Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 983
Filtrar
1.
Bioorg Med Chem Lett ; 105: 129760, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641151

RESUMEN

The naturally occurring bile acid lithocholic acid (LCA) has been a crucial core structure for many non-sugar-containing sialyltranferase (ST) inhibitors documented in literature. With the aim of elucidating the impact of the terminal carboxyl acid substituent of LCA on its ST inhibition, in this present study, we report the (bio)isosteric replacement-based design and synthesis of sulfonate and sulfate analogues of LCA. Among these compounds, the sulfate analogue SPP-002 was found to selectively inhibit N-glycan sialylation by at least an order of magnitude, indicating a substantial improvement in both potency and selectivity when compared to the unmodified parent bile acid. Molecular docking analysis supported the stronger binding of the synthetic analogue in the enzyme active site. Treatment with SPP-002 also hampered the migration, adhesion, and invasion of MDA-MB-231 cells in vitro by suppressing the expression of signaling proteins involved in the cancer metastasis-associated integrin/FAK/paxillin pathway. In totality, these findings offer not only a novel structural scaffold but also valuable insights for the future development of more potent and selective ST inhibitors with potential therapeutic effects against tumor cancer metastasis.


Asunto(s)
Ácido Litocólico , Simulación del Acoplamiento Molecular , Sialiltransferasas , Ácido Litocólico/farmacología , Ácido Litocólico/química , Ácido Litocólico/síntesis química , Ácido Litocólico/análogos & derivados , Humanos , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Sulfatos/química , Sulfatos/farmacología , Sulfatos/síntesis química , Metástasis de la Neoplasia , Ácidos Sulfónicos/farmacología , Ácidos Sulfónicos/química , Ácidos Sulfónicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Adhesión Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Paxillin/metabolismo , Paxillin/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Descubrimiento de Drogas
2.
J Cell Biol ; 223(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466167

RESUMEN

Focal adhesions (FAs) are transmembrane protein assemblies mediating cell-matrix connection. Although protein liquid-liquid phase separation (LLPS) has been tied to the organization and dynamics of FAs, the underlying mechanisms remain unclear. Here, we experimentally tune the LLPS of PXN/Paxillin, an essential scaffold protein of FAs, by utilizing a light-inducible Cry2 system in different cell types. In addition to nucleating FA components, light-triggered PXN LLPS potently activates integrin signaling and subsequently accelerates cell spreading. In contrast to the homotypic interaction-driven LLPS of PXN in vitro, PXN condensates in cells are associated with the plasma membrane and modulated by actomyosin contraction and client proteins of FAs. Interestingly, non-specific weak intermolecular interactions synergize with specific molecular interactions to mediate the multicomponent condensation of PXN and are efficient in promoting FA assembly and integrin signaling. Thus, our data establish an active role of the PXN phase transition into a condensed membrane-associated compartment in promoting the assembly/maturation of FAs.


Asunto(s)
Adhesiones Focales , Paxillin , Separación de Fases , Humanos , Citoesqueleto de Actina , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Paxillin/química , Paxillin/metabolismo
3.
ACS Appl Mater Interfaces ; 16(8): 9944-9955, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354103

RESUMEN

The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.


Asunto(s)
Adhesiones Focales , Mecanotransducción Celular , Paxillin/metabolismo , Vinculina/metabolismo , Adhesiones Focales/metabolismo , Adhesión Celular/fisiología , Polímeros/metabolismo , Fosfoproteínas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo
4.
Zhonghua Zhong Liu Za Zhi ; 46(2): 108-117, 2024 Feb 23.
Artículo en Chino | MEDLINE | ID: mdl-38418184

RESUMEN

Objective: To investigate the role and the mechanism of Ras-associated binding protein23 (RAB23) in the migration and invasion of esophageal squamous cell carcinoma (ESCC) cells. Methods: RAB23 mRNA levels were measured in 16 pairs of ESCC and adjacent normal tissues via real-time polymerase chain reactions. RAB23 mRNA levels in the ESCC and adjacent normal tissues of dataset GSE20347 deposited in the Gene Expression Omnibus (GEO) database were also analyzed. Immunohistochemistry (IHC) was used to detect the RAB23 protein expressions in 106 pairs of ESCC and adjacent normal tissues, as well as in the lymph glands and primary tumor tissues of 33 patients with positive lymph nodes and 10 patients with negative lymph nodes. Endogenous RAB23 expression was transiently depleted using siRNAs (si-NC, si-RAB23-1, and si-RAB23-9) or stably reduced using shRNAs (sh-NC and sh-RAB23) in ESCC KYSE30 and KYSE150 cells, and the knockdown efficiency was tested using Western blot assays. Cell counting kit-8 assays and mouse xenograft models were used to test the proliferation of ESCC cells. Transwell assays and tail vein-pulmonary metastasis models in immunocompromised mice were used to examine the migration and invasion of ESCC cells. Cell adhesion assays were used to test the adhesion of ESCC cells. RNA-seq assays were used to analyze how RAB23 knockdown influenced the expression profile of ESCC cells and the implicated signal pathways were confirmed using Western blot assays. Results: The RAB23 mRNA expression in 16 cases of ESCC tissues was 0.009 7±0.008 9, which was markedly higher than that in adjacent normal tissues (0.003 2±0.003 7, P=0.006). GEO analysis on RAB23 expressions in ESCC and adjacent normal tissues showed that the RAB23 mRNA level in ESCC tissues (4.30±0.25) was remarkably increased compared with their normal counterparts (4.10±0.17, P=0.037). Among the 106 pairs of ESCC and tumor-adjacent normal tissues, 51 cases exhibited low expression of RAB23 and 55 cases showed high expression of RAB23, whereas in the paired tumor-adjacent normal tissues 82 cases were stained weakly and 24 strongly for RAB23 protein. These results indicated that RAB23 expression was markedly increased in ESCC tissues (P<0.001). Additionally, only 1 out of 33 primary ESCC tissues with positive lymph nodes showed low RAB23 protein expression. On the other hand, 7 samples of primary ESCC tissues with negative lymph nodes were stained strongly for RAB23 while its level in the other 3 samples was weak. These results showed that RAB23 expression was remarkably increased in primary ESCC tissues with positive lymph nodes compared with those with negative lymph nodes (P=0.024). Further tests showed that 32 out of 33 positive lymph nodes were stained strongly for RAB23, whereas no negative lymph nodes (n=10) exhibited high expression of RAB23 (P<0.001). Both transient and stable knockdown of endogenous RAB23 expression failed to cause detectable changes in the proliferation of KYSE30 cells in vitro and in vivo, but attenuated the migration and invasion of KYSE30 cells as well as the invasion of KYSE150 cells. RAB23 knockdown was found to significantly decrease the number of adhesive KYSE30 cells in the sh-RAB23 group (313.75±89.34) compared with control cells in the sh-NC group (1 030.75±134.29, P<0.001). RAB23 knockdown was also found to significantly decrease the number of adhesive KYSE150 cells in the sh-RAB23 group (710.5±31.74) compared with the number of control cells in the sh-NC group (1 005.75±61.09, P<0.001). RNA-seq assays demonstrated that RAB23 knockdown using two siRNAs targeting RAB23 mRNA markedly impaired focal adhesion-related signal pathways, and decreased the levels of phosphorylated FAK (p-FAK) and phosphorylated paxillin (p-paxillin) in KYSE30 and KYSE150 cells. Conclusions: Significantly increased RAB23 in ESCC tissues positively correlates with lymph node metastasis. Depleted RAB23 expression attenuates focal adhesion-related signal pathways, thus impairing the invasion, metastasis, and adhesion of ESCC cells.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Paxillin/genética , Paxillin/metabolismo , Proteínas Portadoras/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Línea Celular Tumoral , Movimiento Celular , Invasividad Neoplásica/genética , Proliferación Celular , ARN Interferente Pequeño/genética , ARN Mensajero , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
5.
Anticancer Res ; 44(2): 511-520, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307570

RESUMEN

BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common cancer worldwide, and metastasis is strongly associated with poor prognosis in patients with CRC. We have previously found that the expression and phosphorylation of paxillin (PXN) play an important role in the metastatic potential of breast cancer. This study examined the potential role of PXN in CRC metastasis. MATERIALS AND METHODS: Resected tumor specimens from 92 patients with CRC were subjected to immunohistochemical analysis of PXN levels. Three human CRC cell lines, HCT116, LoVo, and SW480 were used for scratch and transwell invasion assays to examine the effects of PXN over-expression. RNA sequencing was performed to obtain the expression profiles under PXN over-expression. RESULTS: High levels of PXN were significantly correlated with advanced stage, higher carcinoembryonic antigen and carbohydrate antigen 19-9 levels, and poorer overall survival. The migration ability of CRC cells was enhanced by exogenous PXN over-expression, but this enhancement was not observed in cells harboring exogenously mutated PXN at Tyr31 or Tyr88 phosphorylation sites. In PXN-over-expressing cells, TNF-α signaling via NF-[Formula: see text]B was positively enriched. CONCLUSION: PXN expression and phosphorylation at Tyr31 or Tyr88 may influence the migration and invasion of CRC cells. PXN expression and phosphorylation at Tyr31 or Tyr88 are promising targets for evaluating prognosis and treating CRC.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Paxillin , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Metástasis de la Neoplasia , Paxillin/genética , Paxillin/metabolismo , Fosforilación , Pronóstico
6.
Physiol Rep ; 12(1): e15897, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163671

RESUMEN

SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.


Asunto(s)
Nefrosis , Podocitos , Ratones , Animales , Podocitos/metabolismo , Paxillin/metabolismo , Vinculina/metabolismo , Talina/genética , Talina/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Doxorrubicina/toxicidad , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119628, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37949303

RESUMEN

Endogenous electric fields (EFs) have been demonstrated to facilitate wound healing by directing the migration of epidermal cells. Despite the identification of numerous molecules and signaling pathways that are crucial for the directional migration of keratinocytes under EFs, the underlying molecular mechanisms remain undefined. Previous studies have indicated that microtubule (MT) acetylation is linked to cell migration, while Paxillin exerts a significant influence on cell motility. Therefore, we postulated that Paxillin could enhance EF-induced directional migration of keratinocytes by modulating MT acetylation. In the present study, we observed that EFs (200 mV/mm) induced migration of human immortalized epidermal cells (HaCaT) towards the anode, while upregulating Paxillin, downregulating HDAC6, and increasing the level of microtubule acetylation. Our findings suggested that Paxillin plays a pivotal role in inhibiting HDAC6-mediated microtubule acetylation during directional migration under EF regulation. Conversely, downregulation of Paxillin decreased microtubule acetylation and electrotaxis of epidermal cells by promoting HDAC6 expression, and this effect could be reversed by the addition of tubacin, an HDAC6-specific inhibitor. Furthermore, we observed that EFs also mediated the polarization of Paxillin and acetylated α-tubulin, which is critical for directional migration. In conclusion, our study revealed that MT acetylation in EF-guided keratinocyte migration is regulated by the Paxillin/HDAC6 signaling pathway, providing a novel theoretical foundation for the molecular mechanism of EF-guided directional migration of keratinocytes.


Asunto(s)
Queratinocitos , Microtúbulos , Humanos , Paxillin/metabolismo , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Acetilación , Microtúbulos/metabolismo , Queratinocitos/metabolismo
8.
Hum Cell ; 37(1): 181-192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37787969

RESUMEN

Stem cell therapy is a promising treatment in regenerative medicine. Human adipose-derived stem/stromal cells (hASCs), a type of mesenchymal stem cell, are easy to harvest. In plastic and aesthetic surgery, hASC may be applied in the treatment of fat grafting, wound healing, and scar remodeling. Platelet-rich plasma (PRP) contains various growth factors, including platelet-derived growth factor (PDGF), which accelerates wound healing. We previously reported that PRP promotes the proliferation of hASC via multiple signaling pathways, and we evaluated the effect of PRP on the stimulation of hASC adhesion and migration, leading to the proliferation of these cells. When hASCs were treated with PRP, AKT, ERK1/2, paxillin and RhoA were rapidly activated. PRP treatment led to the formation of F-actin stress fibers. Strong signals for integrin ß1, paxillin and RhoA at the cell periphery of RPR-treated cells indicated focal adhesion. PRP promoted cell adhesion and movement of hASC, compared with the control group. Imatinib, an inhibitor of the PDGF receptor tyrosine kinase, inhibited the promotion of PRP-dependent cell migration. PDGF treatment of hASCs also stimulated cell adhesion and migration but to a lesser extent than PRP treatment. PRP promoted the adhesion and the migration of hASC, mediated by the activation of AKT in the integrin signaling pathway. PRP treatment was more effective than PDGF treatment in enhancing cell migration. Thus, the ability of PRPs to promote migration of hASC to enhance cell growth is evident.


Asunto(s)
Células Madre Mesenquimatosas , Plasma Rico en Plaquetas , Humanos , Paxillin/metabolismo , Adhesión Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Plasma Rico en Plaquetas/metabolismo
9.
J Orthop Res ; 42(5): 985-992, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38044475

RESUMEN

Lidocaine is the most frequently applied local infiltration anesthetic agent for treating tendinopathies. However, studies have discovered lidocaine to negatively affect tendon healing. In the current study, the molecular mechanisms and effects of lidocaine on tenocyte migration were evaluated. We treated tenocytes intrinsic to the Achilles tendons of Sprague-Dawley rats with lidocaine. The migration ability of cells was analyzed using electric cell-substrate impedance sensing (ECIS) and scratch wound assay. We then used a microscope to evaluate the cell spread. We assessed filamentous actin (F-actin) cytoskeleton formation through immunofluorescence staining. In addition, we used Western blot analysis to analyze the expression of phospho-focal adhesion kinase (FAK), FAK, phospho-paxillin, paxillin, and F-actin. We discovered that lidocaine had an inhibitory effect on the migration of tenocytes in the scratch wound assay and on the ECIS chip. Lidocaine treatment suppressed cell spreading and changed the cell morphology and F-actin distribution. Lidocaine reduced F-actin formation in the tenocyte during cell spreading; furthermore, it inhibited phospho-FAK, F-actin, and phospho-paxillin expression in the tenocytes. Our study revealed that lidocaine inhibits the spread and migration of tenocytes. The molecular mechanism potentially underlying this effect is downregulation of F-actin, phospho-FAK, and phospho-paxillin expression when cells are treated with lidocaine.


Asunto(s)
Tendón Calcáneo , Actinas , Ratas , Animales , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Paxillin/metabolismo , Paxillin/farmacología , Actinas/metabolismo , Fosforilación , Tenocitos/metabolismo , Lidocaína/farmacología , Movimiento Celular , Ratas Sprague-Dawley , Adhesión Celular
10.
Environ Toxicol ; 39(4): 2077-2085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38100242

RESUMEN

Colorectal cancer (CRC) exhibits highly metastatic potential even in the early stages of tumor progression. Gallic acid (GA), a common phenolic compound in plants, is known to possess potent antioxidant and anticancer activities, thereby inducing cell death or cell cycle arrest. However, whether GA reduces the invasiveness of CRC cells without inducing cell death remains unclear. Herein, we aimed to investigate the antimetastatic activity of low-dose GA on CRC cells and determine its underlying mechanism. Cell viability and tumorigenicity were analyzed by MTS, cell adhesion, and colony formation assay. Invasiveness was demonstrated using migration and invasion assays. Changes in protein phosphorylation and expression were assessed by Western blot. The involvement of microRNAs was validated by microarray analysis and anti-miR antagonist. Our findings showed that lower dose of GA (≤100 µM) did not affect cell viability but reduced the capabilities of colony formation, cell adhesion, and invasiveness in CRC cells. Cellularly, GA downregulated the cellular level of integrin αV/ß3, talin-1, and tensin and diminished the phosphorylated FAK, paxillin, Src, and AKT in DLD-1 cells. Microarray results revealed that GA increased miR-1247-3p expression, and pretreatment of anti-miR antagonist against miR-1247-3p restored the GA-reduced integrin αV/ß3 and the GA-inhibited paxillin activation in DLD-1 cells. Consistently, the in vivo xenograft model showed that GA administration inhibited tumor growth and liver metastasis derived from DLD-1 cells. Collectively, our findings indicated that GA inhibited the metastatic capabilities of CRC cells, which may result from the suppression of integrin/FAK axis mediated by miR1247-3p.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Paxillin/genética , Paxillin/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ácido Gálico/farmacología , Antagomirs , Integrina alfaV/metabolismo , Línea Celular Tumoral , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/metabolismo , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
11.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139355

RESUMEN

Primary cilia play a significant role in influencing cell fate, including apoptosis in multiple cell types. In the lesional epidermis of vitiligo patients, a reduced number of ciliated cells was observed. Our study also revealed a downregulation of oral-facial digital syndrome type 1 (OFD1) in the affected skin of vitiligo patients. However, it remains unknown whether primary cilia are involved in the control of melanocyte apoptosis. While both intraflagellar transport 88 (IFT88) and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) are associated with ciliogenesis in melanocytes, only the knockdown of OFD1, but not IFT88 and RPGRIP1L, resulted in increased melanocyte apoptosis. OFD1 knockdown led to a decrease in the expression of proteins involved in cell-extracellular matrix (ECM) interactions, including paxillin. The OFD1 amino acid residues 601-1012 interacted with paxillin, while the amino acid residues 1-601 were associated with ciliogenesis, suggesting that the OFD1 domains responsible for paxillin binding are distinct from those involved in ciliogenesis. OFD1 knockdown, but not IFT88 knockdown, inhibited melanocyte adhesion to the ECM, a defect that was restored by paxillin overexpression. In summary, our findings indicate that the downregulation of OFD1 induces melanocyte apoptosis, independent of any impairment in ciliogenesis, by reducing melanocyte adhesion to the ECM via paxillin.


Asunto(s)
Adhesión Celular , Melanocitos , Paxillin , Vitíligo , Humanos , Matriz Extracelular/metabolismo , Melanocitos/metabolismo , Paxillin/genética , Paxillin/metabolismo , Proteínas/metabolismo , Vitíligo/metabolismo
12.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37958964

RESUMEN

Metastasis is the leading cause of death in breast cancer patients due to the lack of effective therapies. Elevated levels of paxillin expression have been observed in various cancer types, with tyrosine phosphorylation shown to play a critical role in driving cancer cell migration. However, the specific impact of the distinct tyrosine phosphorylation events of paxillin in the progression of breast cancer remains to be fully elucidated. Here, we found that paxillin overexpression in breast cancer tissue is associated with a patient's poor prognosis. Paxillin knockdown inhibited the migration and invasion of breast cancer cells. Furthermore, the phosphorylation of paxillin tyrosine residue 31 (Tyr31) was significantly increased upon the TGF-ß1-induced migration and invasion of breast cancer cells. Inhibiting Fyn activity or silencing Fyn decreases paxillin Tyr31 phosphorylation. The wild-type and constitutively active Fyn directly phosphorylate paxillin Tyr31 in an in vitro system, indicating that Fyn directly phosphorylates paxillin Tyr31. Additionally, the non-phosphorylatable mutant of paxillin at Tyr31 reduces actin stress fiber formation, migration, and invasion of breast cancer cells. Taken together, our results provide direct evidence that Fyn-mediated paxillin Tyr31 phosphorylation is required for breast cancer migration and invasion, suggesting that targeting paxillin Tyr31 phosphorylation could be a potential therapeutic strategy for mitigating breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Movimiento Celular , Paxillin/metabolismo , Fosforilación , Tirosina/metabolismo
13.
EMBO Rep ; 24(11): e56850, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846507

RESUMEN

The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Paxillin/metabolismo , Mecanotransducción Celular , Fosforilación , Movimiento Celular , Serina/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
14.
J Cell Sci ; 136(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37667902

RESUMEN

Liver injury leads to fibrosis and cirrhosis. The primary mechanism underlying the fibrogenic response is the activation of hepatic stellate cells (HSCs), which are 'quiescent' in normal liver but become 'activated' after injury by transdifferentiating into extracellular matrix (ECM)-secreting myofibroblasts. Given that integrins are important in HSC activation and fibrogenesis, we hypothesized that paxillin, a key downstream effector in integrin signaling, might be critical in the fibrosis pathway. Using a cell-culture-based model of HSC activation and in vivo models of liver injury, we found that paxillin is upregulated in activated HSCs and fibrotic livers. Overexpression of paxillin (both in vitro and in vivo) led to increased ECM protein expression, and depletion of paxillin in a novel conditional mouse injury model reduced fibrosis. The mechanism by which paxillin mediated this effect appeared to be through the actin cytoskeleton, which signals to the ERK pathway and induces ECM protein production. These data highlight a novel role for paxillin in HSC biology and fibrosis.


Asunto(s)
Actinas , Células Estrelladas Hepáticas , Ratones , Animales , Paxillin/genética , Paxillin/metabolismo , Actinas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Polimerizacion , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/metabolismo , Fibrosis , Modelos Animales de Enfermedad
15.
Int J Oral Sci ; 15(1): 32, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532712

RESUMEN

Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2ß1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2ß1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.


Asunto(s)
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de la Boca , Humanos , Paxillin/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Carcinoma de Células Escamosas/patología , Transición Epitelial-Mesenquimal , Integrina alfa2beta1/metabolismo , Neoplasias de la Boca/patología , Colágeno/metabolismo , Fibroblastos , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
16.
Biol Reprod ; 109(5): 669-683, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552051

RESUMEN

Paxillin is an intracellular adaptor protein involved in focal adhesions, cell response to stress, steroid signaling, and apoptosis in reproductive tissues. To investigate the role of paxillin in granulosa cells, we created a granulosa-specific paxillin knockout mouse model using Cre recombinase driven by the Anti-Müllerian hormone receptor 2 gene promoter. Female granulosa-specific paxillin knockout mice demonstrated increased fertility in later reproductive age, resulting in higher number of offspring when bred continuously up to 26 weeks of age. This was not due to increased numbers of estrous cycles, ovulated oocytes per cycle, or pups per litter, but this was due to shorter time to pregnancy and increased number of litters in the granulosa-specific paxillin knockout mice. The number of ovarian follicles was not significantly affected by the knockout at 30 weeks of age. Granulosa-specific paxillin knockout mice had slightly altered estrous cycles but no difference in circulating reproductive hormone levels. Knockout of paxillin using clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR-Cas9) in human granulosa-derived immortalized KGN cells did not affect cell proliferation or migration. However, in cultured primary mouse granulosa cells, paxillin knockout reduced cell death under basal culture conditions. We conclude that paxillin knockout in granulosa cells increases female fecundity in older reproductive age mice, possibly by reducing granulosa cell death. This study implicates paxillin and its signaling network as potential granulosa cell targets in the management of age-related subfertility.


Asunto(s)
Células de la Granulosa , Folículo Ovárico , Embarazo , Femenino , Ratones , Humanos , Animales , Anciano , Lactante , Paxillin/genética , Paxillin/metabolismo , Ratones Noqueados , Folículo Ovárico/metabolismo , Células de la Granulosa/metabolismo , Fertilidad/genética
17.
Int Immunopharmacol ; 123: 110793, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582311

RESUMEN

ß-defensin-1 (BD-1) is a rich source of disulfide bonds and antibacterial peptides that exhibit direct bactericidal function. The expression of BD-1 is primarily induced by external stimulation and is known to correlate with TLR-mediated inflammation, suggesting its association with innate immune responses. Equine ß-defensin-1 (eBD-1) belongs to the BD-1 family. Our previous study demonstrated that eBD-1 enhances cytokine expression and promotes macrophage phagocytosis of S. aureus, although the underlying mechanism remains unknown. In this study, we utilized a PI-3K inhibitor (PKI-402) to treat eBD-1 -treated S. aureus-infected macrophages in vitro. Our results revealed that PKI-402 decreased the expression of eBD-1-promoted TNF-α, IL-6, CXCL10, CD40, RANTES, and p65 mRNA. To further investigate the relationship between eBD-1 and phagocytosis, we examined the expression of paxillin and FcγRIII (CD16 receptor) using western blot and immunofluorescence techniques. Our findings demonstrated that eBD-1 enhanced CD16 and paxillin expression in S. aureus -infected macrophages. Considering the correlation between paxillin expression and focal adhesion kinase (FAK), we transfected FAK siRNA into macrophages and evaluated paxillin expression using western blot analysis. Additionally, we quantified the number of S. aureus phagocytosed by macrophages. The results indicated a reduction in both paxillin expression and the number of S. aureus phagocytosed by macrophages upon FAK siRNA treatment. Our study showed the eBD-1 promotes cytokine mRNA expression in S. aureus-infected macrophages regulated by PI-3K-NF-κB pathway, and it increases macrophage phagocytosis of S. aureus associated with the FAK-paxillin signaling pathway.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , beta-Defensinas , Ratones , Animales , Caballos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Paxillin/metabolismo , Staphylococcus aureus , Fosfatidilinositol 3-Quinasas/metabolismo , Citocinas/metabolismo , Monocitos/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo , Macrófagos/metabolismo , Fagocitosis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Fosforilación
18.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607005

RESUMEN

Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/metabolismo , Paxillin/genética , Paxillin/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Fenotipo , Línea Celular Tumoral , Neoplasias Pancreáticas
19.
Proc Natl Acad Sci U S A ; 120(31): e2301881120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494400

RESUMEN

Integrin adhesion complexes are essential membrane-associated cellular compartments for metazoan life. The formation of initial integrin adhesion complexes is a dynamic process involving focal adhesion proteins assembled at the integrin cytoplasmic tails and the inner leaflet of the plasma membrane. The weak multivalent protein interactions within the complex and with the plasma membrane suggest that liquid-liquid phase separation could play a role in the nascent adhesion assembly. Here, we report that solid-supported lipid membranes supplemented with phosphoinositides induce the phase separation of minimal integrin adhesion condensates composed of integrin ß1 tails, kindlin, talin, paxillin, and FAK at physiological ionic strengths and protein concentrations. We show that the presence of phosphoinositides is key to enriching kindlin and talin on the lipid membrane, which is necessary to further induce the phase separation of paxillin and FAK at the membrane. Our data demonstrate that lipid membrane surfaces set the local solvent conditions for steering the membrane-localized phase separation even in a regime where no condensate formation of proteins occurs in bulk solution.


Asunto(s)
Integrinas , Talina , Animales , Integrinas/metabolismo , Paxillin/metabolismo , Talina/metabolismo , Membrana Celular/metabolismo , Integrina beta1/metabolismo , Fosfatidilinositoles , Adhesión Celular/fisiología
20.
Cell Biochem Funct ; 41(5): 599-608, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37232085

RESUMEN

Among gynecological malignancies, ovarian cancer has the highest mortality rate and has sparked widespread interest in studying the mechanisms underlying ovarian cancer development. Based on TCGA and GEO databases, we investigated the highly expressed autophagy-related genes that determine patient prognosis using limma differential expression and Kaplan-Meier survival analyses. The biological processes associated with these genes were also predicted using GO/KEGG functional enrichment analysis. CCK-8, cell scratch, and transwell assays were used to investigate the effects of PXN on the proliferation, migration, and invasion abilities of ovarian cancer cells. Transmission electron microscopy was used to observe the autophagosomes. The expression of autophagy proteins and the PI3K/Akt/mTOR and p110ß/Vps34/Beclin1 pathway proteins in ovarian cancer cells was detected using western blot; autophagy protein expression was further detected and localized using cellular immunofluorescence. A total of 724 autophagy-related genes were found to be overexpressed in ovarian -cancer tissues, with high expression of PEX3, PXN, and RB1 associated with poor prognosis in patients (p < .05). PXN activates and regulates signaling pathways related to cellular autophagy, ubiquitination, lysosomes, PI3K-Akt, and mTOR. Autophagosomes were observed in all cell groups. The increase in PXN gene expression promoted the proliferation, migration, and invasion of ovarian cancer cells, increased the expression of SQSTM1/p62 protein, decreased LC3II/LC3Ⅰ, inhibited the phosphorylation of Akt and mTOR proteins, and suppressed the expression of PI3K(p110ß) and Beclin1 proteins. The decrease in PXN expression also confirmed these changes. Thus, PXN is highly expressed during ovarian cancer and is associated with poor patient prognosis. It may promote ovarian cancer cell proliferation, migration, and invasion by inhibiting cellular autophagy via suppression of the p110ß/Vps34/Beclin1 pathway.


Asunto(s)
Neoplasias Ováricas , Proteínas Proto-Oncogénicas c-akt , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Beclina-1/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Neoplasias Ováricas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Paxillin/metabolismo , Paxillin/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...