RESUMEN
Despite the great effort that has gone into developing new molecules as multitarget compounds to treat Alzheimer's disease (AD), none of these have been approved to treat this disease. Therefore, it will be interesting to determine whether benzazoles such as benzimidazole, benzoxazole, and benzothiazole, employed as pharmacophores, could act as multitarget drugs. AD is a multifactorial disease in which several pharmacological targets have been identified-some are involved with amyloid beta (Aß) production, such as beta secretase (BACE1) and beta amyloid aggregation, while others are involved with the cholinergic system as acetylcholinesterase (AChE) and butirylcholinesterase (BChE) and nicotinic and muscarinic receptors, as well as the hyperphosphorylation of microtubule-associated protein (tau). In this review, we describe the in silico and in vitro evaluation of benzazoles on three important targets in AD: AChE, BACE1, and Aß. Benzothiazoles and benzimidazoles could be the best benzazoles to act as multitarget drugs for AD because they have been widely evaluated as AChE inhibitors, forming π-π interactions with W286, W86, Y72, and F338, as well as in the AChE gorge and catalytic site. In addition, the sulfur atom from benzothiazol interacts with S286 and the aromatic ring from W84, with these compounds having an IC50 value in the µM range. Also, benzimidazoles and benzothiazoles can inhibit Aß aggregation. However, even though benzazoles have not been widely evaluated on BACE1, benzimidazoles evaluated in vitro showed an IC50 value in the nM range. Therefore, important chemical modifications could be considered to improve multitarget benzazoles' activity, such as substitutions in the aromatic ring with electron withdrawal at position five, or a linker 3 or 4 carbons in length, which would allow for better interaction with targets.
Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Inhibidores de la Colinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Humanos , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Agregado de Proteínas/efectos de los fármacos , Bencimidazoles/química , Bencimidazoles/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , AnimalesRESUMEN
Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aß), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 µM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aß by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aß (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Neuronas Colinérgicas , Minociclina , Presenilina-1 , Proteínas tau , Presenilina-1/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Minociclina/farmacología , Animales , Proteínas tau/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Ratones , Humanos , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Fármacos Neuroprotectores/farmacología , Simulación del Acoplamiento MolecularRESUMEN
Seven treatments are approved for Alzheimer's disease, but five of them only relieve symptoms and do not alter the course of the disease. Aducanumab (Adu) and lecanemab are novel disease-modifying antiamyloid-ß (Aß) human monoclonal antibodies that specifically target the pathophysiology of Alzheimer's disease (AD) and were recently approved for its treatment. However, their administration is associated with serious side effects, and their use is limited to early stages of the disease. Therefore, drug discovery remains of great importance in AD research. To gain new insights into the development of novel drugs for Alzheimer's disease, a combination of techniques was employed, including mutation screening, molecular dynamics, and quantum biochemistry. These were used to outline the interfacial interactions of the Aducanumab::Aß2-7 complex. Our analysis identified critical stabilizing contacts, revealing up to 40% variation in the affinity of the Adu chains for Aß2-7 depending on the conformation outlined. Remarkably, two complementarity determining regions (CDRs) of the Adu heavy chain (HCDR3 and HCDR2) and one CDR of the Adu light chain (LCDR3) accounted for approximately 77% of the affinity of Adu for Aß2-7, confirming their critical role in epitope recognition. A single mutation, originally reported to have the potential to increase the affinity of Adu for Aß2-7, was shown to decrease its structural stability without increasing the overall binding affinity. Mimetic peptides that have the potential to inhibit Aß aggregation were designed by using computational outcomes. Our results support the use of these peptides as promising drugs with great potential as inhibitors of Aß aggregation.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Anticuerpos Monoclonales Humanizados , Inmunoterapia , Simulación de Dinámica Molecular , Mutación , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Humanos , Anticuerpos Monoclonales Humanizados/farmacología , Péptidos beta-Amiloides/metabolismo , Inmunoterapia/métodos , Fragmentos de Péptidos/metabolismo , Diseño de Fármacos , Desarrollo de Medicamentos/métodosRESUMEN
BACKGROUND: Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS: We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting ß-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS: These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.
Asunto(s)
Enfermedad de Alzheimer , Genoma Bacteriano , Kéfir , Lactobacillus , Microbiota , Péptidos , Kéfir/microbiología , Lactobacillus/genética , Brasil , Péptidos/química , Péptidos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Metagenómica/métodosRESUMEN
Familial Alzheimer's disease (FAD) is a chronic neurological condition that progresses over time. Currently, lacking a viable treatment, the use of multitarget medication combinations has generated interest as a potential FAD therapy approach. In this study, we examined the effects of 4-phenylbutyric acid (4-PBA) and methylene blue (MB) either separately or in combination on PSEN1 I416T cholinergic-like neuron cells (ChLNs), which serve as a model for FAD. We found that MB was significantly efficient at reducing the accumulation of intracellular Aß, phosphorylation of TAU Ser202/Thr205, and increasing Δψm, whereas 4-PBA was significantly efficient at diminishing oxidation of DJ-1Cys106-SH, expression of TP53, and increasing ACh-induced Ca2+ influx. Both agents were equally effective at blunting phosphorylated c-JUN at Ser63/Ser73 and activating caspase 3 (CASP3) into cleaved caspase 3 (CC3) on mutant cells. Combination of MB and 4-PBA at middle (0.1, 1) concentration significantly reduced iAß, p-TAU, and oxDJ-1 and augmented the ACh-induced Ca2+ influx compared to combined agents at low (0.05, 0.5) or high (0.5, 5) concentration. However, combined MB and 4-PBA were efficient only at dropping DJ-1Cys106-SO3 and increasing ACh-induced Ca2+ inward in mutant ChLNs. Our data show that the reagents MB and 4-PBA alone possess more than one action (e.g., antiamyloid, antioxidant, anti-TAU, antiapoptotic, and ACh-induced Ca2+ influx enhancers), that in combination might cancel or diminish each other. Together, these results strongly argue that MB and 4-PBA might protect PSEN1 I416T ChLNs from Aß-induced toxicity by working intracellularly as anti-Aß and anti-Tau agents, improving Δψm and cell survival, and extracellularly, by increasing ACh-induced Ca2+ ion influx. MB and 4-PBA are promising drugs with potential for repurposing in familial AD.
Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Apoptosis , Azul de Metileno , Fenilbutiratos , Presenilina-1 , Presenilina-1/genética , Presenilina-1/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Azul de Metileno/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Humanos , Fenilbutiratos/farmacología , Proteínas tau/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Animales , Fosforilación/efectos de los fármacosRESUMEN
Disputes about the scientific validity of the amyloid-ß hypothesis of Alzheimer's disease have been held since the early 1990s, with little constructive progress made between opposing sides despite recent therapeutic progress. Here, I argue that philosophy of science can improve the chance of constructive debate by giving researchers technical language to describe and assess scientific progress. To do so, I interpret the amyloid hypothesis using a modified version of the research programme concept from philosopher of science Imre Lakatos. I first outline the amyloid-ß hypothesis and study critiques of its central place in Alzheimer's research. Then, I draw on the complexity of amyloid-ß and Alzheimer's research to discuss the limits of using concepts from popular philosophers of science Karl Popper or Thomas Kuhn, before finally arguing that an adaptation of the research programme concept can foster constructive debates about the science of Alzheimer's and within it. I will argue that the amyloid-ß hypothesis has contributed to significant progress in the Alzheimer's field based on what Lakatos called the "positive heuristic" (motivating the programme to test its predictions) and the "negative heuristic" (protecting the programme from refutation). I consider the amyloid research agenda to be progressive despite the fact that its claims about disease aetiology could be wrong.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Filosofía , AnimalesRESUMEN
Synaptic dysfunction is an early feature in Alzheimer's disease (AD) pathogenesis and a major morphological correlate of memory deficits. Given the main synaptic location of N-methyl-D-aspartate receptors (NMDARs), their dysregulation has been implicated in these pathological effects. Here, to detect possible alterations in the expression and synaptic localisation of the GluN1 subunit in the brain of amyloidogenic APP/PS1 mice, we employed histoblot and SDS-digested freeze-fracture replica labelling (SDS-FRL) techniques. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus in a layer-dependent manner, in the cortex and the caudate putamen of APP/PS1 transgenic mice at 12 months of age but was unaltered at 1 and 6 months. Using quantitative SDS-FRL, we unravelled the molecular organisation of GluN1 in seven excitatory synapse populations at a high spatial resolution in the CA1 and CA3 fields and the DG of the hippocampus in 12-month-old APP/PS1 mice. In the CA1 field, the labelling density for GluN1 in the excitatory synapses established on spines and interneurons, was significantly reduced in APP/PS1 mice compared to age-matched wild-type mice in the stratum lacunosum-moleculare but unaltered in the stratum radiatum. In the CA3 field, synaptic GluN1 was reduced in mossy fibre-CA3 pyramidal cell synapses but unaltered in the A/C-CA3 pyramidal cell synapses. In the DG, the density of GluN1 in granule cell-perforant pathway synapses was reduced in APP/PS1 mice. Altogether, our findings provide evidence of specific alterations of synaptic GluN1 in the trisynaptic circuit of the hippocampus in Aß pathology. This differential vulnerability in the disruption of NMDARs may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit and cognitive impairment characteristic of APP/PS1 mice.
Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Receptores de N-Metil-D-Aspartato , Sinapsis , Animales , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Sinapsis/patologíaRESUMEN
Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce ß-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aß aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E4 , Encéfalo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Animales , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/metabolismo , Modelos Animales de EnfermedadRESUMEN
The interaction between iron and amyloid-beta (Aß) peptides has received significant attention in Alzheimer's disease (AD) research due to its potential implications in developing this pathology. However, the coordination preferences of iron and Aß1-42 have not been thoroughly investigated or remain unknown. This study employs a computational protocol that combines homology modeling techniques with quantum mechanics (DTF-xTB) calculations to build and evaluate several 3D models of Fe2+/3+-Aß1-42. Our results reveal well-defined complexes for both the metal and peptide moieties, and we discuss the molecular interactions stabilizing these complexes by elucidating the coordinating environments and binding preferences. These proposed models offer valuable insights into the role of iron in Alzheimer's disease (AD) pathology.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Fragmentos de Péptidos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Humanos , Teoría Cuántica , Modelos Moleculares , Hierro/química , Hierro/metabolismo , Compuestos Férricos/química , Compuestos Ferrosos/químicaRESUMEN
ß-amyloid42 (Aß42) in Alzheimer's disease (AD) and orexin in narcolepsy are considered crucial biomarkers for diagnosis and therapeutic targets. Recently, orexin and Aß cerebral dynamics have been studied in both pathologies, but how they interact with each other remains further to be known. In this study, we investigated the reliability of using the correlation between orexin-A and Aß42 CSF levels as a candidate marker to explain the chain of events leading to narcolepsy or AD pathology. In order to test the correlation between these biomarkers, patients diagnosed with AD (n = 76), narcolepsy type 1 (NT1, n = 17), narcolepsy type 2 (NT2, n = 23) and healthy subjects (n = 91) were examined. Patients and healthy subjects underwent lumbar puncture between 8:00 and 10:00 am at the Neurology Unit of the University Hospital of Rome "Tor Vergata". CSF levels of Aß42, total-tau, phosphorylated-tau, and orexin-A were assessed. The results showed that CSF levels of Aß42 were significantly lower (p < 0.001) in AD (332.28 ± 237.36 pg/mL) compared to NT1 (569.88 ± 187.00 pg/mL), NT2 (691.00 ± 292.63 pg/mL) and healthy subjects (943.68 ± 198.12 pg/mL). CSF orexin-A levels were statistically different (p < 0.001) between AD (148.01 ± 29.49 pg/mL), NT1 (45.94 ± 13.63 pg/mL), NT2 (104.92 ± 25.55 pg/mL) and healthy subjects (145.18 ± 27.01 pg/mL). Moderate-severe AD patients (mini mental state examination < 21) showed the highest CSF orexin-A levels, whereas NT1 patients showed the lowest CSF orexin-A levels. Correlation between CSF levels of Aß42 and orexin-A was found only in healthy subjects (r = 0.26; p = 0.01), and not in narcolepsy or AD patients. This lack of correlation in both diseases may be explained by the pathology itself since the correlation between these two biomarkers is evident only in the healthy subjects. This study adds to the present literature by further documenting the interplay between orexinergic neurotransmission and cerebral Aß dynamics, possibly sustained by sleep.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Narcolepsia , Orexinas , Fragmentos de Péptidos , Humanos , Orexinas/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Narcolepsia/líquido cefalorraquídeo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Fragmentos de Péptidos/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Adulto , Proteínas tau/líquido cefalorraquídeoRESUMEN
To contribute to research on female models of Alzheimer's disease (AD), our aim was to study the effect of intracerebroventricular (ICV) injection of streptozotocin (STZ) in female rats, and to evaluate a potential neuroprotective action of ovarian steroids against STZ. Female rats were either ovariectomized (OVX) or kept with ovaries (Sham) two weeks before ICV injections. Animals were injected with either vehicle (artificial cerebrospinal fluid, aCSF) or STZ (3 mg/kg) and separated into four experimental groups: Sham + aCSF, Sham + STZ, OVX + aCSF and OVX + STZ. Nineteen days post-injection, we assessed different behavioral aspects: burying, anxiety and exploration, object recognition memory, spatial memory, and depressive-like behavior. Immunohistochemistry and Immunoblot analyses were performed in the hippocampus to examine changes in AD-related proteins and neuronal and microglial populations. STZ affected burying and exploratory behavior depending on ovarian status, and impaired recognition but not spatial memory. STZ and ovariectomy increased depressive-like behavior. Interestingly, STZ did not alter the expression of ß-amyloid peptide or Tau phosphorylated forms. STZ affected the neuronal population from the Dentate Gyrus, where immature neurons were more vulnerable to STZ in OVX rats. Regarding microglia, STZ increased reactive cells, and the OVX + STZ group showed an increase in the total cell number. In sum, STZ partially affected female rats, compared to what was previously reported for males. Although AD is more frequent in women, reports about the effect of ICV-STZ in female rats are scarce. Our work highlights the need to deepen into the effects of STZ in the female brain and study possible sex differences.
Asunto(s)
Enfermedad de Alzheimer , Ovariectomía , Estreptozocina , Animales , Femenino , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Ratas , Inyecciones Intraventriculares , Ratas Wistar , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Depresión/inducido químicamente , Depresión/metabolismo , Péptidos beta-Amiloides/metabolismo , Memoria Espacial/efectos de los fármacosRESUMEN
BACKGROUND AND PURPOSE: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aß oligomer (AßO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AßO. KEY RESULTS: LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AßO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AßO-infused mice. CONCLUSION AND IMPLICATIONS: These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.
Asunto(s)
Péptidos beta-Amiloides , Astrocitos , Disfunción Cognitiva , Inhibidores de Histona Desacetilasas , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Células Cultivadas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificaciónRESUMEN
INTRODUCTION: Gantenerumab is a monoclonal antibody targeting amyloid ß protein (Aß) in early Alzheimer's disease (AD). The authors sought to evaluate gantenerumab safety and efficacy in early AD patients. METHODS: MEDLINE, Embase, and Cochrane databases were systematically searched until 2 December 2023. Data were examined using the Mantel-Haenszel method and 95% confidence intervals (CIs). Meta-regression analysis was conducted to evaluate a possible link between baseline Clinical Dementia Rating Scale - Sum of Boxes (CDR-SB) and amyloid-related imaging abnormalities (ARIA) at follow-up. R, version 4.2.3, was used for statistical analysis. RESULTS: A total of 4 RCTs and 2848 patients were included, of whom 1580 (55%) received subcutaneous gantenerumab. Concerning clinical scores, the placebo group achieved better rates of change in the Disease Assessment Scale (ADAS-Cog13) (SMD -0.11; 95% CI -0.19- -0.03; p = 0.008569; I2 = 0%). Gantenerumab was strongly associated with the occurrence of ARIA-E and ARIA-H: (19.67% vs. 2.31%; RR 9.46; 95% CI 5.55-16.11; p = <0.000001; I2 = 10%) and (21.95% vs. 12.38%; RR 1.79; 95% CI 1.50-2.13; p = <0.000001; I2 = 0%), respectively. DISCUSSION: In this meta-analysis, consistent results suggest that gantenerumab is not safe and efficient for early AD, showing no improvement in clinical scores for AD and being associated with the occurrence of ARIA-E and ARIA-H.
Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales Humanizados , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-ß-induced AD mouse model. C57BL/6 mice were treated with N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine (NFPS), a GlyT1 inhibitor, 24 h prior to intrahippocampal injection of amyloid-ß. NFPS pretreatment prevented amyloid-ß-induced cognitive deficits in short-term and long-term memory, evidenced by novel object recognition and spatial memory tasks. Moreover, NFPS pretreatment curbed microglial activation, astrocytic reactivity, and subsequent neuronal damage from amyloid-ß injection. An extensive label-free quantitative UPLC-MSE proteomic analysis was performed on the hippocampi of mice treated with NFPS. In proteomics, KEGG enrichment analysis revealed increased in dopaminergic synapse, purine-containing compound biosynthetic process and long-term potentiation, and a reduction in Glucose catabolic process and glycolytic process pathways. The western blot analysis confirmed that NFPS treatment elevated BDNF levels, correlating with enhanced TRKB phosphorylation and mTOR activation. Moreover, NFPS treatment reduced the GluN2B expression after 6 h, which was associated with an increase on CaMKIV and CREB phosphorylation. Collectively, these findings demonstrate that GlyT1 inhibition by NFPS activates diverse neuroprotective pathways, enhancing long-term potentiation signaling and countering amyloid-ß-induced hippocampal damage.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Proteínas de Transporte de Glicina en la Membrana Plasmática , Hipocampo , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Modelos Animales de Enfermedad , Sarcosina/análogos & derivados , Sarcosina/farmacología , Sarcosina/uso terapéutico , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiologíaRESUMEN
Alzheimer's disease (AD), the most prevalent form of dementia worldwide, is a significant health concern, according to the World Health Organization (WHO). The neuropathological diagnostic criteria for AD are based on the deposition of amyloid-ß peptide (Aß) and the formation of intracellular tau protein tangles. These proteins are associated with several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, lipid peroxidation, reduced neuronal viability, and cell death. In this context, our study focuses on the potential therapeutic use of cannabidiol (CBD), a non-psychotropic cannabinoid with antioxidant and anti-inflammatory effects. We aim to evaluate CBD's neuroprotective role, particularly in protecting hippocampal neurons from Aß25-35-induced toxicity. Our findings indicate that CBD significantly improves cell viability and decreases levels of lipid peroxidation and oxidative stress. The results demonstrate that CBD possesses a robust potential to rescue cells from induced neurotoxicity through its antioxidant properties. Additionally, the neuroprotective effect of CBD may be associated with the modulation of the endocannabinoid system. These findings suggest that CBD could be a promising compound for adjuvant treatments in neurodegenerative processes triggered by amyloid-ß peptide.
Asunto(s)
Péptidos beta-Amiloides , Cannabidiol , Supervivencia Celular , Hipocampo , Peroxidación de Lípido , Neuronas , Fármacos Neuroprotectores , Estrés Oxidativo , Fragmentos de Péptidos , Péptidos beta-Amiloides/toxicidad , Cannabidiol/farmacología , Animales , Fármacos Neuroprotectores/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Cultivadas , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.
Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Hipocampo , Ketamina , Ratones Transgénicos , Plasticidad Neuronal , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Ratones , Potenciación a Largo Plazo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , ARN Mensajero/metabolismo , Memoria/efectos de los fármacos , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones Endogámicos C57BL , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , HumanosRESUMEN
Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24âh. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.
Asunto(s)
Enfermedad de Alzheimer , Neuronas Colinérgicas , Mutación , Presenilina-1 , Citrato de Sildenafil , Presenilina-1/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Mutación/genética , Animales , Citrato de Sildenafil/farmacología , Péptidos beta-Amiloides/metabolismo , Humanos , Células Cultivadas , Ratones , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilación/efectos de los fármacos , FenotipoRESUMEN
Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAß; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 µM), CU (10 µM), or SP (1 µM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 µM) concentration was efficient in diminishing the iAß, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAß compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAß-induced ChLN damage in FAD.
Asunto(s)
Enfermedad de Alzheimer , Antracenos , Curcumina , Presenilina-1 , Taurina/análogos & derivados , Curcumina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Antracenos/farmacología , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Humanos , Proteínas tau/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacosRESUMEN
The influence of metal ions on the structure of amyloid- ß (Aß) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aß aggregation relevant in Alzheimer's disease (AD). The models included 36-, 48-, and 188-mers of the Aß42 sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when ß-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the ß-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aß variants shows that the AD-causative D7N mutation promotes the formation of N-terminal ß-sheets and accumulates more Zn2+, in contrast to the non-amyloidogenic rodent sequence that hinders the ß-sheets and is more selective for Na+ over Zn2+ cations. It is proposed that forming an acidic ß-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aß fibrils to their high content of ß-sheet structure at the N-terminal sequence.
Asunto(s)
Péptidos beta-Amiloides , Simulación de Dinámica Molecular , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Conformación Proteica en Lámina beta , Humanos , Zinc/metabolismo , Zinc/química , Enfermedad de Alzheimer/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/genética , Metales/metabolismo , Metales/químicaRESUMEN
Alzheimer's disease is the leading cause of dementia worldwide and a critical public health problem. While deaths from cardiovascular diseases have decreased, those attributed to Alzheimer's disease have increased in recent years with no curative treatment to date. In this context, effective treatment development has become a global priority. Aducanumab is a human anti-amyloid ß monoclonal antibody approved by the FDA in June 2021 for the treatment of Alzheimer's disease but failed to show the expected clinical efficacy in phase III trials. This review analyzes the history of its controversial acceptance, implications, and prospects for future treatment.
La enfermedad de Alzheimer es la principal causa de demencia en todo el mundo y representa un importante problema de salud pública. Si bien las muertes por enfermedades cardiovasculares han disminuido, las atribuidas a la enfermedad de Alzheimer han aumentado en los últimos años y hasta la fecha no existe tratamiento curativo. Por este motivo, el desarrollo de un tratamiento eficaz se ha convertido en una prioridad mundial. Aducanumab es un anticuerpo monoclonal anti-amiloide ß humano aprobado para el tratamiento de la enfermedad de Alzheimer en junio de 2021 por la FDA, sin la eficacia clínica esperada en los ensayos de fase III. Esta revisión analiza la historia de su controvertida aceptación, implicaciones y perspectivas para el tratamiento futuro.