutants and can be used as alternative ecological indicators of sediment pollutants; however, the linkage between the microbial ecology and ecotoxicological endpoints in response to sediment contamination has been poorly evaluated. Here, in situ microbiotas from the Three Gorges Reservoir (TGR) area of the Yangtze River were characterized by DNA metabarcoding approaches, and then, changes of in situ microbiotas were compared with the ecotoxicological endpoint, aryl hydrocarbon receptor (AhR) mediated activity, and level of polycyclic aromatic hydrocarbons (PAHs) in sediments. PAHs and organic pollutant mixtures mediating AhR activity had different effects on the structures of microbiotas. Specifically, Shannon indices of protistan communities were negatively correlated with the levels of AhR mediated activity and PAHs. The sediment AhR activity was positively correlated with the relative abundance of prokaryotic Acetobacteraceae, but had a negative correlation with protistan Oxytrichidae. Furthermore, a quantitative classification model was built to predict the level of AhR activity based on the relative abundances of Acetobacteraceae and Oxytrichidae. These results suggested that in situ Protista communities could provide a useful tool for monitoring and assessing ecological stressors. The observed responses of microbial community provided supplementary evidence to support that the AhR-active pollutants, such as PAHs, were the primary stressors of the aquatic community in TGR area.


Asunto(s)
Acetobacteraceae/aislamiento & purificación , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Oxytricha/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/análisis , Receptores de Hidrocarburo de Aril/metabolismo , Ríos , Contaminantes Químicos del Agua/análisis , Acetobacteraceae/genética , China , Código de Barras del ADN Taxonómico , Ecotoxicología , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/parasitología , Microbiota/genética , Oxytricha/genética , Ríos/química , Ríos/microbiología , Ríos/parasitología
10.
G3 (Bethesda) ; 8(5): 1669-1674, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29545465

RESUMEN

Ciliates have two different types of nuclei per cell, with one acting as a somatic, transcriptionally active nucleus (macronucleus; abbr. MAC) and another serving as a germline nucleus (micronucleus; abbr. MIC). Furthermore, Oxytricha trifallax undergoes extensive genome rearrangements during sexual conjugation and post-zygotic development of daughter cells. These rearrangements are necessary because the precursor MIC loci are often both fragmented and scrambled, with respect to the corresponding MAC loci. Such genome architectures are remarkably tolerant of encrypted MIC loci, because RNA-guided processes during MAC development reorganize the gene fragments in the correct order to resemble the parental MAC sequence. Here, we describe the germline organization of several nested and highly scrambled genes in Oxytricha trifallax These include cases with multiple layers of nesting, plus highly interleaved or tangled precursor loci that appear to deviate from previously described patterns. We present mathematical methods to measure the degree of nesting between precursor MIC loci, and revisit a method for a mathematical description of scrambling. After applying these methods to the chromosome rearrangement maps of O. trifallax we describe cases of nested arrangements with up to five layers of embedded genes, as well as the most scrambled loci in O. trifallax.


Asunto(s)
Cromosomas/genética , Reordenamiento Génico , Oxytricha/genética , ADN/genética , Sitios Genéticos , Macronúcleo/genética , Micronúcleo Germinal/genética , Recombinación Genética/genética
11.
J Eukaryot Microbiol ; 65(3): 357-371, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29044809

RESUMEN

The genus Oxytricha Bory de Saint-Vincent in Lamouroux, Bory de Saint-Vincent and Deslongchamps, 1824 comprises about 38 species distributed worldwide and has been considered to be a nonmonophyletic group. Based on living observations, protargol preparations, and a small subunit ribosomal RNA (SSU rRNA) gene sequence, we describe a new subspecies Oxytricha granulifera chiapasensis n. subsp. This new taxon is morphologically characterized by undulating membranes basically in a Stylonychia-pattern, six dorsal kineties, size in vivo ca. 60-120 × 20-40 µm, 21-30 right and 21-31 left marginal cirri, 22-29 adoral membranelles, and spherical cortical granules arranged in longitudinal rows on the dorsal side. In terms of the SSU rRNA gene sequence, the new subspecies differs from populations of O. granulifera from GENBANK by 7-35 nucleotides. Phylogenetic analyses showed that Oxytricha granulifera gene sequences were nested into three groups, with the new subspecies included in one of them. Oxytricha granulifera chiapasensis n. subsp. is different from Oxytricha granulifera granulifera Foissner and Adam, 1983 and Oxytricha granulifera quadricirrata Blatterer and Foissner, 1988 based on: (i) undulating membranes in Stylonychia-pattern, (ii) formation of a sixth dorsal kinety during morphogenesis, (iii) the adoral membranelles number, and (iv) inhabiting freshwater habitats.


Asunto(s)
Lagos/parasitología , Oxytricha/clasificación , ADN Protozoario/genética , ADN Ribosómico/genética , Ecosistema , México , Oxytricha/genética , Oxytricha/aislamiento & purificación , Filogenia , Subunidades Ribosómicas Pequeñas/genética
12.
RNA ; 24(1): 18-29, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079634

RESUMEN

Dicer-dependent small noncoding RNAs play important roles in gene regulation in a wide variety of organisms. Endogenous small interfering RNAs (siRNAs) are part of an ancient pathway of transposon control in plants and animals. The ciliate, Oxytricha trifallax, has approximately 16,000 gene-sized chromosomes in its somatic nucleus. Long noncoding RNAs establish high ploidy levels at the onset of sexual development, but the factors that regulate chromosome copy numbers during cell division and growth have been a mystery. We report a novel function of a class of Dicer (Dcl-1)- and RNA-dependent RNA polymerase (RdRP)-dependent endogenous small RNAs in regulating chromosome copy number and gene dosage in O. trifallax Asexually growing populations express an abundant class of 21-nt sRNAs that map to both coding and noncoding regions of most chromosomes. These sRNAs are bound to chromatin and their levels surprisingly do not correlate with mRNA levels. Instead, the levels of these small RNAs correlate with genomic DNA copy number. Reduced sRNA levels in dcl-1 or rdrp mutants lead to concomitant reduction in chromosome copy number. Furthermore, these cells show no signs of transposon activation, but instead display irregular nuclear architecture and signs of replication stress. In conclusion, Oxytricha Dcl-1 and RdRP-dependent small RNAs that derive from the somatic nucleus contribute to the maintenance of gene dosage, possibly via a role in DNA replication, offering a novel role for these small RNAs in eukaryotes.


Asunto(s)
ADN Protozoario/genética , Oxytricha/genética , ARN Protozoario/fisiología , ARN Pequeño no Traducido/fisiología , Cromosomas/genética , Variaciones en el Número de Copia de ADN , Replicación del ADN , Epigénesis Genética , Proteínas Protozoarias/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa III/fisiología
13.
RNA ; 23(8): 1200-1208, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28450531

RESUMEN

The ciliate Oxytricha trifallax maintains two genomes: a germline genome that is active only during sexual conjugation and a transcriptionally active, somatic genome that derives from the germline via extensive sequence reduction and rearrangement. Previously, we found that long noncoding (lnc) RNA "templates"-telomere-containing, RNA-cached copies of mature chromosomes-provide the information to program the rearrangement process. Here we used a modified RNA-seq approach to conduct the first genome-wide search for endogenous, telomere-to-telomere RNA transcripts. We find that during development, Oxytricha produces long noncoding RNA copies for over 10,000 of its 16,000 somatic chromosomes, consistent with a model in which Oxytricha transmits an RNA-cached copy of its somatic genome to the sexual progeny. Both the primary sequence and expression profile of a somatic chromosome influence the temporal distribution and abundance of individual template RNAs. This suggests that Oxytricha may undergo multiple rounds of DNA rearrangement during development. These observations implicate a complex set of thousands of long RNA molecules in the wiring and maintenance of a highly elaborate somatic genome architecture.


Asunto(s)
Cromosomas/genética , Genoma de Protozoos/genética , Oxytricha/genética , ARN Largo no Codificante/genética , ARN Protozoario/genética , Animales , Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Oxytricha/crecimiento & desarrollo , Telómero/genética
14.
Annu Rev Biochem ; 86: 439-460, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28141967

RESUMEN

Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple/metabolismo , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Telomerasa/metabolismo , Telómero/enzimología , Animales , Dominio Catalítico , ADN de Cadena Simple/genética , Regulación de la Expresión Génica , Humanos , Repeticiones de Microsatélite , Conformación de Ácido Nucleico , Oxytricha/genética , Oxytricha/metabolismo , ARN/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telómero/química , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
15.
PLoS One ; 12(2): e0170870, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28207760

RESUMEN

During its sexual reproduction, the stichotrichous ciliate Oxytricha trifallax orchestrates a remarkable transformation of one of the newly formed germline micronuclear genomes. Hundreds of thousands of gene pieces are stitched together, excised from chromosomes, and replicated dozens of times to yield a functional somatic macronuclear genome composed of ~16,000 distinct DNA molecules that typically encode a single gene. Little is known about the proteins that carry out this process. We profiled mRNA expression as a function of macronuclear development and identified hundreds of mRNAs preferentially expressed at specific times during the program. We find that a disproportionate number of these mRNAs encode proteins that are involved in DNA and RNA functions. Many mRNAs preferentially expressed during macronuclear development have paralogs that are either expressed constitutively or are expressed at different times during macronuclear development, including many components of the RNA polymerase II machinery and homologous recombination complexes. Hundreds of macronuclear development-specific genes encode proteins that are well-conserved among multicellular eukaryotes, including many with links to germline functions or development. Our work implicates dozens of DNA and RNA-binding proteins with diverse evolutionary trajectories in macronuclear development in O. trifallax. It suggests functional connections between the process of macronuclear development in unicellular ciliates and germline specialization and differentiation in multicellular organisms, and argues that gene duplication is a key source of evolutionary innovation in this process.


Asunto(s)
ADN Protozoario/genética , Evolución Molecular , Perfilación de la Expresión Génica , Macronúcleo/metabolismo , Oxytricha/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Macronúcleo/genética , Oxytricha/genética , Oxytricha/crecimiento & desarrollo , Filogenia , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/genética
16.
RNA Biol ; 14(5): 620-631, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27267579

RESUMEN

Chromosomal fusions are common in normal and cancer cells and can produce aberrant gene products that promote transformation. The mechanisms driving these fusions are poorly understood, but recurrent fusions are widespread. This suggests an underlying mechanism, and some authors have proposed a possible role for RNA in this process. The unicellular eukaryote Oxytricha trifallax displays an exorbitant capacity for natural genome editing, when it rewrites its germline genome to form a somatic epigenome. This developmental process provides a powerful model system to directly test the influence of small noncoding RNAs on chromosome fusion events during somatic differentiation. Here we show that small RNAs are capable of inducing chromosome fusions in 4 distinct cases (out of 4 tested), including one fusion of 3 chromosomes. We further show that these RNA-mediated chromosome fusions are heritable over multiple sexual generations and that transmission of the acquired fusion is associated with endogenous production of novel piRNA molecules that target the fused junction. We also demonstrate the capacity of a long noncoding RNA (lncRNA) to induce chromosome fusion of 2 distal germline loci. These results underscore the ability of short-lived, aberrant RNAs to act as drivers of chromosome fusion events that can be stably transmitted to future generations.


Asunto(s)
Cromosomas/metabolismo , Reordenamiento Génico/fisiología , Genoma de Protozoos , Oxytricha/genética , ARN no Traducido/metabolismo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Cromosomas/genética , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Microinyecciones , ARN Protozoario/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos
17.
J Theor Biol ; 410: 171-180, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27593332

RESUMEN

Some genera of ciliates, such as Oxytricha and Stylonychia, undergo massive genome reorganization during development and provide model organisms to study DNA rearrangement. A common feature of these ciliates is the presence of two types of nuclei: a germline micronucleus and a transcriptionally-active somatic macronucleus containing over 16,000 gene sized "nano-chromosomes". During conjugation the old parental macronucleus disintegrates and a new macronucleus forms from a copy of the zygotic micronucleus. During this process, macronuclear chromosomes assemble through DNA processing events that delete 90-98% of the DNA content of the micronucleus. This includes the deletion of noncoding DNA segments that interrupt precursor DNA regions in the micronucleus, as well as transposons and other germline-limited DNA. Each macronuclear locus may be present in the micronucleus as several nonconsecutive, permuted, and/or inverted DNA segments. Here we investigate the genome-wide range of scrambled gene architectures that describe all precursor-product relationships in Oxytricha trifallax, the first completely sequenced scrambled genome. We find that five general, recurrent patterns in the sets of scrambled micronuclear precursor pieces can describe over 80% of Oxytricha's scrambled genes. These include instances of translocations and inversions, and other specific patterns characterized by alternating stretches of consecutive odd and even DNA segments. Moreover, we find that iterating patterns of alternating odd-even segments up to four times can describe over 96% of the scrambled precursor loci. Recurrence of these highly structured genetic architectures within scrambled genes presumably reflects recurrent evolutionary events that gave rise to over 3000 of scrambled loci in the germline genome.


Asunto(s)
Núcleo Celular/genética , ADN Protozoario/genética , Reordenamiento Génico , Genes Protozoarios , Modelos Genéticos , Oxytricha/genética , Cromosomas/genética
18.
PLoS Genet ; 12(7): e1006181, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27442251

RESUMEN

The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism.


Asunto(s)
Genoma de Protozoos , Evolución Molecular , Oxytricha/genética , Fenotipo
19.
Nucleic Acids Res ; 44(D1): D703-9, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26586804

RESUMEN

Ciliated protists exhibit nuclear dimorphism through the presence of somatic macronuclei (MAC) and germline micronuclei (MIC). In some ciliates, DNA from precursor segments in the MIC genome rearranges to form transcriptionally active genes in the mature MAC genome, making these ciliates model organisms to study the process of somatic genome rearrangement. Similar broad scale, somatic rearrangement events occur in many eukaryotic cells and tumors. The (http://oxytricha.princeton.edu/mds_ies_db) is a database of genome recombination and rearrangement annotations, and it provides tools for visualization and comparative analysis of precursor and product genomes. The database currently contains annotations for two completely sequenced ciliate genomes: Oxytricha trifallax and Tetrahymena thermophila.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Reordenamiento Génico , Genoma , Oxytricha/genética , Tetrahymena thermophila/genética , Anotación de Secuencia Molecular , Recombinación Genética
20.
J Eukaryot Microbiol ; 63(1): 138-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26084401

RESUMEN

Dynein heavy chains are motor proteins that comprise a large gene family found across eukaryotes. We have investigated this gene family in four ciliate species: Ichthyophthirius, Oxytricha, Paramecium, and Tetrahymena. Ciliates appear to encode more dynein heavy chain genes than most eukaryotes. Phylogenetic comparisons demonstrated that the last common ancestor of the ciliates that were examined expressed at least 14 types of dynein heavy chains with most of the expansion coming from the single-headed inner arm dyneins. Each of the dyneins most likely performed different functions within the cell.


Asunto(s)
Cilióforos/genética , Dineínas/química , Dineínas/genética , Evolución Molecular , Secuencia de Aminoácidos , Cilióforos/metabolismo , Oxytricha/genética , Oxytricha/metabolismo , Paramecium/genética , Paramecium/metabolismo , Filogenia , Tetrahymena/genética , Tetrahymena/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...