Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
PLoS One ; 17(2): e0263401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35130303

RESUMEN

In the research on energy-efficient networking methods for precision agriculture, a hot topic is the energy issue of sensing nodes for individual wireless sensor networks. The sensing nodes of the wireless sensor network should be enabled to provide better services with limited energy to support wide-range and multi-scenario acquisition and transmission of three-dimensional crop information. Further, the life cycle of the sensing nodes should be maximized under limited energy. The transmission direction and node power consumption are considered, and the forward and high-energy nodes are selected as the preferred cluster heads or data-forwarding nodes. Taking the cropland cultivation of ginseng as the background, we put forward a particle swarm optimization-based networking algorithm for wireless sensor networks with excellent performance. This algorithm can be used for precision agriculture and achieve optimal equipment configuration in a network under limited energy, while ensuring reliable communication in the network. The node scale is configured as 50 to 300 nodes in the range of 500 × 500 m2, and simulated testing is conducted with the LEACH, BCDCP, and ECHERP routing protocols. Compared with the existing LEACH, BCDCP, and ECHERP routing protocols, the proposed networking method can achieve the network lifetime prolongation and mitigate the decreased degree and decreasing trend of the distance between the sensing nodes and center nodes of the sensor network, which results in a longer network life cycle and stronger environment suitability. It is an effective method that improves the sensing node lifetime for a wireless sensor network applied to cropland cultivation of ginseng.


Asunto(s)
Agricultura , Algoritmos , Redes de Comunicación de Computadores , Panax/crecimiento & desarrollo , Agricultura/instrumentación , Agricultura/métodos , Agricultura/organización & administración , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , China , Redes de Comunicación de Computadores/instrumentación , Redes de Comunicación de Computadores/organización & administración , Simulación por Computador , Productos Agrícolas/crecimiento & desarrollo , Recolección de Datos/instrumentación , Recolección de Datos/métodos , Humanos , Tecnología Inalámbrica/instrumentación , Tecnología Inalámbrica/organización & administración
2.
BMC Microbiol ; 22(1): 12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991491

RESUMEN

BACKGROUND: Ginseng red skin root syndrome (GRS) is one of the most common ginseng (Panax ginseng Meyer) diseases. It leads to a severe decline in P. ginseng quality and seriously affects the P. ginseng industry in China. However, as a root disease, the characteristics of the GRS rhizosphere microbiome are still unclear. METHODS: The amplicon bacterial 16 S rRNA genes and fungal ITS (Internal Transcribed Spacer) regions Illumina sequencing technology, combined with microbial diversity and composition analysis based on R software, was used to explore the relationship between soil ecological environment and GRS. RESULTS: There were significant differences in the diversity and richness of soil microorganisms between the rhizosphere with different degrees of disease, especially between healthy P. ginseng (HG) and heavily diseased groups. The variation characteristics of microbial abundance in different taxa levels were analyzed. The interaction network of rhizosphere microorganisms of P. ginseng under GRS background was established. We also found that different P. ginseng rhizosphere microbial communities have multiple changes in stability and complexity through the established interaction network. Microbes closely related to potential pathogenic fungi were also identified according to the interaction network, which provided clues for looking for biological control agents. Finally, the Distance-based redundancy analysis (dbRDA) results indicated that total phosphorus (TP), available potassium (AK), available phosphorus (AP), catalase (CAT), invertase (INV) are the key factors that influence the microbial communities. Moreover, the content of these key factors in the rhizosphere was negatively correlated with disease degrees. CONCLUSIONS: In this study, we comprehensively analyzed the rhizosphere characteristics of P. ginseng with different levels of disease, and explored the interaction relationship among microorganisms. These results provide a basis for soil improvement and biological control of field-grown in the future.


Asunto(s)
Panax/microbiología , Enfermedades de las Plantas/microbiología , Rizosfera , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Agentes de Control Biológico/aislamiento & purificación , Biomarcadores , China , Enzimas/análisis , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Interacciones Microbianas , Microbiota , Nutrientes/análisis , Panax/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo
3.
BMC Microbiol ; 22(1): 2, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979908

RESUMEN

BACKGROUND: The resources of wild ginseng have been reducing sharply, and it is mainly dependent on artificial cultivation in China, Korea and Japan. Based on cultivation modes, cultivated ginseng include understory wild ginseng (the seeds or seedlings of cultivated ginseng were planted under the theropencedrymion without human intervention) and farmland cultivated ginseng (grown in farmland with human intervention). Cultivated ginseng, can only be planted on the same plot of land consecutively for several years owing to soilborne diseases, which is mainly because of the variation in the soil microbial community. In contrast, wild ginseng can grow for hundreds of years. However, the knowledge of rhizosphere microbe communities of the wild ginseng is limited. RESULT: In the present study, the microbial communities in rhizosphere soils of the three types of ginseng were analyzed by high-throughput sequencing of 16 S rRNA for bacteria and internal transcribed spacer (ITS) region for fungi. In total, 4,381 bacterial operational taxonomic units (OTUs) and 2,679 fungal OTUs were identified in rhizosphere soils of the three types of ginseng. Among them, the shared bacterial OTUs was more than fungal OTUs by the three types of ginseng, revealing fungal communities were to be more affected than bacterial communities. In addition, the composition of rhizosphere microbial communities and bacterial diversity were similar between understory wild ginseng and wild ginseng. However, higher bacterial diversity and lower fungal diversity were found in rhizosphere soils of wild ginseng compared with farmland cultivated ginseng. Furthermore, the relative abundance of Chloroflexi, Fusarium and Alternaria were higher in farmland cultivated ginseng compared to wild ginseng and understory wild ginseng. CONCLUSIONS: Our results showed that composition and diversity of rhizosphere microbial communities were significantly different in three types of ginseng. This study extended the knowledge pedigree of the microbial diversity populating rhizospheres, and provided insights into resolving the limiting bottleneck on the sustainable development of P. ginseng crops, and even the other crops of Panax.


Asunto(s)
Microbiota , Panax/microbiología , Rizosfera , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Microbiota/genética , Panax/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo
4.
Chem Biodivers ; 19(1): e202100608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34786852

RESUMEN

A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 µg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 µg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.


Asunto(s)
Antifúngicos/química , Aspergillus/química , Repelentes de Insectos/química , Panax/química , Animales , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Bombyx/efectos de los fármacos , Bombyx/crecimiento & desarrollo , Enediinos/química , Enediinos/aislamiento & purificación , Enediinos/farmacología , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Repelentes de Insectos/aislamiento & purificación , Repelentes de Insectos/farmacología , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Panax/crecimiento & desarrollo , Panax/metabolismo , Phoma/efectos de los fármacos , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo
5.
Bioengineered ; 12(1): 8043-8056, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34595989

RESUMEN

The present study was focused on comparison of four typical fungicides in ginseng field to evaluate the impact of the different fungicides on the soil bacterial and fungal communities' composition and diversity by using high-throughput sequencing. Five treatments were designed comprising carbendazim (D), dimethyl disulfide (E), dazomet (M), calcium cyanamide (S), and control (C). The application of fungicide obviously altered the distribution of dominant fungal and bacterial communities and remarkably decreased the diversity (1099-763 and 6457-2245). The most abundant Proteobacteria obviously degenerate in fungicide-treated soil and minimum in E (0.09%) compared to control (25.72%). The relative abundance of Acidobacteria was reduced from 27.76 (C) to 7.14% after applying fungicide and minimum in E. The phylum Actinobacteria are both decomposers of organic matter and enemies of soil-borne pathogens, elevated from 11.62 to 51.54% and are high in E. The fungi community mainly distributed into Ascomycota that enriched from 66.09 to 88.21% and highin M and E (88.21 and 85.10%), and Basidiomycota reduced from 21.13 to 3.23% and low in M and E (5.27 and 3.23%). Overall, environmentally related fungicides decreased the diversity and altered the composition of bacterial and fungal communities, highest sensitivity present in dimethyl disulfide-treated soil.


Asunto(s)
Bacterias/clasificación , Productos Agrícolas/crecimiento & desarrollo , Hongos/clasificación , Fungicidas Industriales/efectos adversos , Panax/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Bencimidazoles/efectos adversos , Carbamatos/efectos adversos , Productos Agrícolas/microbiología , Cianamida/farmacología , Disulfuros/efectos adversos , Hongos/efectos de los fármacos , Hongos/genética , Hongos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Panax/microbiología , Filogenia , Microbiología del Suelo , Tiadiazinas/efectos adversos
6.
Molecules ; 26(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576927

RESUMEN

Garden-cultivated Ginseng (GG) and mountain-cultivated Ginseng (MG) both belong to Panax Ginseng C. A. Meyer. However, the effective substances which can be used to distinguish GG from MG remain obscure. Therefore, the purpose of this study was to screen for discriminating markers that can assist in the correct identification of GG and MG. HPLC Q-TOF/MS and various chemometrics methods were used to analyze the chemical profiles of 13 batches of Ginseng and to explore the characteristic constituents of both GG and MG. The hepatocyte-protecting effects of GG and MG were investigated through a paclitaxel-induced liver injury model. Through a combination of correlation analysis and bioinformatic techniques, markers for differentiation between GG and MG were ascertained. A total of 40 and 41 compounds were identified in GG and MG, respectively, and 15 characteristic ingredients contributed significantly to the discrimination of GG from MG. Correlation analysis and network pharmacology were applied and ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rg3 were found to be discriminating markers of GG and MG. Six markers for the identification of GG and MG were screened out by a step-wise mutually oriented "chemical profiling-pharmaceutical effect" correlation strategy, which is of great significance for future quality assessment of Ginseng products.


Asunto(s)
Quimioinformática/métodos , Panax/química , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Animales , Biomarcadores Farmacológicos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Cromatografía Líquida de Alta Presión , Jardines , Ginsenósidos/análisis , Ginsenósidos/química , Espectrometría de Masas , Paclitaxel/efectos adversos , Panax/crecimiento & desarrollo , Sustancias Protectoras/farmacocinética , Ratas Sprague-Dawley
7.
Molecules ; 26(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34577094

RESUMEN

Among rare earth elements, cerium has the unique ability of regulating the growth of plant cells and the biosynthesis of metabolites at different stages of plant development. The signal pathways of Ce3+-mediated ginsenosides biosynthesis in ginseng hairy roots were investigated. At a low concentration, Ce3+ improved the elongation and biomass of hairy roots. The Ce3+-induced accumulation of ginsenosides showed a high correlation with the reactive oxygen species (ROS), as well as the biosynthesis of endogenous methyl jasmonate (MeJA) and ginsenoside key enzyme genes (PgSS, PgSE and PgDDS). At a Ce3+ concentration of 20 mg L-1, the total ginsenoside content was 1.7-fold, and the total ginsenosides yield was 2.7-fold that of the control. Malondialdehyde (MDA) content and the ROS production rate were significantly higher than those of the control. The activity of superoxide dismutase (SOD) was significantly activated within the Ce3+ concentration range of 10 to 30 mg L-1. The activity of catalase (CAT) and peroxidase (POD) strengthened with the increasing concentration of Ce3+ in the range of 20-40 mg L-1. The Ce3+ exposure induced transient production of superoxide anion (O2•-) and hydrogen peroxide (H2O2). Together with the increase in the intracellular MeJA level and enzyme activity for lipoxygenase (LOX), there was an increase in the gene expression level of MeJA biosynthesis including PgLOX, PgAOS and PgJMT. Our results also revealed that Ce3+ did not directly influence PgSS, PgSE and PgDDS activity. We speculated that Ce3+-induced ROS production could enhance the accumulation of ginsenosides in ginseng hairy roots via the direct stimulation of enzyme genes for MeJA biosynthesis. This study demonstrates a potential approach for understanding and improving ginsenoside biosynthesis that is regulated by Ce3+-mediated signal transduction.


Asunto(s)
Acetatos/metabolismo , Cerio/farmacología , Ciclopentanos/metabolismo , Ginsenósidos/biosíntesis , Oxilipinas/metabolismo , Panax/química , Panax/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Ginsenósidos/análisis , Panax/efectos de los fármacos , Panax/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445398

RESUMEN

Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Giberelinas/farmacología , Panax/crecimiento & desarrollo , Receptores de Superficie Celular/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación con Pérdida de Función , Panax/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Dominios Proteicos , Receptores de Superficie Celular/química , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología
9.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199646

RESUMEN

Wild ginseng (W-GS), ginseng under forest (F-GS, planted in mountain forest and growing in natural environment), and cultivated ginseng (C-GS) were compared via HPLC-DAD and HPLC-IT-TOF-MSn. A total of 199 saponins, including 16 potential new compounds, were tentatively identified from 100 mg W-GS (177 saponins in W-GS with 11 new compounds), F-GS (56 saponins with 1 new compound), and C-GS (60 saponins with 6 new compounds). There were 21 saponins detected from all the W-GS, F-GS, and C-GS. Fifty saponins were only detected from W-GS, including 23 saponins found in ginseng for the first time. Contents of ginsenosides Re (12.36-13.91 mg/g), Rh1 (7.46-7.65 mg/g), Rd (12.94-12.98 mg/g), and the total contents (50.52-55.51 mg/g) of Rg1, Re, Rf, Rb1, Rg2, Rh1, and Rd in W-GS were remarkably higher than those in F-GS (Re 1.22-3.50 mg/g, Rh1 0.15-1.49 mg/g, Rd 0.19-1.49 mg/g, total 5.69-18.74 mg/g), and C-GS (Re 0.30-3.45 mg/g, Rh1 0.05-3.42 mg/g, Rd 0.17-1.68 mg/g, total 2.99-19.55 mg/g). Contents of Re and Rf were significantly higher in F-GS than those in C-GS (p < 0.05). Using the contents of Re, Rf, or Rb1, approximately a half number of cultivated ginseng samples could be identified from ginseng under forest. Contents of Rg1, Re, Rg2, Rh1, as well as the total contents of the seven ginsenosides were highest in ginseng older than 15 years, middle-high in ginseng between 10 to 15 years old, and lowest in ginseng younger than 10 years. Contents of Rg1, Re, Rf, Rb1, Rg2, and the total of seven ginsenosides were significantly related to the growing ages of ginseng (p < 0.10). Similarities of chromatographic fingerprints to W-GS were significantly higher (p < 0.05) for F-GS (median: 0.824) than C-GS (median: 0.745). A characteristic peak pattern in fingerprint was also discovered for distinguishing three types of ginseng. Conclusively, wild ginseng was remarkably superior to ginseng under forest and cultivated ginseng, with ginseng under forest slightly closer to wild ginseng than cultivated ginseng. The differences among wild ginseng, ginseng under forest, and cultivated ginseng in saponin compositions and contents of ginsenosides were mainly attributed to their growing ages.


Asunto(s)
Panax/crecimiento & desarrollo , Saponinas/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Bosques , Estructura Molecular , Panax/química , Panax/clasificación , Saponinas/química
10.
Sci Rep ; 11(1): 9211, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911151

RESUMEN

Ginseng rusty root symptom (GRS) is one of the primary diseases of ginseng. It leads to a severe decline in the quality of ginseng and significantly affects the ginseng industry. The regulatory mechanism of non-coding RNA (ncRNA) remains unclear in the course of disease. This study explored the long ncRNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in GRS tissues and healthy ginseng (HG) tissues and performed functional enrichment analysis of the screened differentially expressed ncRNAs. Considering the predictive and regulatory effects of ncRNAs on mRNAs, we integrated ncRNA and mRNA data to analyze and construct relevant regulatory networks. A total of 17,645 lncRNAs, 245 circRNAs, and 299 miRNAs were obtained from HG and GRS samples, and the obtained ncRNAs were characterized, including the classification of lncRNAs, length and distribution of circRNA, and the length and family affiliations of miRNAs. In the analysis of differentially expressed ncRNA target genes, we found that lncRNAs may be involved in the homeostatic process of ginseng tissues and that lncRNAs, circRNAs, and miRNAs are involved in fatty acid-related regulation, suggesting that alterations in fatty acid-related pathways may play a key role in GRS. Besides, differentially expressed ncRNAs play an essential role in regulating transcriptional translation processes, primary metabolism such as starch and sucrose, and secondary metabolism such as alkaloids in ginseng tissues. Finally, we integrated the correlations between ncRNAs and mRNAs, constructed corresponding interaction networks, and identified ncRNAs that may play critical roles in GRS. These results provide a basis for revealing GRS's molecular mechanism and enrich our understanding of ncRNAs in ginseng.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Redes Reguladoras de Genes , Panax/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , ARN no Traducido/genética , Resistencia a la Enfermedad/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Panax/crecimiento & desarrollo , Panax/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas
11.
Sci Rep ; 11(1): 2924, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536557

RESUMEN

Ginseng (Panax ginseng Meyer) sprouts are grown to whole plants in 20 to 25 days in a soil-less cultivation system and then used as a medicinal vegetable. As a nitrogen (N) source, plasma-treated water (PTW) has been used to enhance the seed germination and seedling growth of many crops but has not been investigated for its effects on ginseng sprouts. This study established an in-situ system for N-containing water production using plasma technology and evaluated the effects of the PTW on ginseng growth and its bioactive phytochemicals compared with those of an untreated control. The PTW became weakly acidic 30 min after the air discharge at the electrodes because of the formation of nitrate (NO3‒) and nitrite (NO2‒) in the water. The NO3‒ and NO2‒ in the PTW, together with potassium ions (K+), enhanced the shoot biomass of the ginseng sprout by 26.5% compared to the untreated control. The ginseng sprout grown in the PTW had accumulated more free amino acids and ginsenosides in the sprout at 25 days after planting. Therefore, PTW can be used as a liquid N fertilizer for P. ginseng growth and phytochemical accumulation during sprouting under aeroponic conditions.


Asunto(s)
Ginsenósidos/análisis , Panax/química , Plantones/crecimiento & desarrollo , Agua/química , Agricultura/métodos , Nitrógeno/química , Nitrógeno/metabolismo , Panax/crecimiento & desarrollo , Panax/metabolismo , Gases em Plasma , Plantones/química , Plantones/metabolismo
12.
BMC Microbiol ; 21(1): 18, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33419388

RESUMEN

BACKGROUND: Continuous cropping of ginseng (Panax ginseng Meyer) cultivated in farmland for an extended period gives rise to soil-borne disease. The change in soil microbial composition is a major cause of soil-borne diseases and an obstacle to continuous cropping. The impact of cultivation modes and ages on the diversity and composition of the P. ginseng rhizosphere microbial community and technology suitable for cropping P. ginseng in farmland are still being explored. METHODS: Amplicon sequencing of bacterial 16S rRNA genes and fungal ITS regions were analyzed for microbial community composition and diversity. RESULTS: The obtained sequencing data were reasonable for estimating soil microbial diversity. We observed significant variations in richness, diversity, and relative abundances of microbial taxa between farmland, deforestation field, and different cultivation years. The bacterial communities of LCK (forest soil where P. ginseng was not grown) had a much higher richness and diversity than those in NCK (farmland soil where P. ginseng was not grown). The increase in cultivation years of P. ginseng in farmland and deforestation field significantly changed the diversity of soil microbial communities. In addition, the accumulation of P. ginseng soil-borne pathogens (Monographella cucumerina, Ilyonectria mors-panacis, I. robusta, Fusarium solani, and Nectria ramulariae) varied with the cropping age of P. ginseng. CONCLUSION: Soil microbial diversity and function were significantly poorer in farmland than in the deforestation field and were affected by P. ginseng planting years. The abundance of common soil-borne pathogens of P. ginseng increased with the cultivation age and led to an imbalance in the microbial community.


Asunto(s)
Bacterias/clasificación , Hongos/clasificación , Panax/crecimiento & desarrollo , Análisis de Secuencia de ADN/métodos , Agricultura , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN de Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Panax/microbiología , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
13.
Biomed Pharmacother ; 136: 111280, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33485063

RESUMEN

Ginseng has been widely applied in clinical practice, but the cultivation age cannot be ignored as it influences the quality of ginseng and its products. In this work, different cultivation ages of fresh ginseng (FG) from four to seven years were analysed by UPLC-Q-TOF-MS/MS. Principal component analysis and supervised orthogonal partial least squared discrimination analysis, which belong to the normal method of multivariate statistical analysis, were applied to discover the characteristic components of FG at different cultivation ages. The components of new type of red ginseng (NRG) derived from FG at different cultivation ages were compared by HPLC analysis. The pharmacological anti-inflammatory activity was evaluated by ELISA and qPCR. The result showed that the characteristic components of both 6- and 7-year-old ginseng were ginsenoside Rb1, mal-ginsenoside Rb1, ginsenoside Rc, mal-ginsenoside Rc, mal-ginsenoside Rb1 isomer, and mal-ginsenoside Rb2. Moreover, the characteristic components of both 4- and 5-year-old ginseng were ADP-glucose and 3-hydroxyhexanoyl CoA. In addition, 6-year-old NRG has higher rare ginsenosides than 4-year-old NRG, which possesses great anti-inflammatory activity in vitro. The results reveal the ginsenoside transformation law of NRG processing and suggest that the cultivation age of FG influences the content of ginsenosides in NRG. Therefore, 6-year-old ginseng is more suitable for red ginseng processing and clinical use.


Asunto(s)
Antiinflamatorios/farmacología , Ginsenósidos/farmacología , Microglía/efectos de los fármacos , Panax/crecimiento & desarrollo , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Línea Celular , Cromatografía Líquida de Alta Presión , Ginsenósidos/aislamiento & purificación , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Análisis de los Mínimos Cuadrados , Ratones , Microglía/metabolismo , Óxido Nítrico/metabolismo , Panax/metabolismo , Extractos Vegetales/aislamiento & purificación , Análisis de Componente Principal , Espectrometría de Masas en Tándem , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Sci Food Agric ; 101(4): 1491-1498, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32844459

RESUMEN

BACKGROUND: The present study aimed to explore the chemical characteristics of mountainous forest cultivated ginseng (MFCG) and garden ginseng (GG) with respect to their ginsenosides and oligosaccharides. METHODS: A high-performance liquid chromatography with diode-array detection-evaporative light-scattering detection technique was adopted to investigate the ginseosides and oligosaccharides of GG and MFCG. RESULTS: The features of ginsenosides showed Rg1/Re in different parts of GG and MFCG: main root > lateral root > fibrous root, as well as Rg1/Re in the main root: MFCG > GG, indicating that the Rg1/Re is related to age of the ginseng. In most cases, Rg1/Re < 1 in entire GG and Rg1/Re > 1 in entire MFCG. In addition, the ratio of protopanaxadiol/protopanaxatriol in main root of GG is approximately 1 and, in the main roots of MFCG, the ratio is approximately 2 and, furthermore, Ro/Rb1 of MFCG is lower than that of GG. Analysis of oligosaccharides showed that GG mainly contained sucrose and MFCG mainly contained sucrose and maltose, and the ratio of sucrose to maltose was at least more than 4:1 in GG and less than 4:1 in MFCG in most cases, indicating the characteristics of oligosaccharides of MFCG are primarily affected by its growing environment. The results also showed that ginsenoside Re is most probably the biosynthetic precursor of ginsenoside Rg1 (i.e. Re was synthesized first and then transformed to Rg1 in vivo). CONCLUSION: The characteristics of Rg1/Re and higher maltose can be regarded as one of the characteristics of high quality MFCG, and these characteristics are related to a higher age and the cultivation environment of ginseng. The formation mechanism of these characteristics for GG and MFGG is also discussed. As far as we know, the present study is the first to determine the difference of Rg1/Re and oligosaccharides between MFCG and GG and this provides a reference for the quality control criterion of GG and MFCG. © 2020 Society of Chemical Industry.


Asunto(s)
Ginsenósidos/química , Oligosacáridos/química , Panax/crecimiento & desarrollo , Raíces de Plantas/química , Cromatografía Líquida de Alta Presión , Jardines , Panax/química , Raíces de Plantas/crecimiento & desarrollo , Control de Calidad
15.
Sci Rep ; 10(1): 10074, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572040

RESUMEN

Most traits of agricultural importance are quantitative traits controlled by numerous genes. However, it remains unclear about the molecular mechanisms underpinning quantitative traits. Here, we report the molecular characteristics of the genes controlling three quantitative traits randomly selected from three diverse plant species, including ginsenoside biosynthesis in ginseng (Panax ginseng C.A. Meyer), fiber length in cotton (Gossypium hirsutum L. and G. barbadense L.) and grain yield in maize (Zea mays L.). We found that a vast majority of the genes controlling a quantitative trait were significantly more likely spliced into multiple transcripts while they expressed. Nevertheless, only one to four, but not all, of the transcripts spliced from each of the genes were significantly correlated with the phenotype of the trait. The genes controlling a quantitative trait were multiple times more likely to form a co-expression network than other genes expressed in an organ. The network varied substantially among genotypes of a species and was associated with their phenotypes. These findings indicate that the genes controlling a quantitative trait are more likely pleiotropic and functionally correlated, thus providing new insights into the molecular basis underpinning quantitative traits and knowledge necessary to develop technologies for efficient manipulation of quantitative traits.


Asunto(s)
Redes Reguladoras de Genes , Gossypium/genética , Panax/genética , Zea mays/genética , Empalme Alternativo , Mapeo Cromosómico , Fibra de Algodón/análisis , Grano Comestible/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ginsenósidos/biosíntesis , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Panax/crecimiento & desarrollo , Panax/metabolismo , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
16.
Mol Genet Genomics ; 295(4): 877-890, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32239329

RESUMEN

Basic helix-loop-helix (bHLH) gene family is a gene family of transcription factors that plays essential roles in plant growth and development, secondary metabolism and response to biotic and abiotic stresses. Therefore, a comprehensive knowledge of the bHLH gene family is paramount to understand the molecular mechanisms underlying these processes and develop advanced technologies to manipulate the processes efficiently. Ginseng, Panax ginseng C.A. Meyer, is a well-known medicinal herb; however, little is known  about the bHLH genes (PgbHLH) in the species. Here, we identified 137 PgbHLH genes from Jilin ginseng cultivar, Damaya, widely cultivated in Jilin, China, of which 50 are newly identified by pan-genome analysis. These 137 PgbHLH genes were phylogenetically classified into 26 subfamilies, suggesting their sequence diversification. They are alternatively spliced into 366 transcripts in a 4-year-old plant and involved in 11 functional subcategories of the gene ontology, indicating their functional differentiation in ginseng. The expressions of the PgbHLH genes dramatically vary spatio-temporally and across 42 genotypes, but they are still somehow functionally correlated. Moreover, the PgbHLH gene family, at least some of its genes, is shown to have roles in plant response to the abiotic stress of saline. These results provide a new insight into the evolution and functional differentiation of the bHLH gene family in plants, new bHLH genes to the PgbHLH gene family, and saline stress-responsive genes for genetic improvement in ginseng and other plant species.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Molecular , Panax/genética , Estrés Salino/genética , Empalme Alternativo/genética , China , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Familia de Multigenes/genética , Panax/efectos de los fármacos , Panax/crecimiento & desarrollo , Filogenia , Solución Salina/toxicidad , Factores de Transcripción
17.
Biomolecules ; 10(3)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121159

RESUMEN

Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolium L.) are the two most important ginseng species for their medicinal properties. Ginseng is not only popular to consume, but is also increasingly popular to cultivate. In the North Island of New Zealand, Asian ginseng and American ginseng have been grown in Taupo and Rotorua for more than 15 years. There are no publications comparing the chemical constituents between New Zealand-grown Asian ginseng (NZPG) and New Zealand-grown American ginseng (NZPQ). In this study, fourteen ginsenoside reference standards and LC-MS2 technology were employed to analyze the ginsenoside components of various parts (fine root, rhizome, main root, stem, and leaf) from NZPG and NZPQ. Fifty and 43 ginsenosides were identified from various parts of NZPG and NZPQ, respectively, and 29 ginsenosides were found in both ginseng species. Ginsenoside concentrations in different parts of ginsengs were varied. Compared to other tissues, the fine roots contained the most abundant ginsenosides, not only in NZPG (142.49 ± 1.14 mg/g) but also in NZPQ (115.69 ± 3.51 mg/g). For the individual ginsenosides of both NZPG and NZPQ, concentration of Rb1 was highest in the underground parts (fine root, rhizome, and main root), and ginsenoside Re was highest in the aboveground parts (stem and leaf).


Asunto(s)
Bosques , Ginsenósidos/análisis , Panax , Raíces de Plantas , Ginsenósidos/metabolismo , Nueva Zelanda , Panax/química , Panax/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Especificidad de la Especie
18.
J Agric Food Chem ; 68(7): 2263-2275, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986019

RESUMEN

The growth conditions and age of Panax ginseng are vital for determining the quality of the ginseng plant. However, the considerable difference in price according to the cultivation method and period of P. ginseng leads to its adulteration in the trade market. We herein focused on ginseng peptides and the possibility of these peptides to be used as biomarker(s) for discrimination of P. ginseng. We applied an ultraperformance liquid chromatography-high resolution mass spectrometry-based peptidomics approach to characterize ginseng peptides and discover novel peptide biomarkers for authentication of mountain-cultivated ginseng (MCG). We identified 52 high-confidence peptides and screened 20 characteristic peptides differentially expressed between MCG and cultivated ginseng (CG). Intriguingly, 6 differential peptides were expressed significantly in MCG and originated from dehydrins that accumulated during cold or drought conditions. In addition, 14 other differential peptides that were significantly expressed in CG derived from ginseng major protein, an essential protein for nitrogen storage. These biological associations confirmed the reliability and credibility of the differential peptides. Additionally, we determined several robust peptide biomarkers for discrimination of MCG through a precise selection process. These findings demonstrate the potential of peptide biomarkers for identification and quality control of P. ginseng in addition to ginsenoside analysis.


Asunto(s)
Panax/química , Péptidos/química , Secuencia de Aminoácidos , Biomarcadores/química , Cromatografía Líquida de Alta Presión , Análisis Discriminante , Contaminación de Alimentos/análisis , Espectrometría de Masas , Panax/crecimiento & desarrollo , Mapeo Peptídico , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Control de Calidad
19.
PLoS One ; 14(10): e0223763, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31618238

RESUMEN

We aimed to investigate the effects of genome, age, and soil factors on cultivated Panax ginseng C. A. Meyer (CPG) compounds under identical climate and agronomic practices. Eight populations of CPG from different years and rhizosphere soils were collected from garden and cropland in the city of Ji'an, China. Inter-simple sequence repeat (ISSR) primers were used to detect genetic diversity and identity, and soil microbial community diversity. Soil enzyme activities and nutrients were also measured. The contents of total ginsenosides (TG), Rg1, Re, Rf, Rd, and ginsenoside extractions of CPG were analyzed by spectrophotometry and HPLC. The relative importance of each factor was analyzed by mathematical methods such as correlation analysis, stepwise line regression, and path analysis. Regression equations of similarity values of HPLC fingerprint (SVHF), richness index of HPLC fingerprint (RIHF) and the TG, Rg1, Re, Rf, and Rd contents with their respective significant correlation factors were obtained. For SVHF, the relative importance is age>microbial community diversity>genetic diversity. For RIHF, the relative importance is age>genetic diversity>microbial community diversity. For TG, Rg1, and Rf contents, the relative importance is age>microbial community diversity. Ginseng age and genetic identity influenced Rd content, and age was more important. Total phosphorus was the only directly negative effect on Re. According to regression equations and path analysis, increasing age and decreasing Shannon (H') could improve the TG, Rg1, and Rf contents, with little effect on SVHF. Adding age, genetic diversity, and decreasing Shannon (H') increased RIHF. Adding age and genetic identity could also improve Rd content. Appropriate decreases in total phosphorus might increase Re content. These findings are significant for CPG scientific cultivation methods, through which CPG bioactive ingredients could be finely controlled via regulation of genotypes and cultural conditions.


Asunto(s)
Bacterias/aislamiento & purificación , Ginsenósidos/análisis , Panax/crecimiento & desarrollo , Fósforo/análisis , Suelo/química , Bacterias/clasificación , Bacterias/genética , China , Cromatografía Líquida de Alta Presión , ADN de Plantas/genética , Repeticiones de Microsatélite , Estructura Molecular , Panax/química , Panax/genética , Raíces de Plantas/química , Rizosfera , Microbiología del Suelo
20.
Molecules ; 24(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653085

RESUMEN

The purpose of this study was to analyze metabolic differences of ginseng berries according to cultivation age and ripening stage using gas chromatography-mass spectrometry (GC-MS)-based metabolomics method. Ginseng berries were harvested every week during five different ripening stages of three-year-old and four-year-old ginseng. Using identified metabolites, a random forest machine learning approach was applied to obtain predictive models for the classification of cultivation age or ripening stage. Principal component analysis (PCA) score plot showed a clear separation by ripening stage, indicating that continuous metabolic changes occurred until the fifth ripening stage. Three-year-old ginseng berries had higher levels of valine, glutamic acid, and tryptophan, but lower levels of lactic acid and galactose than four-year-old ginseng berries at fully ripened stage. Metabolic pathways affected by different cultivation age were involved in amino acid metabolism pathways. A random forest machine learning approach extracted some important metabolites for predicting cultivation age or ripening stage with low error rate. This study demonstrates that different cultivation ages or ripening stages of ginseng berry can be successfully discriminated using a GC-MS-based metabolomic approach together with random forest analysis.


Asunto(s)
Frutas/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Metaboloma/fisiología , Metabolómica , Panax/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...