Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-34702141

RESUMEN

The objective of this study was to evaluate fungal and patulin contamination, together with its correlation with the volatile compounds (VCs), in 'Fuji Mishima' apples (up to 25% decayed) under controlled atmosphere (CA) and dynamic controlled atmosphere with respiratory quotient (DCA-RQ) of 1.3 combined with different partial pressures of carbon dioxide (0.8, 1.2, 1.6 and 2.0 pCO2). Fruits were stored under the above conditions for 8 months at 0.5 °C plus 7 days shelf life at 20 °C. Toxigenic fungi and patulin accumulation were found in apples from all treatments. Penicillium expansum was the most prevalent species. For all storage conditions, patulin concentrations were above the maximum level allowed in Brazil (50  µg  kg-1) with an exception of DCA-RQ1.3 + 0.8 kPa CO2. This condition, with lower pCO2, showed the lowest patulin accumulation, below the legal limit. The CA provided the highest patulin concentration (166 µg  kg-1). It was observed that fungal growth could also contribute to changes in the volatile composition. Styrene and 3-methyl-1-butanol are considered P. expansum markers in some apple cultivars and were detected in the samples. However, it was not possible to identify volatile organic compounds (VOCs) that are biomarkers from P. expansum, because there were other fungi species present in all samples. In this study, styrene, n-decanoic acid, toluene, phenol and alpha-farnesene were the compounds that showed the most positive correlation with patulin accumulation. On the other hand, a negative correlation of patulin with acids has been shown, indicating that in treatments with a higher patulin concentration there were less acidic compounds.


Asunto(s)
Contaminación de Alimentos/análisis , Hongos/química , Malus/química , Patulina/química , Atmósfera , Dióxido de Carbono/química , Manipulación de Alimentos , Humanos , Penicillium/química , Pentanoles/química , Estireno/química , Compuestos Orgánicos Volátiles/química
2.
Sci Rep ; 11(1): 23438, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873236

RESUMEN

Mycotoxins represent a major concern for human and animal health because of their harmful effects and high occurrence in food and feed. Rapid immunoanalytical methods greatly contribute to strengthening the safety of our food supply by efficiently monitoring chemical contaminants, so high-affinity and specific antibodies have been generated for almost all internationally regulated mycotoxins. The only exception is patulin, a mycotoxin mainly produced by Penicillium expansum for which such a target has not yet been achieved. Accordingly, no point-of-need tests commonly used in food immunodiagnostics are commercially available for patulin. In the present study, three functionalized derivatives conforming to generally accepted rules in hapten design were firstly tested to generate suitable antibodies for the sensitive immunodetection of patulin. However, these conventional bioconjugates were unable to elicit the desired immune response, so an alternative strategy that takes advantage of the high electrophilic reactivity of patulin was explored. Patulin was reacted with 4-bromothiophenol, and the obtained adduct was used to produce antibodies with nanomolar affinity values. These results demonstrated for the first time that targeting the adduct resulting from the reaction of patulin with a thiol-containing compound is a promising approach for developing user-friendly immunoanalytical techniques for this elusive mycotoxin.


Asunto(s)
Micotoxinas/química , Patulina/química , Animales , Anticuerpos/química , Química Farmacéutica/métodos , Femenino , Microbiología de Alimentos , Abastecimiento de Alimentos , Frutas/química , Haptenos/química , Sistema Inmunológico , Inmunidad , Inmunoquímica/métodos , Malus , Penicillium/metabolismo , Conejos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Compuestos de Sulfhidrilo/química
3.
Toxins (Basel) ; 13(9)2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34564666

RESUMEN

The thermal stability and degradation kinetics of patulin (PAT, 10 µmol/L) in pH 3.5 of phosphoric-citric acid buffer solutions in the absence and presence of cysteine (CYS, 30 µmol/L) were investigated at temperatures ranging from 90 to 150 °C. The zero-, first-, and second-order models and the Weibull model were used to fit the degradation process of patulin. Both the first-order kinetic model and Weibull model better described the degradation of patulin in the presence of cysteine while it was complexed to simulate them in the absence of cysteine with various models at different temperatures based on the correlation coefficients (R2 > 0.90). At the same reaction time, cysteine and temperature significantly affected the degradation efficiency of patulin in highly acidic conditions (p < 0.01). The rate constants (kT) for patulin degradation with cysteine (0.0036-0.3200 µg/L·min) were far more than those of treatments without cysteine (0.0012-0.1614 µg/L·min), and the activation energy (Ea = 43.89 kJ/mol) was far less than that of treatment without cysteine (61.74 kJ/mol). Increasing temperature could obviously improve the degradation efficiency of patulin, regardless of the presence of cysteine. Thus, both cysteine and high temperature decreased the stability of patulin in highly acidic conditions and improved its degradation efficiency, which could be applied to guide the detoxification of patulin by cysteine in the juice processing industry.


Asunto(s)
Cisteína/química , Cisteína/metabolismo , Calor , Redes y Vías Metabólicas , Micotoxinas/química , Micotoxinas/metabolismo , Patulina/química , Patulina/metabolismo , Cinética
4.
Toxins (Basel) ; 13(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206488

RESUMEN

In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 µg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C-H, and N-O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform-infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.


Asunto(s)
Kéfir/microbiología , Lactobacillus/química , Patulina/química , Adsorción , Nariz Electrónica , Contaminación de Alimentos/prevención & control , Jugos de Frutas y Vegetales , Concentración de Iones de Hidrógeno , Lactobacillus/ultraestructura , Malus , Viabilidad Microbiana , Odorantes
5.
Food Chem ; 338: 127785, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798825

RESUMEN

Patulin (PAT) contaminant causes severe food safety issue throughout apple industry. Although adsorption is the feasible approach to remove PAT, the limited adsorption capacity and separation difficulty of most adsorbent is the major drawback that remains to be overcome. Here GO-SH doped aerogel was prepared and used for removal PAT from apple juice. The intrinsic porous of the aerogel and abundant active sites including -COOH, -NH2 and -SH offered the PAT adsorption capacity of 24.75 µg/mg that superior to most reported adsorbents. Furthermore, it could reduce 89 ± 1.23% PAT in real apple juice without juice quality deterioration and cytotoxicity. Importantly, the aerogel with good mechanical strength and structure stability could endure the complex juice solution so that there was no any residue after convenient separation of the aerogel, which proved that the proposed aerogel was a promising adsorbent to be applied to apple juice industry for PAT removal.


Asunto(s)
Jugos de Frutas y Vegetales/análisis , Grafito/química , Malus/química , Patulina/química , Patulina/aislamiento & purificación , Azufre/química , Adsorción , Contaminación de Alimentos/análisis , Geles
6.
Probiotics Antimicrob Proteins ; 13(1): 135-145, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32572682

RESUMEN

Recently, researchers have reported the presence of patulin as a mycotoxin in commercial apple products, especially apple juices. The aim of this study was to assess adsorption of patulin from artificially contaminated apple juice using two lactic acid bacteria (LAB) strains of Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014. Furthermore, effects of five physical and chemical pretreatments on the patulin adsorption were investigated. Results demonstrated that patulin adsorption abilities of both strains increased with NaOH pretreatment but decreased after autoclaving. The NaOH-treated L. plantarum ATCC 8014 showed the best removal rate (59.74%) after 48 h of refrigerated storage, compared with the NaOH-treated L. acidophilus ATCC 4356 (52.36%). Moreover, stability of the LAB-patulin complex was assessed in simulated gastrointestinal tract conditions and a low quantity of patulin was released into the solution. The patulin adsorption process by NaOH-treated L. plantarum ATCC 8014 followed Freundlich isotherm model and pseudo-second-order kinetic model. Fourier transform infrared spectroscopy showed that polysaccharide and protein components of the L. plantarum ATCC 8014 cell wall played key roles in patulin adsorption. The major functional groups of the cell wall that were involved in adsorbing patulin included -OH/-NH, -CH2, C=O, and C-O groups. The current results suggest that NaOH-treated L. plantarum ATCC 8014 cells include the potential to detoxify patulin-contaminated apple juices.


Asunto(s)
Contaminación de Alimentos , Jugos de Frutas y Vegetales , Tracto Gastrointestinal/metabolismo , Lactobacillus acidophilus/química , Lactobacillus plantarum/química , Malus/química , Modelos Biológicos , Patulina/química , Humanos
7.
Compr Rev Food Sci Food Saf ; 19(5): 2447-2472, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33336983

RESUMEN

Patulin (PAT) is a mycotoxin that can contaminate many foods and especially fruits and fruit-based products. Therefore, accurate and effective testing is necessary to enable producers to comply with regulations and promote food safety. Traditional approaches involving the use of chemical compounds or physical treatments in food have provided practical methods that have been used to date. However, growing concerns about environmental and health problems associated with these approaches call for new alternatives. In contrast, recent advances in biotechnology have revolutionized the understanding of living organisms and brought more effective biological tools. This review, therefore, focuses on the study of biotechnology approaches for the detection, control, and mitigation of PAT in food. Future aspects of biotechnology development to overcome the food safety problem posed by PAT were also examined. We find that biotechnology advances offer novel, more effective, and environmental friendly approaches for the control and elimination of PAT in food compared to traditional methods. Biosensors represent the future of PAT detection and use biological tools such as aptamer, enzyme, and antibody. PAT prevention strategies include microbial biocontrol, the use of antifungal biomolecules, and the use of microorganisms in combination with antifungal molecules. PAT detoxification aims at the breakdown and removal of PAT in food by using enzymes, microorganisms, and various adsorbent biopolymers. Finally, biotechnology advances will be dependent on the understanding of fundamental biology of living organisms regarding PAT synthesis and resistance mechanisms.


Asunto(s)
Contaminación de Alimentos/prevención & control , Hongos/química , Patulina/análisis , Antifúngicos , Agentes de Control Biológico , Biotecnología/métodos , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Inocuidad de los Alimentos/métodos , Hongos/efectos de los fármacos , Patulina/química , Patulina/toxicidad
8.
Sci Rep ; 10(1): 20115, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208818

RESUMEN

Patulin (PAT) is a common mycotoxin contaminant of apple products linked to impaired metabolic and kidney function. Adenosine monophosphate activated protein kinase (AMPK), abundantly expressed in the kidney, intercedes metabolic changes and renal injury. The alpha-1-adrenergic receptors (α1-AR) facilitate Epinephrine (Epi)-mediated AMPK activation, linking metabolism and kidney function. Preliminary molecular docking experiments examined potential interactions and AMPK-gamma subunit 3 (PRKAG3). The effect of PAT exposure (0.2-2.5 µM; 24 h) on the AMPK pathway and α1-AR was then investigated in HEK293 human kidney cells. AMPK agonist Epi determined direct effects on the α1-AR, metformin was used as an activator for AMPK, while buthionine sulphoximine (BSO) and N-acetyl cysteine (NAC) assessed GSH inhibition and supplementation respectively. ADRA1A and ADRA1D expression was determined by qPCR. α1-AR, ERK1/2/MAPK and PI3K/Akt protein expression was assessed using western blotting. PAT (1 µM) decreased α1-AR protein and mRNA and altered downstream signalling. This was consistent in cells stimulated with Epi and metformin. BSO potentiated the observed effect on α1-AR while NAC ameliorated these effects. Molecular docking studies performed on Human ADRA1A and PRKAG3 indicated direct interactions with PAT. This study is the first to show PAT modulates the AMPK pathway and α1-AR, supporting a mechanism of kidney injury.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Patulina/farmacología , Receptores Adrenérgicos alfa 1/genética , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Epinefrina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metformina/farmacología , Simulación del Acoplamiento Molecular , Patulina/química , Patulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-32305710

RESUMEN

A highly efficient and selective method was successfully developed by using magnetic molecularly imprinted polymers (MMIPs) combined with high performance liquid chromatography (HPLC) to quickly determine patulin (PAT) in juice. MMIPs was prepared by surface imprinting method using Fe3O4 nanoparticles as supporter, 2-oxindole as virtual template, (3-Aminopropyl) triethoxysilane (APTES) as functional monomer and tetraethyl orthosilicate (TEOS) as crosslinking agent. The structure of the product was characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results showed that MMIP with a particle size of about 450 nm was successfully prepared, the imprinted molecular layer accounted for about 11.6% of the total mass, and the saturation magnetization was about 6.82 emu/g. The maximum adsorption capacities (Qmax) of kinetic and thermodynamic adsorption experiments were 1.97 mg/g and 4.241 mg/g, respectively. The adsorption process was highly selective and fitted well with the pseudo-second-order model. Langmuir model demonstrated that the binding sites were evenly distributed on the surface of the MMIPs. Scatchard analysis showed that MMIPs had two types of binding sites with Qmax of 4.53 mg/g and 5.73 mg/g, respectively. In the actual sample application, the limit of detection (LOD) and the limit of quantification (LOQ) were 3 µg/kg and 10 µg/kg. And the recovery rate of the sample was 86.44-95.50%. MMIPs possessed excellent applicability with stability of 1.11-3.16% and accuracy of 0.63-1.94%. These results indicated that MMIPs had good performance in separating PAT and was suitable for determining PAT in actual samples.


Asunto(s)
Jugos de Frutas y Vegetales/análisis , Magnetismo/métodos , Polímeros Impresos Molecularmente/química , Patulina/aislamiento & purificación , Extracción en Fase Sólida/métodos , Adsorción , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Magnetismo/instrumentación , Nanopartículas de Magnetita/química , Patulina/química , Extracción en Fase Sólida/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier
10.
J Food Sci ; 85(4): 1371-1379, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32237092

RESUMEN

In this study, triethylene tetramine-modified water-insoluble corn flour caged in magnetic chitosan resin (TETA-WICF/MCR) was firstly prepared, which indicates novel aspects for immobilization and chemically modification of mycotoxin adsorbents. The TETA-WICF/MCR was characterized using zoom stereo microscope, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometer (XRD), and magnetic separation performance analysis. Experimental results confirmed successful layer by layer modification of chitosan, biosorbent water-insoluble corn flour (WICF), TETA onto the surface of magnetic beads. The mean diameter of the TETA-WICF/MCR was 2.63 mm with good magnetic-responsive ability. Subsequently, the adsorption performance of the TETA-WICF/MCR obtained toward patulin was assessed in batch adsorption system and the results demonstrated that the adsorption process was strongly depended on adsorbent dosage, contact time, temperature, and initial patulin concentration. The results of SEM images and FTIR analysis showed obvious changes in the porous structure of TETA-WICF/MCR after adsorbing patulin, and -NH2 and -OH groups were predominantly involved in the adsorption of patulin. Furthermore, the adsorption kinetics followed the mechanism of pseudo-second-order model, and equilibrium data were well fitted in the Freundlich isotherm model. It was also found that the TETA-WICF/MCR had good reusability without any adverse changes in apple juice. PRACTICAL APPLICATION: Patulin is a regulated toxin biosynthesized by certain fungi that contaminate agricultural commodities, such as fruits, juices, and other beverages. Several approaches have been studied to reduce patulin levels in apple juice and other aqueous systems. There is need for more low-cost and eco-friendly adsorbent capable of detoxifying patulin contaminated. In this sense, triethylene tetramine-modified water-insoluble corn flour caged in magnetic chitosan resin (TETA-WICF/MCR) was first prepared and exhibits easy solid-liquid separation and high adsorption capacity for removing patulin from contaminated apple juice.


Asunto(s)
Jugos de Frutas y Vegetales/análisis , Malus/química , Patulina/química , Trientina/química , Zea mays , Adsorción , Hidrocarburos Aromáticos con Puentes , Quitosano/química , Harina/análisis , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Agua
11.
Food Chem ; 315: 126283, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32000076

RESUMEN

Patulin is a toxic mycotoxin usually associated with apple products. Due to its unhealthy effects for humans, its content is regulated by the food safety authorities. The removal or degradation of this mycotoxin in contaminated apple juices has been studied with different approaches with uneven effectiveness. However, a strategy based on the chemical reaction between patulin and glutathione (GSH), in order to generate the conjugates that are formed during cell detoxification process, is an innovative approach yet to be evaluated. In this work, the formation of patulin-GSH conjugates activated by the application of pulsed light treatments and catalyzed by Fe2+ ions was evaluated. The study of patulin degradation and effect of the GSH/Fe2+ molar ratio showed that a molar ratio of 5 allows an adequate catalytic effect of the metal ions. In addition, mono-substituted patulin-glutathione adducts were identified as the main type of generated conjugates.


Asunto(s)
Jugos de Frutas y Vegetales/análisis , Glutatión/química , Malus/química , Patulina/química , Contaminación de Alimentos/análisis , Patulina/análisis
12.
Food Chem Toxicol ; 133: 110769, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31442469

RESUMEN

Porcine pancreatic lipase (PPL) was used to degrade the mycotoxin patulin (PAT) in pear juice. The dosage of PPL, the initial concentration of PAT, reaction temperature and time were investigated by batch experiments to study the optimal degradation condition. The concentration of PAT in pear juice was determined by high performance liquid chromatography with an ultraviolet detector (HPLC-UV). The results showed that the optimal condition was 0.02 g PPL/mL pear juice at 40 °C for 24 h. The content of organic acids, volatile flavor components, polyphenols, ascorbic acid and the degree of browning reaction in pear juice, relating to the quality of juice, changed insignificantly. Although the initial PAT concentration was very high, the degradation product was confirmed nontoxic by cytotoxicity test of Caco-2 cells. It suggested that PPL could be further considered to be applied in the degradation of PAT in pear juice.


Asunto(s)
Lipasa/química , Micotoxinas/química , Patulina/química , Animales , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Células CACO-2 , Ácidos Carboxílicos/análisis , Ácidos Carboxílicos/química , Contaminación de Alimentos/prevención & control , Jugos de Frutas y Vegetales , Humanos , Hidrólisis , Pyrus/química , Porcinos , Temperatura
13.
Molecules ; 24(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366160

RESUMEN

The identification and characterization of fungal commensals of the human gut (the mycobiota) is ongoing, and the effects of their various secondary metabolites on the health and disease of the host is a matter of current research. While the neurons of the central nervous system might be affected indirectly by compounds from gut microorganisms, the largest peripheral neuronal network (the enteric nervous system) is located within the gut and is exposed directly to such metabolites. We analyzed 320 fungal extracts and their effect on the viability of a human neuronal cell line (SH-SY5Y), as well as their effects on the viability and functionality of the most effective compound on primary enteric neurons of murine origin. An extract from P. coprobium was identified to decrease viability with an EC50 of 0.23 ng/µL in SH-SY5Y cells and an EC50 of 1 ng/µL in enteric neurons. Further spectral analysis revealed that the effective compound was patulin, and that this polyketide lactone is not only capable of evoking ROS production in SH-SY5Y cells, but also diverse functional disabilities in primary enteric neurons such as altered calcium signaling. As patulin can be found as a common contaminant on fruit and vegetables and causes intestinal injury, deciphering its specific impact on enteric neurons might help in the elaboration of preventive strategies.


Asunto(s)
Micotoxinas/toxicidad , Neuronas/efectos de los fármacos , Patulina/toxicidad , Penicillium/química , Animales , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Mezclas Complejas/química , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Micotoxinas/química , Micotoxinas/aislamiento & purificación , Neuronas/citología , Neuronas/metabolismo , Patulina/química , Patulina/aislamiento & purificación , Cultivo Primario de Células , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo
14.
Food Chem ; 300: 125111, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325752

RESUMEN

Patulin (PAT) contamination of apple juice leads to a serious food safety issue. Developing an excellent adsorbent to efficiently remove PAT is more desirable. Herein, a cost-effective and efficient adsorbent (GO-SH/diatomite) with abundant active sites was successfully fabricated via surface engineering of diatomite with sulfur-functionalized graphene oxide (GO-SH) nanosheets, which exhibited excellent selective adsorption capacity toward PAT. The adsorption behavior, adsorption mechanism, stability and cytotoxicity were investigated by systematic studies. The adsorption results showed that its maximum adsorption capacity was 10.68 µg/mg. Moreover, attributed to the specific interaction between PAT and thiol group, more than 90% of PAT was removed from apple juice without any juice quality deterioration. Importantly, the risk of food safety issue of apple juice caused by residual GO-SH/diatomite was negligible due to the properties of easy removal and excellent biocompatibility, which guaranteed its potential application in apple juice industry for PAT removal.


Asunto(s)
Tierra de Diatomeas/química , Jugos de Frutas y Vegetales/análisis , Grafito/química , Nanoestructuras/química , Patulina/química , Azufre/química , Adsorción , Malus/química
15.
Food Chem Toxicol ; 129: 301-311, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31029720

RESUMEN

Mycotoxins are the secondary metabolites secreted by different types of fungi to which humans can get exposed mainly via ingestion. Patulin (C7H6O4) is a polyketide lactone produced by various fungal specifies, including Penicillium expansum as the main producer. P. expansum can infect different fruits and vegetables yet it has preference to apples in which they cause blue rot. Therefore, apples and apple-based food products are the main source of Patulin exposure for humans. Patulin was first identified in 1943 under the name of tercinin as a possible antimicrobial agent. Although it is categorized as a non-carcinogen, Patulin has been linked, in the last decades, to neurological, gastrointestinal, and immunological adverse effects, mainly causing liver and kidney damages. In this review, the characteristics of and possible human exposure pathways to Patulin are discussed. Various surveillance and toxicity studies on the levels of Patulin in various food products and effects of Patulin on cells and animal models have been documented as well. Importance of epidemiological studies and a summary of the possible toxicity mechanisms are highlighted with a case study. The commonly used control methods as described in the literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry.


Asunto(s)
Patulina/química , Patulina/toxicidad , Animales , Exposición Dietética , Contaminación de Alimentos/análisis , Humanos , Patulina/biosíntesis , Patulina/metabolismo
16.
Anal Chem ; 91(6): 4116-4123, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30793880

RESUMEN

An innovative approach based on a surface functional monomer-directing strategy for the construction of a sensitive and selective molecularly imprinted electrochemical sensor for patulin recognition is described. A patulin imprinted platinum nanoparticle (PtNP)-coated poly(thionine) film was grown on a preformed thionine tailed surface of PtNP-nitrogen-doped graphene (NGE) by electropolymerization, which provided high capacity and fast kinetics to uptake patulin molecules. Thionine acted not only as a functional monomer for molecularly imprinted polymer (MIP), but also as a signal indicator. Enhanced sensitivity was obtained by combining the excellent electric conductivity of PtNPs, NGE, and thionine with multisignal amplification. The designed sensor displayed excellent performance for patulin detection over the range of 0.002-2 ng mL-1 (R2 = 0.995) with a detection limit of 0.001 ng mL-1 for patulin. In addition, the resulting sensor showed good stability and high repeatability and selectivity. Furthermore, the feasibility of its applications has also been demonstrated in the analysis of real samples, providing novel tactics for the rational design of MIP-based electrochemical sensors to detect a growing number of deleterious substances.


Asunto(s)
Cromatografía de Afinidad/métodos , Técnicas Electroquímicas/métodos , Jugos de Frutas y Vegetales/análisis , Impresión Molecular/métodos , Mutágenos/análisis , Patulina/análisis , Fenotiazinas/química , Técnicas Biosensibles , Límite de Detección , Malus/química , Mutágenos/química , Nanopartículas/química , Patulina/química , Patulina/aislamiento & purificación , Vitis/química
17.
Food Chem ; 270: 1-9, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30174021

RESUMEN

Patulin (PAT) is one of the most common toxic contaminants of apple juice, which causes severe food safety issues throughout the apple industry. In order to remove PAT efficiently, a metal-organic framework-based adsorbent (UiO-66(NH2)@Au-Cys) was successfully synthesized and used for PAT removal from juice-pH simulation solution and real apple juice. Batch adsorption experiments were systematically performed to study the adsorption behavior for PAT. The results showed that adsorption process could be well described by the Pseudo-second order model and Freundlich isotherm model. The maximum adsorption capacity (4.38 µg/mg) was 10 times higher than the microbe-based biosorbents. Thermodynamic investigation demonstrated that adsorption process was spontaneous and endothermic. Furthermore, no marked cytotoxicity on NIH 3T3 cell lines was observed when the concentration of the adsorbent was lower than 10 µg/mL. Therefore, UiO-66(NH2)@Au-Cys is a potential adsorbent for PAT removal from apple juice with little quality changes.


Asunto(s)
Manipulación de Alimentos/métodos , Jugos de Frutas y Vegetales/análisis , Malus/química , Patulina/química , Adsorción , Cisteína , Estructuras Metalorgánicas , Patulina/aislamiento & purificación
18.
Toxicon ; 155: 21-26, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312692

RESUMEN

Patulin often contaminates fruits and fruit-base products, which seriously threats the health of consumers. In this study, ozone was used to degrade patulin in aqueous solution, and investigated the cytotoxicity of patulin after ozone detoxification on human hepatic carcinoma cells (HepG2) using MTT assay and apoptosis assay. Patulin was rapidly degraded from 24.59 mg/L to 9.85 mg/L within 180 s by 10.60 mg/L of ozone at a flow rate of 90 mL/min, and reduced by 59.94%. The half maximal inhibitory concentration (IC50) of patulin on HepG2 cells was 9.32 µmol/L after 24 h of exposure, and it showed a dose dependent effect. After 90 s of ozone detoxification, the cell viability of HepG2 cells obviously increased from 42.31% to 93.96%, and the total apoptotic cells significantly reduced from 22.24% to 11.18% after 180 s of ozone treatment. The results clearly show the great potential of ozone in degrading patulin in liquid foods.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Ozono/química , Patulina/química , Patulina/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Inactivación Metabólica/efectos de los fármacos , Concentración 50 Inhibidora , Oxidación-Reducción , Ozono/farmacología , Patulina/farmacocinética
19.
Toxins (Basel) ; 10(9)2018 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149638

RESUMEN

Patulin (PAT) is a major threat to many food products, especially apple and apple products, causing human health risks and economic losses. The aim of this study was to remove PAT from apple juice by using the heat-inactivated (HI) cells and spores of seven Alicyclobacillus strains under controlled conditions. The HI cells and spores of seven strains adsorbed PAT effectively, and the HI cells and spores of Alicyclobacillus acidocaldarius DSM 451 (A51) showed maximum PAT adsorption capacity of up to 12.621 µg/g by HI cells and 11.751 µg/g by HI spores at 30 °C and pH 4.0 for 24 h. Moreover, the PAT adsorption process followed the pseudo-first order kinetic model and the Freundlich isotherm model; thermodynamic parameters revealed that PAT adsorption is a spontaneous exothermic physisorption process. The results also indicated that PAT adsorption is strain-specific. The HI cells and spores of Alicyclobacillus strains are non-cytotoxic, and the bioadsorption of PAT did not affect the quality of the juice. Furthermore, the cell wall surface plays an important role in the adsorption process.


Asunto(s)
Alicyclobacillus , Contaminación de Alimentos/prevención & control , Jugos de Frutas y Vegetales , Malus , Patulina/química , Esporas Bacterianas , Adsorción , Supervivencia Celular , Células Hep G2 , Calor , Humanos
20.
Chem Biol Interact ; 288: 24-31, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29604266

RESUMEN

Patulin (PAT) is a secondary metabolite produced by certain species of Penicillium, Byssochlamys and Aspergillus. It has been shown to induce liver toxicity, but the possible molecular mechanisms are not completely elucidated. In our study, we treated Human Hepatoma G2 (HepG2) cells by 3-methyladenine (3-MA), an autophagosome formation inhibitor, and rapamycin, an autophagosome formation stimulator. The results showed that 3-MA protected the HepG2 cells against PAT cytotoxicity, while rapamycin decreased the cell viability. Thus, autophagy may play an important role in PAT-induced toxicity. To uncover the mechanism by which cells decrease proliferation and activation of autophagy, we found that collapses of mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) level were increased under treatment with PAT. Further, we elucidated that the expression of p-Akt1 and p-MTOR was inhibited during this process. N-acetyl-l-cysteine (NAC), a ROS inhibitor, protected against PAT-induced cytotoxicity, decreased the protein expression of LC3-II, and up-regulated the level of p-Akt1 and p-MTOR. These findings suggested that PAT-induced autophagic cell death was ROS-dependent in HepG2 cells. In conclusion, it is possible that PAT elicited autophagy through ROS-Akt1-MTOR pathway in the HepG2 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Patulina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Antineoplásicos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Patulina/química , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...