Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.563
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1331282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774232

RESUMEN

Introduction: Polycystic ovary syndrome (PCOS) is a common multifactorial and polygenic disorder of the endocrine system, affecting up to 20% of women in reproductive age with a still unknown etiology. Follicular fluid (FF) represents an environment for the normal development of follicles rich in metabolites, hormones and neurotransmitters, but in some instances of PCOS the composition can be different. Vasoactive intestinal peptide (VIP) is an endogenous autonomic neuropeptide involved in follicular atresia, granulosa cell physiology and steroidogenesis. Methods: ELISA assays were performed to measure VIP and estradiol levels in human follicular fluids, while AMH, FSH, LH, estradiol and progesterone in the plasma were quantified by chemiluminescence. UHPLC/QTOF was used to perform the untargeted metabolomic analysis. Results: Our ELISA and metabolomic results show: i) an increased concentration of VIP in follicular fluid of PCOS patients (n=9) of about 30% with respect to control group (n=10) (132 ± 28 pg/ml versus 103 ± 26 pg/ml, p=0,03) in women undergoing in vitro fertilization (IVF), ii) a linear positive correlation (p=0.05, r=0.45) between VIP concentration and serum Anti-Müllerian Hormone (AMH) concentration and iii) a linear negative correlation between VIP and noradrenaline metabolism. No correlation between VIP and estradiol (E2) concentration in follicular fluid was found. A negative correlation was found between VIP and noradrenaline metabolite 3,4-dihydroxyphenylglycolaldehyde (DOPGAL) in follicular fluids. Conclusion: VIP concentration in follicular fluids was increased in PCOS patients and a correlation was found with noradrenaline metabolism indicating a possible dysregulation of the sympathetic reflex in the ovarian follicles. The functional role of VIP as noradrenergic modulator in ovarian physiology and PCOS pathophysiology was discussed.


Asunto(s)
Fertilización In Vitro , Líquido Folicular , Síndrome del Ovario Poliquístico , Péptido Intestinal Vasoactivo , Humanos , Femenino , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/sangre , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/sangre , Líquido Folicular/metabolismo , Adulto , Estradiol/sangre , Estradiol/metabolismo , Hormona Antimülleriana/sangre , Hormona Antimülleriana/metabolismo , Estudios de Casos y Controles
2.
Front Neural Circuits ; 18: 1385908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590628

RESUMEN

Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.


Asunto(s)
Hipotálamo , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Hipotálamo/metabolismo , Ritmo Circadiano/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Sueño , Arginina Vasopresina/metabolismo
3.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607918

RESUMEN

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Asunto(s)
Región CA1 Hipocampal , Interneuronas , Reconocimiento en Psicología , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/citología , Ratones , Masculino , Reconocimiento en Psicología/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratones Endogámicos C57BL , Memoria/fisiología , Parvalbúminas/metabolismo , Conducta Exploratoria/fisiología , Somatostatina/metabolismo
4.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656542

RESUMEN

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Asunto(s)
Conducta Exploratoria , Hipocampo , Plasticidad Neuronal , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Péptido Intestinal Vasoactivo , Animales , Masculino , Ratas , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Conducta Exploratoria/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Ratas Wistar , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38656435

RESUMEN

This study evaluated if vasoactive intestinal polypeptide (VIP) influences growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Sixteen wether lambs (69.6 ±â€…1.9 kg) were housed in individual pens, adapted to a corn grain-based diet, and randomly assigned to 2 treatment groups. Lambs were injected intraperitoneally every other day for 28 d with saline (0.9% NaCl) containing no VIP (n = 8; control) or containing VIP (n = 8; 1.3 nmol/kg body weight [BW]). All lambs were transferred to individual metabolic crates for the final 7 d of the experiment to measure nitrogen balance and nutrient digestibility. At the end of the treatment period, lambs were slaughtered, and pancreatic tissue, small intestinal tissue, and rumen fluid were collected for protein, digestive enzymes, ruminal pH, and volatile fatty acid (VFA) analyses. Lambs treated with VIP had greater final BW, average daily gain, and gain:feed (P = 0.01, 0.05, 0.03, respectively). No differences between treatment groups were observed (P ≥ 0.25) for nutrient intake, digestibility, nitrogen retention, ruminal pH, and VFA concentrations. Moreover, VIP treatment did not influence (P ≥ 0.19) plasma glucose, urea N, and insulin concentrations. Treatment with VIP increased (P = 0.03) relative cecum weight (g/kg BW) and decreased (P = 0.05) relative brain weight. Pancreatic and intestinal digestive enzyme activities, except for duodenal maltase (P = 0.02), were not influenced (P ≥ 0.09) by VIP treatment. These data suggest that the administration of VIP may have potential to improve average daily gain and gain:feed in lambs fed grain-based diets.


This research explored the influence of vasoactive intestinal polypeptide (VIP), an anti-inflammatory mediator, in lambs fed a high-concentrate finishing diet on growth performance, nutrient digestibility, nitrogen balance, and digestive enzyme activity. Wether lambs were fed a whole corn grain-based diet containing no added forage and randomly assigned to either the VIP or control group. Lambs received intraperitoneal saline injections with or without VIP every second day over a 28-d treatment period. Average daily gain and gain:feed ratio was positively influenced by VIP. However, treatment did not affect dry matter intake, nitrogen balance, nutrient digestibility, and digestive enzyme activity. These data indicate exogenous VIP treatment may influence growth in lambs fed a high-concentrate diet.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Digestión , Nitrógeno , Péptido Intestinal Vasoactivo , Animales , Digestión/efectos de los fármacos , Nitrógeno/metabolismo , Ovinos/crecimiento & desarrollo , Ovinos/fisiología , Dieta/veterinaria , Masculino , Péptido Intestinal Vasoactivo/metabolismo , Alimentación Animal/análisis , Rumen , Nutrientes/metabolismo , Distribución Aleatoria
6.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38433340

RESUMEN

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Asunto(s)
Tiburones , Animales , Tiburones/metabolismo , Glándula de Sal/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Cazón/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/farmacología , Péptido Natriurético Tipo-C/metabolismo , Péptido Natriurético Tipo-C/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Sodio/metabolismo , Sodio/farmacología , Potasio/metabolismo , Potasio/farmacología
7.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326974

RESUMEN

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Asunto(s)
Conexina 43 , Receptor beta de Estrógeno , Animales , Femenino , Conexina 43/metabolismo , Receptor beta de Estrógeno/metabolismo , Núcleo Supraquiasmático/fisiología , Ritmo Circadiano/fisiología , Uniones Comunicantes/metabolismo , Conexinas/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Estrógenos/farmacología , Mamíferos/metabolismo
8.
Cell Mol Neurobiol ; 44(1): 19, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315298

RESUMEN

Retinal vasoactive intestinal peptide amacrine cells (VIP-ACs) play an important role in various retinal light-mediated pathological processes related to different developmental ocular diseases and even mental disorders. It is important to characterize the developmental changes in VIP-ACs to further elucidate their mechanisms of circuit function. We bred VIP-Cre mice with Ai14 and Ai32 to specifically label retinal VIP-ACs. The VIP-AC soma and spine density generally increased, from postnatal day (P)0 to P35, reaching adult levels at P14 and P28, respectively. The VIP-AC soma density curve was different with the VIP-AC spine density curve. The total retinal VIP content reached a high level plateau at P14 but was decreased in adults. From P14 to P16, the resting membrane potential (RMP) became more negative, and the input resistance decreased. Cell membrane capacitance (MC) showed three peaks at P7, P12 and P16. The RMP and MC reached a stable level similar to the adult level at P18, whereas input resistance reached a stable level at P21. The percentage of sustained voltage-dependent potassium currents peaked at P16 and remained stable thereafter. The spontaneous excitatory postsynaptic current and spontaneous inhibitory postsynaptic current frequencies and amplitudes, as well as charge transfer, peaked at P12 to P16; however, there were also secondary peaks at different time points. In conclusion, we found that the second, third and fourth weeks after birth were important periods of VIP-AC development. Many developmental changes occurred around eye opening. The development of soma, dendrite and electrophysiological properties showed uneven dynamics of progression. Cell differentiation may contribute to soma development whereas the changes of different ion channels may play important role for spine development.


Asunto(s)
Células Amacrinas , Péptido Intestinal Vasoactivo , Animales , Ratones , Diferenciación Celular , Potenciales de la Membrana/fisiología , Retina/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
9.
Nature ; 627(8002): 149-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418876

RESUMEN

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquídeo , Líquido Extracelular , Ritmo Gamma , Sistema Glinfático , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Amiloide/metabolismo , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiología , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Estimulación Eléctrica
10.
Eur J Neurosci ; 59(8): 1993-2015, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382910

RESUMEN

A common pathological hallmark of neurodegenerative disorders is neuronal cell death, accompanied by neuroinflammation and oxidative stress. The vasoactive intestinal peptide (VIP) is a pleiotropic peptide that combines neuroprotective and immunomodulatory actions. The gene therapy field shows long-term promise for treating a wide range of neurodegenerative diseases (ND). In this study, we aimed to investigate the in vitro efficacy of transduction of microglia using lentiviral gene therapy vectors encoding VIP (LentiVIP). Additionally, we tested the protective effects of the secretome derived from LentiVIP-infected "immortalized human" microglia HMC3 cells, and cells treated with Synthetic VIP (SynVIP), against toxin-induced neurodegeneration. First, LentiVIP, which stably expresses VIP, was generated and purified. VIP secretion in microglial conditioned media (MG CM) for LentiVIP-infected HMC3 microglia cells was confirmed. Microglia cells were activated with lipopolysaccharide, and groups were formed as follows: 1) Control, 2) SynVIP-treated, or 3) LentiVIP-transduced. These MG CM were applied on an in vitro neurodegenerative model formed by differentiated (d)-SH-SY5Y cells. Then, cell survival analysis and apoptotic nuclear staining, besides measurement of oxidative/inflammatory parameters in CM of cells were performed. Activated MG CM reduced survival rates of both control and toxin-applied (d)-SH-SY5Y cells, whereas LentiVIP-infected MG CM and SynVIP-treated ones exhibited better survival rates. These findings were supported by apoptotic nuclear evaluations of (d)-SH-SY5Y cells, alongside oxidative/inflammatory parameters in their CM. LentiVIP seems worthy of further studies for the treatment of ND because of the potential of gene therapy to treat diseases effectively with a single injection.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Microglía/metabolismo , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Terapia Genética , Fármacos Neuroprotectores/farmacología
11.
J Biol Rhythms ; 39(2): 135-165, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366616

RESUMEN

It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.


Asunto(s)
Ritmo Circadiano , Neuropéptidos , Ritmo Circadiano/fisiología , Neuropéptidos/metabolismo , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Péptido Liberador de Gastrina/metabolismo
12.
Cell Mol Gastroenterol Hepatol ; 17(3): 383-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38061549

RESUMEN

BACKGROUND & AIMS: Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS: Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS: Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.


Asunto(s)
Motilidad Gastrointestinal , Péptido Intestinal Vasoactivo , Humanos , Ratones , Animales , Péptido Intestinal Vasoactivo/metabolismo , Motilidad Gastrointestinal/fisiología , Neuroglía/metabolismo , Colinérgicos
13.
Adv Biol (Weinh) ; 8(3): e2300250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38047500

RESUMEN

Neuromodulation-related intervertebral disc degeneration (IVDD) is a novel IVDD pattern and are proposed recently. However, the mechanistic basis of neuromodulation and intervertebral disc (IVD) homeostasis remains unclear. Here, this study aimed to investigate the expression of postganglionic sympathetic nerve fiber-derived vasoactive intestinal peptide (VIP) system in human IVD tissue, and to assess the role of VIP-related neuromodulation in IVDD. Patient samples and in vitro cell experiments showed that the expression of receptors for VIP is negatively correlated with the severity of IVDD, and the administration of exogenous VIP can ameliorate interleukin 1ß-induced nucleus pulposus (NP) cell apoptosis and inflammation. Further mRNA-seq analysis revealed that fibroblast growth factor 18- (FGF18)-mediated activation of V-akt murine thymoma viral oncogene homolog signaling pathway is involved in the protective effects of VIP on inflammation-induced NP cell degeneration. Further analysis identified VIP via its receptor vasoactive intestinal peptide receptor 2 can directly result in decreased expression of miR-15a-5p, which targeted FGF18. Finally, in vivo mice lumbar IVDD model confirmed that focally exogenous administration of VIP can effectively ameliorated the progression of IVDD, as shown by the radiological and histological analysis. In conclusion, these results indicated that sympathetic neurotransmitter, VIP, delayed IVDD via FGF18/FGFR2-mediated activation of V-akt murine thymoma viral oncogene homolog signaling pathway, which will broaden the horizon concerning how the neuromodulation correlates with IVDD and shed new light on novel therapeutical alternatives to IVDD.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Degeneración del Disco Intervertebral , Timoma , Neoplasias del Timo , Humanos , Ratones , Animales , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/uso terapéutico , Péptido Intestinal Vasoactivo/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Transducción de Señal , Proteínas Portadoras/metabolismo , Proteínas Portadoras/farmacología , Inflamación/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo
14.
Gen Comp Endocrinol ; 346: 114415, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995830

RESUMEN

Endocrine changes during bird reproduction are well documented. Prolactin (PRL) exhibits a strong relationship between incubation and broody behavior. The molecular forms of PRL in the anterior pituitary gland during the reproductive cycle have already been previously identified but not those in the secreted form. To identify the molecular forms of secreted PRL during the reproductive cycle, we thus monitored the physiological status and incubation behavior of 10 Silkie hens by a video recording system over 1-2 years. Nine out of ten mature hens exhibited incubation behavior multiple times during the experiment. Ten hens demonstrated two interesting features. In a typical clutch, hens spent 10-15 min in the nest to lay an egg. Once they spent over 1 h in the nest, the nest occupancy increased incrementally. This shift in the nest occupancy occurred 7-10 days before the incubation onset and was highly repeatable. Based on the behavior of the hens, we cultured the anterior pituitary gland during four stages (premature non-laying, laying, trans, and incubation) with physiological PRL-releasing factor, vasoactive intestinal peptide (VIP). Based on our two-dimensional protein analysis, glycosylated PRL (G-PRL) displayed several isoforms with varying isoelectric points (pI), whereas we could detect one primary signal for non-glycosylated PRL (NG-PRL). However, 3-4 NG-PRL isoforms were detected in the anterior pituitary gland. These results suggested that secreted PRL, especially from the trans and incubation stages, contains various isoforms and it is post-translationally glycosylated and phosphorylated.


Asunto(s)
Adenohipófisis , Prolactina , Femenino , Animales , Prolactina/metabolismo , Pollos/metabolismo , Adenohipófisis/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Isoformas de Proteínas/metabolismo , Pavos/metabolismo
15.
PLoS Biol ; 21(12): e3002412, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048352

RESUMEN

Visual system function depends upon the elaboration of precise connections between retinal ganglion cell (RGC) axons and their central targets in the brain. Though some progress has been made in defining the molecules that regulate RGC connectivity required for the assembly and function of image-forming circuitry, surprisingly little is known about factors required for intrinsically photosensitive RGCs (ipRGCs) to target a principal component of the non-image-forming circuitry: the suprachiasmatic nucleus (SCN). Furthermore, the molecules required for forming circuits critical for circadian behaviors within the SCN are not known. We observe here that the adhesion molecule teneurin-3 (Tenm3) is highly expressed in vasoactive intestinal peptide (VIP) neurons located in the core region of the SCN. Since Tenm3 is required for other aspects of mammalian visual system development, we investigate roles for Tenm3 in regulating ipRGC-SCN connectivity and function. Our results show that Tenm3 negatively regulates association between VIP and arginine vasopressin (AVP) neurons within the SCN and is essential for M1 ipRGC axon innervation to the SCN. Specifically, in Tenm3-/- mice, we find a reduction in ventro-medial innervation to the SCN. Despite this reduction, Tenm3-/- mice have higher sensitivity to light and faster re-entrainment to phase advances, probably due to the increased association between VIP and AVP neurons. These data show that Tenm3 plays key roles in elaborating non-image-forming visual system circuitry and that it influences murine responses to phase-advancing light stimuli.


Asunto(s)
Axones , Células Ganglionares de la Retina , Animales , Ratones , Axones/metabolismo , Ritmo Circadiano/fisiología , Mamíferos/metabolismo , Células Ganglionares de la Retina/fisiología , Núcleo Supraquiasmático/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
16.
J Neuroendocrinol ; 35(11): e13354, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37946684

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the homologous peptide, vasoactive intestinal peptide (VIP), participate in glucose homeostasis using insulinotropic and counterregulatory processes. The role of VIP receptor 2 (VPAC2R) in these opposing actions needs further characterization. In this study, we examined the participation of VPAC2R on basal glycemia, fasted levels of glucoregulatory hormones and on glycemia responses during metabolic and psychogenic stress using gene-deleted (Vipr2-/- ) female mice. The mean basal glycemia was significantly greater in Vipr2-/- in the fed state and after an 8-h overnight fast as compared to wild-type (WT) mice. Insulin tolerance testing following a 5-h fast (morning fast, 0.38 U/kg insulin) indicated no effect of genotype. However, during a more intense metabolic challenge (8 h, ON fast, 0.25 U/kg insulin), Vipr2-/- females displayed significantly impaired insulin hypoglycemia. During immobilization stress, the hyperglycemic response and plasma epinephrine levels were significantly elevated above basal in Vipr2-/- , but not WT mice, in spite of similar stress levels of plasma corticosterone. Together, these results implicate participation of VPAC2R in upregulated counterregulatory processes influenced by enhanced sympathoexcitation. Moreover, the suppression of plasma GLP-1 levels in Vipr2-/- mice may have removed the inhibition on hepatic glucose production and the promotion of glucose disposal by GLP-1. qPCR analysis indicated deregulation of central gene markers of PACAP/VIP signaling in Vipr2-/- , upregulated medulla tyrosine hydroxylase (Th) and downregulated hypothalamic Vip transcripts. These results demonstrate a physiological role for VPAC2R in glucose metabolism, especially during insulin challenge and psychogenic stress, likely involving the participation of sympathoadrenal activity and/or metabolic hormones.


Asunto(s)
Receptores de la Hormona Hipofisaria , Receptores de Péptido Intestinal Vasoactivo , Ratones , Femenino , Animales , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Eliminación de Gen , Péptido Intestinal Vasoactivo/metabolismo , Insulina/metabolismo , Glucosa , Péptido 1 Similar al Glucagón , Receptores de la Hormona Hipofisaria/genética , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética
17.
Proc Natl Acad Sci U S A ; 120(49): e2314857120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019855

RESUMEN

The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of a central circadian clock that orchestrates overt rhythms of physiology and behavior. Circadian timekeeping requires intercellular communication among SCN neurons, and multiple signaling pathways contribute to SCN network coupling. Gamma-aminobutyric acid (GABA) is produced by virtually all SCN neurons, and previous work demonstrates that this transmitter regulates coupling in the adult SCN but is not essential for the nucleus to sustain overt circadian rhythms. Here, we show that the deletion of the gene that codes for the GABA vesicular transporter Vgat from neuromedin-S (NMS)+ neurons-a subset of neurons critical for SCN function-causes arrhythmia of locomotor activity and sleep. Further, NMS-Vgat deletion impairs intrinsic clock gene rhythms in SCN explants cultured ex vivo. Although vasoactive intestinal polypeptide (VIP) is critical for SCN function, Vgat deletion from VIP-expressing neurons did not lead to circadian arrhythmia in locomotor activity rhythms. Likewise, adult SCN-specific deletion of Vgat led to mild impairment of behavioral rhythms. Our results suggest that while the removal of GABA release from the adult SCN does not affect the pacemaker's ability to sustain overt circadian rhythms, its removal from a critical subset of neurons within the SCN throughout development removes the nucleus ability to sustain circadian rhythms. Our findings support a model in which SCN GABA release is critical for the developmental establishment of intercellular network properties that define the SCN as a central pacemaker.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiología , Neuronas/metabolismo , Relojes Circadianos/fisiología , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo , Núcleo Supraquiasmático/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Arritmias Cardíacas/metabolismo
18.
Anim Biotechnol ; 34(8): 4105-4115, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37842944

RESUMEN

Gonadotropin-inhibitory hormone (GnIH) plays a crucial role in regulating reproduction in the hypothalamus of poultry and has been intensely investigated since its discovery. This study aimed to assess the effects of GnIH on testicular development, as well as on reproduction-related hormone release and gene expression levels in roosters. The administration of exogenous GnIH resulted in a significant reduction in testis weight, testis volume and semen quality (p < 0.05). Additionally, exogenous GnIH significantly up-regulates the expression of GnIH, and down-regulates the expression of PRL (p < 0.05). GnIH application also decreased the GnRH, vasoactive intestinal peptide (VIP) and luteinizing hormone ß subunit(LHß)gene expression levels. Meanwhile, by neutralizing the effects of endogenous GnIH through immunization, testicular development on day 150 in roosters was significantly promoted. Compared to the control condition, GnIH immunization significantly down-regulated the expression of the VIP and PRL genes (p < 0.05). In conclusion, we found that exogenous GnIH treatment inhibited testicular development, reduces PRL gene expression, and suppressed reproductive performance in roosters. Conversely, GnIH immunization down-regulated VIP and PRL genes, activates the reproductive system, and promotes the reproductive activity and testicular development of roosters.


Asunto(s)
Pollos , Análisis de Semen , Masculino , Animales , Pollos/metabolismo , Gonadotropinas/metabolismo , Reproducción/genética , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo , Expresión Génica
19.
Elife ; 122023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665123

RESUMEN

Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Neuropéptidos , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
20.
Cell Rep ; 42(9): 113133, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37708021

RESUMEN

Visual stimuli that deviate from the current context elicit augmented responses in the primary visual cortex (V1). These heightened responses, known as "deviance detection," require local inhibition in the V1 and top-down input from the anterior cingulate area (ACa). Here, we investigated the mechanisms by which the ACa and V1 interact to support deviance detection. Local field potential recordings in mice during an oddball paradigm showed that ACa-V1 synchrony peaks in the theta/alpha band (≈10 Hz). Two-photon imaging in the V1 revealed that mainly pyramidal neurons exhibited deviance detection, while contextually redundant stimuli increased vasoactive intestinal peptide (VIP)-positive interneuron (VIP) activity and decreased somatostatin-positive interneuron (SST) activity. Optogenetic drive of ACa-V1 inputs at 10 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of V1-VIPs disrupted Aca-V1 synchrony and deviance detection in the V1. These results outline temporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.


Asunto(s)
Corteza Cerebral , Percepción Visual , Animales , Ratones , Percepción Visual/fisiología , Corteza Cerebral/metabolismo , Células Piramidales/metabolismo , Interneuronas/metabolismo , Optogenética , Péptido Intestinal Vasoactivo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...