Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.171
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1385599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741893

RESUMEN

Avian haemosporidian parasites are useful model organisms to study the ecology and evolution of parasite-host interactions due to their global distribution and extensive biodiversity. Detection of these parasites has evolved from microscopic examination to PCR-based methods, with the mitochondrial cytochrome b gene serving as barcoding region. However, standard PCR protocols used for screening and identification purposes have limitations in detecting mixed infections and generating phylogenetically informative data due to short amplicon lengths. To address these issues, we developed a novel genus-specific nested PCR protocol targeting avian haemosporidian parasites. The protocol underwent rigorous testing utilizing a large dataset comprising blood samples from Malagasy birds of three distinct Passeriformes families. Furthermore, validation was done by examining smaller datasets in two other laboratories employing divergent master mixes and different bird species. Comparative analyses were conducted between the outcomes of the novel PCR protocol and those obtained through the widely used standard nested PCR method. The novel protocol enables specific identification of Plasmodium, Haemoproteus (Parahaemoproteus), and Leucocytozoon parasites. The analyses demonstrated comparable sensitivity to the standard nested PCR with notable improvements in detecting mixed infections. In addition, phylogenetic resolution is improved by amplification of longer fragments, leading to a better understanding of the haemosporidian biodiversity and evolution. Overall, the novel protocol represents a valuable addition to avian haemosporidian detection methodologies, facilitating comprehensive studies on parasite ecology, epidemiology, and evolution.


Asunto(s)
Haemosporida , Reacción en Cadena de la Polimerasa , Infecciones Protozoarias en Animales , Animales , Haemosporida/genética , Haemosporida/aislamiento & purificación , Haemosporida/clasificación , Reacción en Cadena de la Polimerasa/métodos , Infecciones Protozoarias en Animales/diagnóstico , Infecciones Protozoarias en Animales/parasitología , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/diagnóstico , Aves/parasitología , Filogenia , Sensibilidad y Especificidad , Passeriformes/parasitología , ADN Protozoario/genética
2.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726757

RESUMEN

Differences in the physical and behavioral attributes of prey are likely to impose disparate demands of force and speed on the jaws of a predator. Because of biomechanical trade-offs between force and speed, this presents an interesting conundrum for predators of diverse prey types. Loggerhead shrikes (Lanius ludovicianus) are medium-sized (∼50 g) passeriform birds that dispatch and feed on a variety of arthropod and vertebrate prey, primarily using their beaks. We used high-speed video of shrikes biting a force transducer in lateral view to obtain corresponding measurements of bite force, upper and lower bill linear and angular displacements, and velocities. Our results show that upper bill depression (about the craniofacial hinge) is more highly correlated with bite force, whereas lower bill elevation is more highly correlated with jaw-closing velocity. These results suggest that the upper and lower jaws might play different roles for generating force and speed (respectively) in these and perhaps other birds as well. We hypothesize that a division of labor between the jaws may allow shrikes to capitalize on elements of force and speed without compromising performance. As expected on theoretical grounds, bite force trades-off against jaw-closing velocity during the act of biting, although peak bite force and jaw-closing velocity across individual shrikes show no clear signs of a force-velocity trade-off. As a result, shrikes appear to bite with jaw-closing velocities and forces that maximize biting power, which may be selectively advantageous for predators of diverse prey that require both jaw-closing force and speed.


Asunto(s)
Fuerza de la Mordida , Maxilares , Animales , Fenómenos Biomecánicos , Maxilares/fisiología , Passeriformes/fisiología , Conducta Predatoria/fisiología , Pico/fisiología , Grabación en Video
3.
Ecol Lett ; 27(5): e14434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716556

RESUMEN

Anthropogenic habitat modification can indirectly effect reproduction and survival in social species by changing the group structure and social interactions. We assessed the impact of habitat modification on the fitness and life history traits of a cooperative breeder, the Arabian babbler (Argya squamiceps). We collected spatial, reproductive and social data on 572 individuals belonging to 21 social groups over 6 years and combined it with remote sensing to characterize group territories in an arid landscape. In modified resource-rich habitats, groups bred more and had greater productivity, but individuals lived shorter lives than in natural habitats. Habitat modification favoured a faster pace-of-life with lower dispersal and dominance acquisition ages, which might be driven by higher mortality providing opportunities for the dominant breeding positions. Thus, habitat modification might indirectly impact fitness through changes in social structures. This study shows that trade-offs in novel anthropogenic opportunities might offset survival costs by increased productivity.


Asunto(s)
Ecosistema , Rasgos de la Historia de Vida , Animales , Masculino , Femenino , Reproducción , Passeriformes/fisiología , Aptitud Genética , Efectos Antropogénicos
4.
PeerJ ; 12: e17345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708346

RESUMEN

Ecological niche divergence is generally considered to be a facet of evolution that may accompany geographic isolation and diversification in allopatry, contributing to species' evolutionary distinctiveness through time. The null expectation for any two diverging species in geographic isolation is that of niche conservatism, wherein populations do not rapidly shift to or adapt to novel environments. Here, I test ecological niche divergence for a widespread, pan-American lineage, the avian genus of martins (Progne). The genus Progne includes migrant and resident species, as well as geographically restricted taxa and widespread, intercontinentally distributed taxa, thus providing an ideal group in which to study the nature of niche divergence within a broad geographic mosaic. I obtained distributional information for the genus from publicly available databases and created ecological niche models for each species to create pairwise comparisons of environmental space. I combined these data with the most up-to-date phylogeny of Progne currently available to examine the patterns of niche evolution within the genus. I found limited evidence for niche divergence across the breeding distributions of Progne, and much stronger support for niche conservatism with patterns of niche partitioning. The ancestral Progne had a relatively broad ecological niche, like extant basal Progne lineages, and several geographically localized descendant species occupy only portions of this larger ancestral niche. I recovered strong evidence of breeding niche divergence for four of 36 taxon pairs but only one of these divergent pairs involved two widespread species (Southern Martin P. elegans vs. Gray-breasted Martin P. chalybea). Potential niche expansion from the ancestral species was observed in the most wide-ranging present-day species, namely the North American Purple Martin P. subis and P. chalybea. I analyzed populations of P. subis separately, as a microcosm of Progne evolution, and again found only limited evidence of niche divergence. This study adds to the mounting evidence for niche conservatism as a dominant feature of diversifying lineages, and sheds light on the ways in which apparently divergent niches may arise through allopatry while not involving any true niche shifts through evolutionary time. Even taxa that appear unique in terms of habitat or behavior may not be diversifying with respect to their ecological niches, but merely partitioning ancestral niches among descendant taxa.


Asunto(s)
Ecosistema , Filogenia , Animales , Evolución Biológica , Passeriformes/clasificación , Passeriformes/fisiología , Aves
5.
J Comp Neurol ; 532(4): e25617, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38629472

RESUMEN

The New World suboscines (Passeriformes and Tyrannides) are one of the biggest endemic vertebrate radiations in South America, including the families Furnariidae and Tyrannidae. Avian brain morphology is a reliable proxy to study their evolution. The aim of this work is to elucidate whether the brains of these families reflect the ecological differences (e.g., feeding behavior) and to clarify macroevolutionary aspects of their neuroanatomy. Our hypotheses are as follows: Brain size is similar between both families and with other Passeriformes; brain morphology in Tyrannides is the result of the pressure of ecological factors; and brain disparity is low since they share ecological traits. Skulls of Furnariidae and Tyrannidae were micro-computed tomography-scanned, and three-dimensional models of the endocast were generated. Regression analyses were performed between brain volume and body mass. Linear and surface measurements were used to build phylomorphospaces and to calculate the amount of phylogenetic signal. Tyrannidae showed a larger brain disparity than Furnariidae, although it is not shaped by phylogeny in the Tyrannides. Furnariidae present enlarged Wulsts (eminentiae sagittales) but smaller optic lobes, while in Tyrannidae, it is the opposite. This could indicate that in Tyrannides there is a trade-off between the size of these two visual-related brain structures.


Asunto(s)
Passeriformes , Animales , Humanos , Passeriformes/anatomía & histología , Filogenia , Microtomografía por Rayos X , Encéfalo/anatomía & histología
6.
Nat Commun ; 15(1): 3151, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605055

RESUMEN

Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.


Asunto(s)
Retrovirus Endógenos , Passeriformes , Animales , Retrovirus Endógenos/genética , Passeriformes/genética , Pollos/genética , Secuencias Repetidas Terminales/genética , Recombinación Homóloga , Mamíferos/genética
7.
Curr Biol ; 34(9): 1930-1939.e4, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38636515

RESUMEN

Substantial progress has been made in understanding the genetic architecture of phenotypes involved in a variety of evolutionary processes. Behavioral genetics remains, however, among the least understood. We explore the genetic architecture of spatial cognitive abilities in a wild passerine bird, the mountain chickadee (Poecile gambeli). Mountain chickadees cache thousands of seeds in the fall and require specialized spatial memory to recover these caches throughout the winter. We previously showed that variation in spatial cognition has a direct effect on fitness and has a genetic basis. It remains unknown which specific genes and developmental pathways are particularly important for shaping spatial cognition. To further dissect the genetic basis of spatial cognitive abilities, we combine experimental quantification of spatial cognition in wild chickadees with whole-genome sequencing of 162 individuals, a new chromosome-scale reference genome, and species-specific gene annotation. We have identified a set of genes and developmental pathways that play a key role in creating variation in spatial cognition and found that the mechanism shaping cognitive variation is consistent with selection against mildly deleterious non-coding mutations. Although some candidate genes were organized into connected gene networks, about half do not have shared regulation, highlighting that multiple independent developmental or physiological mechanisms contribute to variation in spatial cognitive abilities. A large proportion of the candidate genes we found are associated with synaptic plasticity, an intriguing result that leads to the hypothesis that certain genetic variants create antagonism between behavioral plasticity and long-term memory, each providing distinct benefits depending on ecological context.


Asunto(s)
Cognición , Redes Reguladoras de Genes , Animales , Conducta Alimentaria , Memoria Espacial , Pájaros Cantores/genética , Pájaros Cantores/fisiología , Passeriformes/genética , Passeriformes/fisiología
8.
PLoS One ; 19(4): e0299954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635514

RESUMEN

For migratory birds, events happening during any period of their annual cycle can have strong carry-over effects on the subsequent periods. The strength of carry-over effects between non-breeding and breeding grounds can be shaped by the degree of migratory connectivity: whether or not individuals that breed together also migrate and/or spend the non-breeding season together. We assessed the annual cycle of the White-crested Elaenia (Elaenia albiceps chilensis), the longest-distance migrant flycatcher within South America, which breeds in Patagonia and spends the non-breeding season as far north as Amazonia. Using light-level geolocators, we tracked the annual movements of elaenias breeding on southern Patagonia and compared it with movements of elaenias breeding in northern Patagonia (1,365 km north) using Movebank Repository data. We found that elaenias breeding in southern Patagonia successively used two separate non-breeding regions while in their Brazilian non-breeding grounds, as already found for elaenias breeding in the northern Patagonia site. Elaenias breeding in both northern and southern Patagonia also showed high spread in their non-breeding grounds, high non-breeding overlap among individuals from both breeding sites, and similar migration phenology, all of which suggests weak migratory connectivity for this species. Elucidating the annual cycle of this species, with particular emphasis on females and juveniles, still requires further research across a wide expanse of South America. This information will be critical to understanding and possibly predicting this species' response to climate change and rapid land-use changes.


Asunto(s)
Passeriformes , Pájaros Cantores , Humanos , Animales , Femenino , Migración Animal/fisiología , Brasil , Cruzamiento , Estaciones del Año
9.
Proc Biol Sci ; 291(2021): 20240238, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628125

RESUMEN

Vertebrates host complex microbiomes that impact their physiology. In many taxa, including colourful wood-warblers, gut microbiome similarity decreases with evolutionary distance. This may suggest that as host populations diverge, so do their microbiomes, because of either tight coevolutionary dynamics, or differential environmental influences, or both. Hybridization is common in wood-warblers, but the effects of evolutionary divergence on the microbiome during secondary contact are unclear. Here, we analyse gut microbiomes in two geographically disjunct hybrid zones between blue-winged warblers (Vermivora cyanoptera) and golden-winged warblers (Vermivora chrysoptera). We performed 16S faecal metabarcoding to identify species-specific bacteria and test the hypothesis that host admixture is associated with gut microbiome disruption. Species identity explained a small amount of variation between microbiomes in only one hybrid zone. Co-occurrence of species-specific bacteria was rare for admixed individuals, yet microbiome richness was similar among admixed and parental individuals. Unexpectedly, we found several bacteria that were more abundant among admixed individuals with a broader deposition of carotenoid-based plumage pigments. These bacteria are predicted to encode carotenoid biosynthesis genes, suggesting birds may take advantage of pigments produced by their gut microbiomes. Thus, host admixture may facilitate beneficial symbiotic interactions which contribute to plumage ornaments that function in sexual selection.


Asunto(s)
Microbioma Gastrointestinal , Passeriformes , Humanos , Animales , Fenotipo , Vertebrados , Carotenoides
10.
Proc Biol Sci ; 291(2021): 20232427, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628131

RESUMEN

Cooperation may emerge from intrinsic factors such as social structure and extrinsic factors such as environmental conditions. Although these factors might reinforce or counteract each other, their interaction remains unexplored in animal populations. Studies on multilevel societies suggest a link between social structure, environmental conditions and individual investment in cooperative behaviours. These societies exhibit flexible social configurations, with stable groups that overlap and associate hierarchically. Structure can be seasonal, with upper-level units appearing only during specific seasons, and lower-level units persisting year-round. This offers an opportunity to investigate how cooperation relates to social structure and environmental conditions. Here, we study the seasonal multilevel society of superb fairy-wrens (Malurus cyaneus), observing individual responses to experimental playback of conspecific distress calls. Individuals engaged more in helping behaviour and less in aggressive/territorial song during the harsher non-breeding season compared to the breeding season. The increase in cooperation was greater for breeding group members than for members of the same community, the upper social unit, comprised of distinct breeding groups in association. Results suggest that the interaction between social structure and environmental conditions drives the seasonal switch in cooperation, supporting the hypothesis that multilevel societies can emerge to increase cooperation during harsh environmental conditions.


Asunto(s)
Passeriformes , Pájaros Cantores , Humanos , Animales , Pájaros Cantores/fisiología , Conducta Cooperativa , Territorialidad , Conducta de Ayuda
11.
Sci Total Environ ; 927: 172373, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604356

RESUMEN

Wastewater treatment wetlands are cost-effective strategies for remediating trace metals in industrial effluent. However, biogeochemical exchange between wastewater treatment wetlands and adjacent environments provides opportunities for trace metals to cycle in surrounding ecosystems. The transfer of trace metals to wildlife inhabiting treatment wetlands must be considered when evaluating wetland success. Using passerine birds as bioindicators, we conducted a multi-tissue analysis to investigate the mobilization of zinc, copper, and lead derived from wastewater to terrestrial wildlife in treatment wetlands and surrounding habitat. In addition, we evaluate the strength of relationships between metal concentrations in non-lethal (blood and feathers) and lethal (muscle and liver) sample types for estimation of toxicity risk. From July 2020 to August 2021, 177 passerines of seven species were captured at two wetlands constructed to treat industrial wastewater and two reference wetlands in the coastal plain of South Carolina. Feather, blood, liver, and muscle samples from each bird were analyzed for fourteen metals using inductively coupled plasma mass spectrometry and direct mercury analysis. Passerines inhabiting wastewater treatment wetlands accumulated higher concentrations of zinc in liver, copper in blood, and lead in feathers than passerines in reference wetlands, but neither blood nor feather concentrations were correlated with internal tissue concentrations. Of all the detected metals, only mercury in the blood showed a strong predictive relationship with mercury in internal tissues. This study indicates that trace metals derived from wastewater are bioavailable and exported to terrestrial wildlife and that passerine biomonitoring is a valuable tool for assessing metal transfer from treatment wetlands. Regular blood sampling can reveal proximate trace metal exposure but cannot predict internal body burdens for most metals.


Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Animales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Metales/análisis , Passeriformes/metabolismo
12.
Elife ; 122024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38562050

RESUMEN

In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles-a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male-versus female-grackles finish 'relearning' faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles' choice behaviour is governed more strongly by the 'weight' of relative differences in recent foraging payoffs-i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning-where we simulate 'birds' based on empirical estimates of our grackles' reinforcement learning-replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.


Asunto(s)
Aprendizaje , Passeriformes , Animales , Humanos , Femenino , Masculino , Teorema de Bayes , Cognición , Refuerzo en Psicología
13.
Magy Seb ; 77(1): 6-7, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564296
14.
Proc Biol Sci ; 291(2021): 20240235, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654650

RESUMEN

Terror birds (Aves, Phorusrhacidae) were large flightless apex predators in South America during the Cenozoic. Here, we estimate a new phylogeny for phorusrhacids using Bayesian inference. We demonstrate phylogenetic evidence for a monophyletic Patagornithinae and find significant support for a distinct crown group associated with the quintessential 'terror bird' characteristics. We use this phylogeny to analyse the evolution of body size and cursoriality. Our results reveal that size overlap was rare between co-occurring subfamilies, supporting the hypothesis that these traits were important for niche partitioning. We observe that gigantism evolved in a single clade, containing Phorusrhacinae and Physornithinae. The members of this lineage were consistently larger than all other phorusrhacids. Phorusrhacinae emerged following the extinction of Physornithinae, suggesting the ecological succession of the apex predator niche. The first known phorusrhacine, Phorusrhacos longissimus, was gigantic but significantly smaller and more cursorial than any physornithine. These traits likely evolved in response to the expansion of open environments. Following the Santacrucian SALMA, phorusrhacines increased in size, further converging on the morphology of Physornithinae. These findings suggest that the evolution and displacement of body size drove terror bird niche partitioning and competitive exclusion controlled phorusrhacid diversity.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Filogenia , Animales , Passeriformes/fisiología , Teorema de Bayes , América del Sur , Aves/fisiología
15.
Anim Cogn ; 27(1): 35, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656554

RESUMEN

Cognition is a powerful adaptation, enabling animals to utilise resources that are unavailable without manipulation. Tool use and food processing are examples of using cognition to overcome the protective mechanisms of food resources. Here, we describe and examine the flexibility of proto-tool use (defined as the alteration of an object through object-substrate manipulation) for food processing in a cooperatively breeding bird, the Arabian babbler (Argya squamiceps). Field observations demonstrate that the birds transport different caterpillar species to different substrate types depending on the processing method needed to prepare the caterpillar for eating. Species with toxic setae (e.g. Casama innotata) are transported to be rubbed on rough substrates (e.g. sand) before consumption, while other species (e.g. Hyles livornica) are transported to be pounded against hard substrates until their inner organs are removed and only their external body part is consumed. These results are among the few to describe flexible proto-tool use for food processing in wild animals. They thereby contribute to the taxonomic mapping of proto-tool use and food processing in non-human species, which is a fundamental step to advance comparative studies on the evolution of these behaviours and their underlying cognitive mechanisms.


Asunto(s)
Conducta Alimentaria , Passeriformes , Animales , Passeriformes/fisiología , Comportamiento del Uso de la Herramienta , Cognición , Conducta Predatoria , Femenino , Masculino
16.
PLoS One ; 19(4): e0300583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656932

RESUMEN

Accurately determining the diet of wild animals can be challenging if food items are small, visible only briefly, or rendered visually unidentifiable in the digestive system. In some food caching species, an additional challenge is determining whether consumed diet items have been previously stored or are fresh. The Canada jay (Perisoreus canadensis) is a generalist resident of North American boreal and subalpine forests with anatomical and behavioural adaptations allowing it to make thousands of arboreal food caches in summer and fall that are presumably responsible for its high winter survival and late winter/early spring breeding. We used DNA fecal metabarcoding to obtain novel information on nestling diets and compiled a dataset of 662 published and unpublished direct observations or stomach contents identifications of natural foods consumed by Canada jays throughout the year. We then used detailed natural history information to make informed decisions on whether each item identified to species in the diets of winter adults and nestlings was best characterized as 'likely cached', 'likely fresh' (i.e., was available as a non-cached item when it appeared in a jay's feces or stomach), or 'either possible'. Of the 87 food items consumed by adults in the winter, 39% were classified as 'likely cached' and 6% were deemed to be 'likely fresh'. For nestlings, 29% of 125 food items identified to species were 'likely cached' and 38% were 'likely fresh'. Our results support both the indispensability of cached food for Canada jay winter survival and previous suggestions that cached food is important for late winter/early spring breeding. Our work highlights the value of combining metabarcoding, stomach contents analysis, and direct observations to determine the cached vs. non-cached origins of consumed food items and the identity of food caches, some of which could be especially vulnerable to degradation through climate change.


Asunto(s)
Dieta , Heces , Estaciones del Año , Animales , Heces/química , Código de Barras del ADN Taxonómico/métodos , Passeriformes/fisiología , Conducta Alimentaria , Cruzamiento , Canadá , ADN/análisis , ADN/genética
17.
PeerJ ; 12: e16361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563018

RESUMEN

Parasite transmission is a heterogenous process in host-parasite interactions. This heterogeneity is particularly apparent in vector-borne parasite transmission where the vector adds an additional level of complexity. Haemosporidian parasites, a widespread protist, cause a malaria-like disease in birds globally, but we still have much to learn about the consequences of infection to hosts' health. In the Caribbean, where malarial parasites are endemic, studying host-parasites interactions may give us important insights about energetic trade-offs involved in malarial parasites infections in birds. In this study, we tested the consequences of Haemoproteus infection on the Bananaquit, a resident species of Puerto Rico. We also tested for potential sources of individual heterogeneity in the consequences of infection such as host age and sex. To quantify the consequences of infection to hosts' health we compared three complementary body condition indices between infected and uninfected individuals. Our results showed that Bananaquits infected by Haemoproteus had higher body condition than uninfected individuals. This result was consistent among the three body condition indices. Still, we found no clear evidence that this effect was mediated by host age or sex. We discuss a set of non-mutually exclusive hypotheses that may explain this pattern including metabolic syndrome, immunological responses leading to host tolerance or resistance to infection, and potential changes in consumption rates. Overall, our results suggest that other mechanisms, may drive the consequences of avian malarial infection.


Asunto(s)
Enfermedades de las Aves , Haemosporida , Parásitos , Passeriformes , Plasmodium , Humanos , Animales , Enfermedades de las Aves/epidemiología , Passeriformes/parasitología , Puerto Rico
18.
Mol Ecol ; 33(9): e17358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38625740

RESUMEN

How do chemically defended animals resist their own toxins? This intriguing question on the concept of autotoxicity is at the heart of how species interactions evolve. In this issue of Molecular Ecology (Molecular Ecology, 2024, 33), Bodawatta and colleagues report on how Papua New Guinean birds coopted deadly neurotoxins to create lethal mantles that protect against predators and parasites. Combining chemical screening of the plumage of a diverse collection of passerine birds with genome sequencing, the researchers unlocked a deeper understanding of how some birds sequester deadly batrachotoxin (BTX) from their food without poisoning themselves. They identified that birds impervious to BTX bear amino acid substitutions in the toxin-binding site of the voltage-gated sodium channel Nav1.4, whose function is essential for proper contraction and relaxation of vertebrate muscles. Comparative genetic and molecular docking analyses show that several of the substitutions associated with insensitivity to BTX may have become prevalent among toxic birds through positive selection. Intriguingly, poison dart frogs that also co-opted BTX in their lethal mantles were found to harbour similar toxin insensitivity substitutions in their Nav1.4 channels. Taken together, this sets up a powerful model system for studying the mechanisms behind convergent molecular evolution and how it may drive biological diversity.


Asunto(s)
Animales Ponzoñosos , Batracotoxinas , Pájaros Cantores , Animales , Batracotoxinas/genética , Neurotoxinas/toxicidad , Neurotoxinas/genética , Passeriformes/genética , Anuros/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Sustitución de Aminoácidos , Ranas Venenosas
19.
Parasitol Res ; 123(4): 182, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622257

RESUMEN

Avian haemosporidians are vector-borne parasites, infecting a great variety of birds. The order Passeriformes has the highest average infection probability; nevertheless, some common species of Passeriformes have been rather poorly studied. We investigated haemosporidians in one such species, the Eurasian jay Garrulus glandarius (Corvidae), from a forest population in Hesse, Central Germany. All individuals were infected with at least one haemosporidian genus (overall prevalence: 100%). The most common infection pattern was a mixed Haemoproteus and Leucocytozoon infection, whereas no Plasmodium infection was detected. Results on lineage diversity indicate a rather pronounced host-specificity of Haemoproteus and Leucocytozoon lineages infecting birds of the family Corvidae.


Asunto(s)
Enfermedades de las Aves , Haemosporida , Parásitos , Passeriformes , Infecciones Protozoarias en Animales , Pájaros Cantores , Humanos , Animales , Prevalencia , ADN Protozoario , Filogenia , Haemosporida/genética , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Infecciones Protozoarias en Animales/epidemiología , Infecciones Protozoarias en Animales/parasitología
20.
Parasit Vectors ; 17(1): 144, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500221

RESUMEN

BACKGROUND: Previous studies on the tick infestation of birds in the Carpathian Basin focused on songbirds (Passeriformes). Thus, the primary aim of the present work was to extend the scope of previous studies, i.e. to include aquatic (water-associated) bird species in a similar context, especially considering that these birds are usually long-distance migrants. METHODS: Between March 2021 and August 2023, 11,919 birds representing 126 species were checked for the presence of ticks. From 352 birds belonging to 40 species, 905 ixodid ticks were collected. Tick species were identified morphologically and/or molecularly. RESULTS: Ticks from avian hosts belonged to seven species: Ixodes ricinus (n = 448), I. frontalis (n = 31), I. festai (n = 2), I. arboricola (n = 36), I. lividus (n = 4), Haemaphysalis concinna (n = 382) and Dermacentor reticulatus (n = 2). Nymphs of I. ricinus occurred with a single activity peak around March-May, whereas its larvae typically infested birds in May, June or July. By contrast, H. concinna usually had its activity maximum during the summer (nymphs in June-July, larvae later in July-August). Interestingly, two ornithophilic species, I. frontalis and I. arboricola, were most active around winter months (between October and April). A significantly lower ratio of aquatic birds was found tick-infested than songbirds. Several new tick-host associations were revealed, including I. ricinus from Greylag Goose (Anser anser) and D. reticulatus from Great Egret (Ardea alba) and Sedge Warbler (Acrocephalus schoenobaenus). Ticks were collected for the first time in Europe from two species of predatory birds as well as from Little Bittern (Ixobrychus minutus). Bird species typically inhabiting reedbeds were most frequently infested with H. concinna, and most ticks localized at their throat, as opposed to forest-dwelling avian hosts, on which I. ricinus predominated and ticks were more evenly distributed. CONCLUSIONS: In the evaluated region, aquatic birds appear to be less important in tick dispersal than songbirds. However, newly revealed tick-host associations in this category attest to their hitherto neglected contribution. The results suggest that the habitat type will have significant impact not only on the species composition but also on the feeding location of ticks on birds.


Asunto(s)
Ixodes , Ixodidae , Passeriformes , Pájaros Cantores , Infestaciones por Garrapatas , Animales , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Ecosistema , Gansos , Ninfa , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...