Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Elife ; 122023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417868

RESUMEN

Inflammasomes are cytosolic innate immune complexes that assemble upon detection of diverse pathogen-associated cues and play a critical role in host defense and inflammatory pathogenesis. Here, we find that the human inflammasome-forming sensor CARD8 senses HIV-1 infection via site-specific cleavage of the CARD8 N-terminus by the HIV protease (HIV-1PR). HIV-1PR cleavage of CARD8 induces pyroptotic cell death and the release of pro-inflammatory cytokines from infected cells, processes regulated by Toll-like receptor stimulation prior to viral infection. In acutely infected cells, CARD8 senses the activity of both de novo translated HIV-1PR and packaged HIV-1PR that is released from the incoming virion. Moreover, our evolutionary analyses reveal that the HIV-1PR cleavage site in human CARD8 arose after the divergence of chimpanzees and humans. Although chimpanzee CARD8 does not recognize proteases from HIV or simian immunodeficiency viruses from chimpanzees (SIVcpz), SIVcpz does cleave human CARD8, suggesting that SIVcpz was poised to activate the human CARD8 inflammasome prior to its cross-species transmission into humans. Our findings suggest a unique role for CARD8 inflammasome activation in response to lentiviral infection of humans.


Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Inflamasomas/metabolismo , Pan troglodytes/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo
2.
Neuropathology ; 43(6): 463-471, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37086019

RESUMEN

A 57-year-old female chimpanzee presented with a brief history of increasing lethargy and rapidly progressive lower-limb weakness that culminated in loss of use. Postmortem examination revealed no significant gross lesions in the nervous system or other organ systems. Histological analysis revealed round, basophilic to amphophilic polyglucosan bodies (PGBs) in the white and gray matter of the cervical, thoracic, lumbar, and coccygeal regions of spinal cord. Only rare PGBs were observed in forebrain samples. The lesions in the spinal cord were polymorphic, and they were positively stained with hematoxylin, periodic acid Schiff, Alcian blue, toluidine blue, Bielschowsky silver, and Grocott-Gomori methenamine-silver methods, and they were negative for von Kossa and Congo Red stains. Immunohistochemical evaluation revealed reactivity with antibodies to ubiquitin, but they were negative for glial fibrillary acidic protein, neuron-specific enolase, neurofilaments, tau protein, and Aß protein. Electron microscopy revealed non-membrane-bound deposits composed of densely packed filaments within axons and in the extracellular space. Intra-axonal PGBs were associated with disruption of the axonal fine structure and disintegration of the surrounding myelin sheath. These findings are the first description of PGBs linked to neurological dysfunction in a chimpanzee. Clinicopathologically, the disorder resembled adult PGB disease in humans.


Asunto(s)
Pan troglodytes , Plata , Adulto , Femenino , Animales , Humanos , Anciano , Persona de Mediana Edad , Pan troglodytes/metabolismo , Axones , Glucanos/metabolismo
3.
Neuron ; 111(6): 857-873.e8, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640767

RESUMEN

Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.


Asunto(s)
Encéfalo , Elementos de Facilitación Genéticos , Pan troglodytes , Animales , Humanos , Cromatina , Aprendizaje Automático , Pan troglodytes/metabolismo , Factores de Transcripción/genética , Encéfalo/crecimiento & desarrollo
4.
mBio ; 14(1): e0337022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36629414

RESUMEN

HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germ line-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chimpanzee immunodeficiency viruses (SCIVs) in rhesus macaques (RMs). Trimer immunization of knock-in mice induced V2-directed NAbs, indicating activation of V2-apex bNAb precursor-expressing mouse B cells. SCIV infection of RMs elicited high-titer viremia, potent autologous tier 2 neutralizing antibodies, and rapid sequence escape in the canonical V2-apex epitope. Six of seven animals also developed low-titer heterologous plasma breadth that mapped to the V2-apex. Antibody cloning from two of these animals identified multiple expanded lineages with long heavy chain third complementarity determining regions that cross-neutralized as many as 7 of 19 primary HIV-1 strains, but with low potency. Negative stain electron microscopy (NSEM) of members of the two most cross-reactive lineages confirmed V2 targeting but identified an angle of approach distinct from prototypical V2-apex bNAbs, with antibody binding either requiring or inducing an occluded-open trimer. Probing with conformation-sensitive, nonneutralizing antibodies revealed that SCIV-expressed, but not wild-type SIVcpz Envs, as well as a subset of primary HIV-1 Envs, preferentially adopted a more open trimeric state. These results reveal the existence of a cryptic V2 epitope that is exposed in occluded-open SIVcpz and HIV-1 Env trimers and elicits cross-neutralizing responses of limited breadth and potency. IMPORTANCE An effective HIV-1 vaccination strategy will need to stimulate rare precursor B cells of multiple bNAb lineages and affinity mature them along desired pathways. Here, we searched for V2-apex germ line-targeting Envs among a large set of diverse primate lentiviruses and identified minimally modified versions of one chimpanzee SIV Env that bound several human V2-apex bNAb precursors and stimulated one of these in a V2-apex bNAb precursor-expressing knock-in mouse. We also generated chimeric simian-chimpanzee immunodeficiency viruses and showed that they elicit low-titer V2-directed heterologous plasma breadth in six of seven infected rhesus macaques. Characterization of this antibody response identified a new class of weakly cross-reactive neutralizing antibodies that target the V2-apex, but only in occluded-open Env trimers. The existence of this cryptic epitope, which in some Env backgrounds is immunodominant, needs to be considered in immunogen design.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Pan troglodytes/metabolismo , Macaca mulatta , Anticuerpos Neutralizantes , Epítopos , Glicoproteínas , Productos del Gen env del Virus de la Inmunodeficiencia Humana
5.
J Hum Evol ; 175: 103305, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586354

RESUMEN

Herbivorous animals that regularly consume tannin-rich food are known to secrete certain tannin-binding salivary proteins (TBSPs), especially proline-rich proteins and histidine-rich proteins, as an effective measure to counteract the antinutritive effects of dietary tannins. Due to their high binding capacity, TBSPs complex with tannins in the oral cavity, and thereby protect dietary proteins and digestive enzymes. Although the natural diet of great apes (Hominidae) is biased toward ripe fruits, analyses of food plants revealed that their natural diet contains considerable amounts of tannins, which is raising the question of possible counter-measures to cope with dietary tannins. In our study, we investigated the salivary amino acid profiles of zoo-housed Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii, and compared their results with corresponding data from Homo sapiens. Individual saliva samples of 42 apes and 17 humans were collected and quantitated by amino acid analysis, using cation-exchange chromatography with postcolumn derivatization, following acid hydrolysis. We found species-specific differences in the salivary amino acid profiles with average total salivary protein concentration ranging from 308.8 mg/dL in Po. abelii to 1165.6 mg/dL in G. gorilla. Total salivary protein was consistently higher in ape than in human saliva samples (174 mg/dL). All apes had on average also higher relative proline levels than humans did. Histidine levels had the highest concentration in the samples from Po. abelii followed by P. paniscus. In all ape species, the high salivary concentrations of proline and histidine are considered to be indicative of high concentrations of TBSPs in hominids. Given that the species differences in salivary composition obtained in this study correspond with overall patterns of secondary compound content in the diet of wild populations, we assume that salivary composition is resilient to acute and long-lasting changes in diet composition in general and tannin content in particular.


Asunto(s)
Aminoácidos , Gorilla gorilla , Pan paniscus , Pan troglodytes , Pongo abelii , Animales , Humanos , Aminoácidos/análisis , Gorilla gorilla/metabolismo , Histidina/análisis , Pan paniscus/metabolismo , Pan troglodytes/metabolismo , Pongo abelii/metabolismo , Prolina/análisis , Saliva/química , Saliva/metabolismo , Proteínas y Péptidos Salivales/análisis , Taninos/análisis , Taninos/metabolismo , Dieta
6.
EMBO Rep ; 23(11): e54728, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36098218

RESUMEN

The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia-the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.


Asunto(s)
Hominidae , Neocórtex , Células-Madre Neurales , Animales , Humanos , Células-Madre Neurales/metabolismo , Organoides/metabolismo , Hominidae/metabolismo , Pan troglodytes/genética , Pan troglodytes/metabolismo , Neocórtex/metabolismo , Neurogénesis/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo
7.
Comput Biol Chem ; 98: 107673, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460944

RESUMEN

The knowledge of what separates us genetically from our less-evolved relatives is crucial for gaining new biomedical insight about the human-chimpanzee relatedness that could influence the development of new treatments and diagnostic aids for various ailments. Especially, more than 300 diseases have been mapped to the X chromosome, which has unique and complicated characteristics than other chromosomes in the human genome. Although the genomes of humans and chimpanzees share 99% similarity, significant differences exist between the two species in their non-coding intronic regions. Therefore, this evolutionary-based genome annotation study attempted to computationally compare, contrast, and annotate the homologous miRNAs and their gene regulatory mechanisms in the intronic regions of the PHEX gene on the human X chromosome of the two species. From our results, we identified a total of 1296 human miRNAs and 46, 957 gene targets. Similarly, 30, 563 targets of homologous chimp miRNAs were predicted. miRNAs like hsa-miR-17-5p showed a maximum number of interactions while miRNAs like hsa-miR-107 with the least number of interactions in the human/chimp gene networks. A few top-ranked miRNAs such as hsa-miR-24, hsa-miR-145, hsa-miR-34a, and hsa-miR-378 were observed to be common between the two genera. The cooperativity and multiplicity of certain miRNAs were predicted to regulate the expression of diverse cancer-associated genes such as Cyclin D1, Notch1, CDK-6, E2F3, ALK4, CKDN2A, DHFR, and MAPK14. Nevertheless, further in vitro and in vivo experimental validations of these gene candidates are required before they could be used as potential diagnostic markers and drug targets.


Asunto(s)
MicroARNs , Pan troglodytes , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Pan troglodytes/genética , Pan troglodytes/metabolismo
8.
Brain Struct Funct ; 227(5): 1907-1919, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34482474

RESUMEN

Despite our close genetic relationship with chimpanzees, there are notable differences between chimpanzee and human social behavior. Oxytocin and vasopressin are neuropeptides involved in regulating social behavior across vertebrate taxa, including pair bonding, social communication, and aggression, yet little is known about the neuroanatomy of these systems in primates, particularly in great apes. Here, we used receptor autoradiography to localize oxytocin and vasopressin V1a receptors, OXTR and AVPR1a respectively, in seven chimpanzee brains. OXTR binding was detected in the lateral septum, hypothalamus, medial amygdala, and substantia nigra. AVPR1a binding was observed in the cortex, lateral septum, hypothalamus, mammillary body, entire amygdala, hilus of the dentate gyrus, and substantia nigra. Chimpanzee OXTR/AVPR1a receptor distribution is compared to previous studies in several other primate species. One notable difference is the lack of OXTR in reward regions such as the ventral pallidum and nucleus accumbens in chimpanzees, whereas OXTR is found in these regions in humans. Our results suggest that in chimpanzees, like in most other anthropoid primates studied to date, OXTR has a more restricted distribution than AVPR1a, while in humans the reverse pattern has been reported. Altogether, our study provides a neuroanatomical basis for understanding the function of the oxytocin and vasopressin systems in chimpanzees.


Asunto(s)
Oxitocina , Pan troglodytes , Animales , Encéfalo/metabolismo , Humanos , Oxitocina/metabolismo , Pan troglodytes/metabolismo , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Conducta Social
9.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33942714

RESUMEN

We analyze the metabolomes of humans, chimpanzees, and macaques in muscle, kidney and three different regions of the brain. Although several compounds in amino acid metabolism occur at either higher or lower concentrations in humans than in the other primates, metabolites downstream of adenylosuccinate lyase, which catalyzes two reactions in purine synthesis, occur at lower concentrations in humans. This enzyme carries an amino acid substitution that is present in all humans today but absent in Neandertals. By introducing the modern human substitution into the genomes of mice, as well as the ancestral, Neandertal-like substitution into the genomes of human cells, we show that this amino acid substitution contributes to much or all of the reduction of de novo synthesis of purines in humans.


Asunto(s)
Vías Biosintéticas/genética , Metaboloma/genética , Hombre de Neandertal/metabolismo , Purinas/biosíntesis , Purinas/metabolismo , Animales , Femenino , Edición Génica , Humanos , Macaca/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación Missense , Pan troglodytes/metabolismo
10.
Nat Genet ; 53(4): 467-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731941

RESUMEN

Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for nongenetic confounding factors. We differentiated these cells into cranial neural crest cells, the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific sixfold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.


Asunto(s)
Quimera/genética , Síndrome de Ellis-Van Creveld/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Cresta Neural/metabolismo , Pan troglodytes/genética , Cráneo/metabolismo , Animales , Evolución Biológica , Diferenciación Celular , Quimera/metabolismo , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patología , Femenino , Expresión Génica , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Masculino , Ratones , Ratones Noqueados , Cresta Neural/patología , Pan troglodytes/anatomía & histología , Pan troglodytes/metabolismo , Fenotipo , Transducción de Señal , Cráneo/anatomía & histología , Especificidad de la Especie , Tetraploidía
11.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R728-R734, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33729041

RESUMEN

The link between dietary antioxidants and oxidative status has been studied extensively in humans. Surprisingly, comparative data are not available from closely related species, such as chimpanzees, which evolved in environments characterized by strong fluctuations in the availability and quality of vegetable food sources. We tested the hypothesis that an abrupt decrease in dietary antioxidants would increase oxidative damages in captive chimpanzees (Pan troglodytes), while a rapid increase in antioxidant intake would decrease oxidative damages accrued while on the low-antioxidant diet. An abrupt decline of dietary antioxidants increased urinary levels of lipid peroxides and of oxidative DNA damage but not of 8-isoprostanes. In contrast, an increased intake of dietary antioxidants did not affect the oxidative status. Chimpanzees that were both older and with a higher dominance rank had lower urinary levels of lipid peroxides and of DNA damage as compared with younger chimpanzees. Neither individual sex nor proportion of time being groomed explained any variation in all three markers of oxidative status. Finally, we found significant within-individual repeatability of all markers of oxidative status over the course of the experiment, suggesting a significant contribution of individual history to molding oxidative status. Our results show that antioxidant intake plays a nonnegligible role in the regulation of oxidative status homeostasis in our closest relatives, the chimpanzees. Our work also suggests that rapid short-term increases in antioxidant intake might not have the desired immediate impact on oxidative status, such as in the case of clinical interventions or training programs.


Asunto(s)
Antioxidantes/farmacología , Dieta , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/fisiología , Animales , Biomarcadores/metabolismo , Peroxidación de Lípido/fisiología , Pan troglodytes/metabolismo
12.
Elife ; 102021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33595436

RESUMEN

While comparative functional genomic studies have shown that inter-species differences in gene expression can be explained by corresponding inter-species differences in genetic and epigenetic regulatory mechanisms, co-transcriptional mechanisms, such as alternative polyadenylation (APA), have received little attention. We characterized APA in lymphoblastoid cell lines from six humans and six chimpanzees by identifying and estimating the usage for 44,432 polyadenylation sites (PAS) in 9518 genes. Although APA is largely conserved, 1705 genes showed significantly different PAS usage (FDR 0.05) between species. Genes with divergent APA also tend to be differentially expressed, are enriched among genes showing differences in protein translation, and can explain a subset of observed inter-species protein expression differences that do not differ at the transcript level. Finally, we found that genes with a dominant PAS, which is used more often than other PAS, are particularly enriched for differentially expressed genes.


Asunto(s)
Regulación de la Expresión Génica , Pan troglodytes/genética , Poliadenilación/genética , Animales , Línea Celular , Epigénesis Genética , Humanos , Pan troglodytes/metabolismo
13.
PLoS One ; 16(2): e0239170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33617556

RESUMEN

BACKGROUND: Humans life histories have been described as "slow", patterned by slow growth, delayed maturity, and long life span. While it is known that human life history diverged from that of a recent common chimpanzee-human ancestor some ~4-8 mya, it is unclear how selection pressures led to these distinct traits. To provide insight, we compare wild chimpanzees and human subsistence societies in order to identify the age-specific vital rates that best explain fitness variation, selection pressures and species divergence. METHODS: We employ Life Table Response Experiments to quantify vital rate contributions to population growth rate differences. Although widespread in ecology, these methods have not been applied to human populations or to inform differences between humans and chimpanzees. We also estimate correlations between vital rate elasticities and life history traits to investigate differences in selection pressures and test several predictions based on life history theory. RESULTS: Chimpanzees' earlier maturity and higher adult mortality drive species differences in population growth, whereas infant mortality and fertility variation explain differences between human populations. Human fitness is decoupled from longevity by postreproductive survival, while chimpanzees forfeit higher potential lifetime fertility due to adult mortality attrition. Infant survival is often lower among humans, but lost fitness is recouped via short birth spacing and high peak fertility, thereby reducing selection on infant survival. Lastly, longevity and delayed maturity reduce selection on child survival, but among humans, recruitment selection is unexpectedly highest in longer-lived populations, which are also faster-growing due to high fertility. CONCLUSION: Humans differ from chimpanzees more because of delayed maturity and lower adult mortality than from differences in juvenile mortality or fertility. In both species, high child mortality reflects bet-hedging costs of quality/quantity tradeoffs borne by offspring, with high and variable child mortality likely regulating human population growth over evolutionary history. Positive correlations between survival and fertility among human subsistence populations leads to selection pressures in human subsistence societies that differ from those in modern populations undergoing demographic transition.


Asunto(s)
Rasgos de la Historia de Vida , Pan troglodytes/metabolismo , Animales , Evolución Biológica , Ecología/métodos , Etnología/métodos , Fertilidad/fisiología , Hominidae/crecimiento & desarrollo , Humanos , Lactante , Mortalidad Infantil/tendencias , Tablas de Vida , Longevidad/fisiología , Modelos Biológicos , Pan troglodytes/crecimiento & desarrollo , Crecimiento Demográfico
14.
J Hum Evol ; 152: 102949, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33578304

RESUMEN

Humans have unique cognitive capacities that, compared with apes, are not only simply expressed as a higher level of general intelligence, but also as a quantitative difference in sociocognitive skills. Humans' closest living relatives, bonobos (Pan paniscus), and chimpanzees (Pan troglodytes), show key between-species differences in social cognition despite their close phylogenetic relatedness, with bonobos arguably showing greater similarities to humans. To better understand the evolution of these traits, we investigate the neurochemical mechanisms underlying sociocognitive skills by focusing on variation in genes encoding proteins with well-documented roles in mammalian social cognition: the receptors for vasopressin (AVPR1A), oxytocin (OXTR), serotonin (HTR1A), and dopamine (DRD2). Although these genes have been well studied in humans, little is known about variation in these genes that may underlie differences in social behavior and cognition in apes. We comparatively analyzed sequence data for 33 bonobos and 57 chimpanzees, together with orthologous sequence data for other apes. In all four genes, we describe genetic variants that alter the amino acid sequence of the respective receptors, raising the possibility that ligand binding or signal transduction may be impacted. Overall, bonobos show 57% more fixed substitutions than chimpanzees compared with the ancestral Pan lineage. Chimpanzees, show 31% more polymorphic coding variation, in line with their larger historical effective population size estimates and current wider distribution. An extensive literature review comparing allelic changes in Pan with known human behavioral variants revealed evidence of homologous evolution in bonobos and humans (OXTR rs4686301(T) and rs237897(A)), while humans and chimpanzees shared OXTR rs2228485(A), DRD2 rs6277(A), and DRD2 rs11214613(A) to the exclusion of bonobos. Our results offer the first in-depth comparison of neurochemical receptor gene variation in Pan and put forward new variants for future behavior-genotype association studies in apes, which can increase our understanding of the evolution of social cognition in modern humans.


Asunto(s)
Evolución Molecular , Pan paniscus/genética , Pan troglodytes/genética , Cognición Social , Animales , Encéfalo/metabolismo , Pan paniscus/metabolismo , Pan troglodytes/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
15.
Genes (Basel) ; 12(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578809

RESUMEN

Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system.


Asunto(s)
Células Endoteliales/metabolismo , Leucocitos/metabolismo , Proteínas/genética , Migración Transcelular de la Célula/genética , Transcriptoma , Migración Transendotelial y Transepitelial/genética , Animales , Evolución Biológica , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Pollos/clasificación , Pollos/genética , Pollos/metabolismo , Ciona intestinalis/clasificación , Ciona intestinalis/citología , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Drosophila melanogaster/clasificación , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Endoteliales/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Leucocitos/citología , Ratones , Pan troglodytes/clasificación , Pan troglodytes/genética , Pan troglodytes/metabolismo , Petromyzon/clasificación , Petromyzon/genética , Petromyzon/metabolismo , Filogenia , Placozoa/clasificación , Placozoa/citología , Placozoa/genética , Placozoa/metabolismo , Proteínas/clasificación , Proteínas/metabolismo , Anémonas de Mar/clasificación , Anémonas de Mar/citología , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Tiburones/clasificación , Tiburones/genética , Tiburones/metabolismo , Pez Cebra/clasificación , Pez Cebra/genética , Pez Cebra/metabolismo
16.
PLoS One ; 16(2): e0244685, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33566803

RESUMEN

Stable isotope analysis is an increasingly used molecular tool to reconstruct the diet and ecology of elusive primates such as unhabituated chimpanzees. The consumption of C4 plant feeding termites by chimpanzees may partly explain the relatively high carbon isotope values reported for some chimpanzee communities. However, the modest availability of termite isotope data as well as the diversity and cryptic ecology of termites potentially consumed by chimpanzees obscures our ability to assess the plausibility of these termites as a C4 resource. Here we report the carbon and nitrogen isotope values from 79 Macrotermes termite samples from six savanna woodland chimpanzee research sites across equatorial Africa. Using mixing models, we estimated the proportion of Macrotermes C4 plant consumption across savanna woodland sites. Additionally, we tested for isotopic differences between termite colonies in different vegetation types and between the social castes within the same colony in a subset of 47 samples from 12 mounds. We found that Macrotermes carbon isotope values were indistinguishable from those of C3 plants. Only 5 to 15% of Macrotermes diets were comprised of C4 plants across sites, suggesting that they cannot be considered a C4 food resource substantially influencing the isotope signatures of consumers. In the Macrotermes subsample, vegetation type and caste were significantly correlated with termite carbon values, but not with nitrogen isotope values. Large Macrotermes soldiers, preferentially consumed by chimpanzees, had comparably low carbon isotope values relative to other termite castes. We conclude that Macrotermes consumption is unlikely to result in high carbon isotope values in either extant chimpanzees or fossil hominins.


Asunto(s)
Isótopos de Carbono/análisis , Conducta Alimentaria/fisiología , Isópteros/metabolismo , África , Animales , Conducta Animal/fisiología , Carbono/metabolismo , Dieta , Ecología , Bosques , Pradera , Isópteros/química , Nitrógeno/metabolismo , Isótopos de Nitrógeno/análisis , Pan troglodytes/metabolismo , Plantas
17.
Nucleic Acids Res ; 49(D1): D134-D143, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32821938

RESUMEN

N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the m6A epitranscriptome. Compared to existing databases, m6A-Atlas features a high-confidence collection of 442 162 reliable m6A sites identified from seven base-resolution technologies and the quantitative (rather than binary) epitranscriptome profiles estimated from 1363 high-throughput sequencing samples. It also offers novel features, such as; the conservation of m6A sites among seven vertebrate species (including human, mouse and chimp), the m6A epitranscriptomes of 10 virus species (including HIV, KSHV and DENV), the putative biological functions of individual m6A sites predicted from epitranscriptome data, and the potential pathogenesis of m6A sites inferred from disease-associated genetic mutations that can directly destroy m6A directing sequence motifs. A user-friendly graphical user interface was constructed to support the query, visualization and sharing of the m6A epitranscriptomes annotated with sites specifying their interaction with post-transcriptional machinery (RBP-binding, microRNA interaction and splicing sites) and interactively display the landscape of multiple RNA modifications. These resources provide fresh opportunities for unraveling the m6A epitranscriptomes. m6A-Atlas is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/atlas.


Asunto(s)
Adenosina/análogos & derivados , Bases del Conocimiento , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transcriptoma , Adenosina/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Atlas como Asunto , Conjuntos de Datos como Asunto , Virus del Dengue/genética , Virus del Dengue/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , VIH/genética , VIH/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Pan troglodytes/genética , Pan troglodytes/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Ratas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Porcinos , Pez Cebra
18.
J Hum Evol ; 147: 102869, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32866765

RESUMEN

Compared with most mammals, postnatal development in great apes is protracted, presenting both an extended period of phenotypic plasticity to environmental conditions and the potential for sustained mother-offspring and/or sibling conflict over resources. Comparisons of cortisol levels during ontogeny can reveal physiological plasticity to species or population specific socioecological factors and in turn how these factors might ameliorate or exaggerate mother-offspring and sibling conflict. Here, we examine developmental patterns of cortisol levels in two wild chimpanzee populations (Budongo and Taï), with two and three communities each, and one wild bonobo population (LuiKotale), with two communities. Both species have similar juvenile life histories. Nonetheless, we predicted that key differences in socioecological factors, such as feeding competition, would lead to interspecific variation in mother-offspring and sibling conflict and thus variation in ontogenetic cortisol patterns. We measured urinary cortisol levels in 1394 samples collected from 37 bonobos and 100 chimpanzees aged up to 12 years. The significant differences in age-related variation in cortisol levels appeared population specific rather than species specific. Both bonobos and Taï chimpanzees had comparatively stable and gradually increasing cortisol levels throughout development; Budongo chimpanzees experienced declining cortisol levels before increases in later ontogeny. These age-related population differences in cortisol patterns were not explained by mother-offspring or sibling conflict specifically; instead, the comparatively stable cortisol patterns of bonobos and Taï chimpanzees likely reflect a consistency in experience of competition and the social environment compared with Budongo chimpanzees, where mothers may adopt more variable strategies related to infanticide risk and resource availability. The clear population-level differences within chimpanzees highlight potential intraspecific flexibility in developmental processes in apes, suggesting the flexibility and diversity in rearing strategies seen in humans may have a deep evolutionary history.


Asunto(s)
Hidrocortisona/orina , Pan paniscus/metabolismo , Pan troglodytes/metabolismo , Animales , Femenino , Masculino , Pan paniscus/crecimiento & desarrollo , Pan troglodytes/crecimiento & desarrollo , Especificidad de la Especie
19.
Sci Rep ; 10(1): 9417, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523027

RESUMEN

Cardiovascular diseases, especially idiopathic myocardial fibrosis, is one of the most significant causes of morbidity and mortality in captive great apes. This study compared the structure and morphology of 16 hearts from chimpanzees (Pan troglodytes) which were either healthy or affected by myocardial fibrosis using X-ray microtomography. In four hearts, a single, hyperdense structure was detected within the right fibrous trigone of the cardiac skeleton. High resolution scans and histopathology revealed trabecular bones in two cases, hyaline cartilage in another case and a focus of mineralised fibro-cartilaginous metaplasia with endochondral ossification in the last case. Four other animals presented with multiple foci of ectopic calcification within the walls of the great vessels. All hearts affected by marked myocardial fibrosis presented with bone or cartilage formation, and increased collagen levels in tissues adjacent to the bone/cartilage, while unaffected hearts did not present with os cordis or cartilago cordis. The presence of an os cordis has been described in some ruminants, camelids, and otters, but never in great apes. This novel research indicates that an os cordis and cartilago cordis is present in some chimpanzees, particularly those affected by myocardial fibrosis, and could influence the risk of cardiac arrhythmias and sudden death.


Asunto(s)
Enfermedades del Simio Antropoideo/patología , Huesos/patología , Corazón/fisiopatología , Miocardio/patología , Pan troglodytes/fisiología , Animales , Enfermedades del Simio Antropoideo/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Huesos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Cartílago/metabolismo , Cartílago/patología , Colágeno/metabolismo , Femenino , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Miocardio/metabolismo , Pan troglodytes/metabolismo
20.
Nat Microbiol ; 5(7): 955-965, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32341480

RESUMEN

Monkeypox is a viral zoonotic disease on the rise across endemic habitats. Despite the growing importance of monkeypox virus, our knowledge on its host spectrum and sylvatic maintenance is limited. Here, we describe the recent repeated emergence of monkeypox virus in a wild, human-habituated western chimpanzee (Pan troglodytes verus, hereafter chimpanzee) population from Taï National Park, Ivory Coast. Through daily monitoring, we show that further to causing its typical exanthematous syndrome, monkeypox can present itself as a severe respiratory disease without a diffuse rash. By analysing 949 non-invasively collected samples, we identify the circulation of at least two distinct monkeypox virus lineages and document the shedding of infectious particles in faeces and flies, suggesting that they could mediate indirect transmission. We also show that the carnivorous component of the Taï chimpanzees' diet, mainly consisting of the sympatric monkeys they regularly hunt, did not change nor shift towards rodent consumption (the presumed reservoir) before the outbreaks, suggesting that the sudden emergence of monkeypox virus in this population is probably due to changes in the ecology of the virus itself. Using long-term mortality surveillance data from Taï National Park, we provide evidence of little to no prior viral activity over at least two decades. We conclude that great ape sentinel systems devoted to the longitudinal collection of behavioural and health data can help clarify the epidemiology and clinical presentation of zoonotic pathogens.


Asunto(s)
Animales Salvajes , Monkeypox virus/fisiología , Mpox/virología , Pan troglodytes/virología , Animales , Ecosistema , Exantema/etiología , Exantema/metabolismo , Exantema/patología , Espacio Extracelular/metabolismo , Heces/virología , Genoma Viral , Genómica/métodos , Glutatión/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Mpox/complicaciones , Mpox/metabolismo , Mpox/mortalidad , Monkeypox virus/clasificación , Monkeypox virus/aislamiento & purificación , Pan troglodytes/metabolismo , Filogenia , Trastornos Respiratorios/etiología , Trastornos Respiratorios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...