Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2968, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194050

RESUMEN

Salicornia europaea is among the most salt-tolerant of plants, and is widely distributed in non-tropical regions. Here, we investigated whether maternal habitats can influence different responses in physiology and anatomy depending on environmental conditions. We studied the influence of maternal habitat on S. europaea cell anatomy, pectin content, biochemical and enzymatic modifications under six different salinity treatments of a natural-high-saline habitat (~ 1000 mM) (Ciechocinek [Cie]) and an anthropogenic-lower-saline habitat (~ 550 mM) (Inowroclaw [Inw]). The Inw population showed the highest cell area and roundness of stem water storing cells at high salinity and had the maximum proline, carotenoid, protein, catalase activity within salt treatments, and a maximum high and low methyl esterified homogalacturonan content. The Cie population had the highest hydrogen peroxide and peroxidase activity along with the salinity gradient. Gene expression analysis of SeSOS1 and SeNHX1 evidenced the differences between the studied populations and suggested the important role of Na+ sequestration into the vacuoles. Our results suggest that the higher salt tolerance of Inw may be derived from a less stressed maternal salinity that provides a better adaptive plasticity of S. europaea. Thus, the influence of the maternal environment may provide physiological and anatomical modifications of local populations.


Asunto(s)
Chenopodiaceae , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Tolerancia a la Sal , Chenopodiaceae/anatomía & histología , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Pectinas/genética , Pectinas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad
2.
Metab Eng ; 69: 1-14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648971

RESUMEN

Pectin-rich plant biomass residues represent underutilized feedstocks for industrial biotechnology. The conversion of the oxidized monomer d-galacturonic acid (d-GalUA) to highly reduced fermentation products such as alcohols is impossible due to the lack of electrons. The reduced compound glycerol has therefore been considered an optimal co-substrate, and a cell factory able to efficiently co-ferment these two carbon sources is in demand. Here, we inserted the fungal d-GalUA pathway in a strain of the yeast S. cerevisiae previously equipped with an NAD-dependent glycerol catabolic pathway. The constructed strain was able to consume d-GalUA with the highest reported maximum specific rate of 0.23 g gCDW-1 h-1 in synthetic minimal medium when glycerol was added. By means of a 13C isotope-labelling analysis, carbon from both substrates was shown to end up in pyruvate. The study delivers the proof of concept for a co-fermentation of the two 'respiratory' carbon sources to ethanol and demonstrates a fast and complete consumption of d-GalUA in crude sugar beet pulp hydrolysate under aerobic conditions. The future challenge will be to achieve co-fermentation under industrial, quasi-anaerobic conditions.


Asunto(s)
Glicerol , Saccharomyces cerevisiae , Fermentación , Glicerol/metabolismo , Ácidos Hexurónicos , Pectinas/genética , Pectinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Genes (Basel) ; 12(7)2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206830

RESUMEN

Floral patterning is a complex task. Various organs and tissues must be formed to fulfill reproductive functions. Flower development has been studied, mainly looking for master regulators. However, downstream changes such as the cell wall composition are relevant since they allow cells to divide, differentiate, and grow. In this review, we focus on the main components of the primary cell wall-cellulose, hemicellulose, and pectins-to describe how enzymes involved in the biosynthesis, modifications, and degradation of cell wall components are related to the formation of the floral organs. Additionally, internal and external stimuli participate in the genetic regulation that modulates the activity of cell wall remodeling proteins.


Asunto(s)
Pared Celular/genética , Flores/genética , Desarrollo de la Planta/genética , Reproducción/genética , Pared Celular/metabolismo , Celulosa/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Pectinas/genética , Polisacáridos/genética
4.
Int J Mol Sci ; 22(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063632

RESUMEN

Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.


Asunto(s)
Elementos Transponibles de ADN/genética , Pectobacterium/genética , Enfermedades de las Plantas/genética , Solanum tuberosum/genética , Resistencia a la Enfermedad/genética , Regulación Bacteriana de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Pectinas/química , Pectinas/genética , Pectobacterium/patogenicidad , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Temperatura , Transposasas/genética
5.
PLoS One ; 16(5): e0251922, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34015001

RESUMEN

Angiosperm cell adhesion is dependent on interactions between pectin polysaccharides which make up a significant portion of the plant cell wall. Cell adhesion in Arabidopsis may also be regulated through a pectin-related signaling cascade mediated by a putative O-fucosyltransferase ESMERALDA1 (ESMD1), and the Epidermal Growth Factor (EGF) domains of the pectin binding Wall associated Kinases (WAKs) are a primary candidate substrate for ESMD1 activity. Genetic interactions between WAKs and ESMD1 were examined using a dominant hyperactive allele of WAK2, WAK2cTAP, and a mutant of the putative O-fucosyltransferase ESMD1. WAK2cTAP expression results in a dwarf phenotype and activation of the stress response and reactive oxygen species (ROS) production, while esmd1 is a suppressor of a pectin deficiency induced loss of adhesion. Here we find that esmd1 suppresses the WAK2cTAP dwarf and stress response phenotype, including ROS accumulation and gene expression. Additional analysis suggests that mutations of the potential WAK EGF O-fucosylation site also abate the WAK2cTAP phenotype, yet only evidence for an N-linked but not O-linked sugar addition can be found. Moreover, a WAK locus deletion allele has no effect on the ability of esmd1 to suppress an adhesion deficiency, indicating WAKs and their modification are not a required component of the potential ESMD1 signaling mechanism involved in the control of cell adhesion. The WAK locus deletion does however affect the induction of ROS but not the transcriptional response induced by the elicitors Flagellin, Chitin and oligogalacturonides (OGs).


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Adhesión Celular/genética , Factor de Crecimiento Epidérmico/genética , Proteínas Serina-Treonina Quinasas/genética , Alelos , Pared Celular/genética , Quitina/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Pectinas/genética , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética
6.
Mol Biol Evol ; 38(7): 2946-2957, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33769517

RESUMEN

Dissecting the genetic mechanisms underlying dioecy (i.e., separate female and male individuals) is critical for understanding the evolution of this pervasive reproductive strategy. Nonetheless, the genetic basis of sex determination remains unclear in many cases, especially in systems where dioecy has arisen recently. Within the economically important plant genus Solanum (∼2,000 species), dioecy is thought to have evolved independently at least 4 times across roughly 20 species. Here, we generate the first genome sequence of a dioecious Solanum and use it to ascertain the genetic basis of sex determination in this species. We de novo assembled and annotated the genome of Solanum appendiculatum (assembly size: ∼750 Mb scaffold N50: 0.92 Mb; ∼35,000 genes), identified sex-specific sequences and their locations in the genome, and inferred that males in this species are the heterogametic sex. We also analyzed gene expression patterns in floral tissues of males and females, finding approximately 100 genes that are differentially expressed between the sexes. These analyses, together with observed patterns of gene-family evolution specific to S. appendiculatum, consistently implicate a suite of genes from the regulatory network controlling pectin degradation and modification in the expression of sex. Furthermore, the genome of a species with a relatively young sex-determination system provides the foundational resources for future studies on the independent evolution of dioecy in this clade.


Asunto(s)
Evolución Biológica , Genoma de Planta , Procesos de Determinación del Sexo/genética , Solanum/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Pectinas/genética
7.
Int J Biol Macromol ; 165(Pt A): 93-99, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32980416

RESUMEN

A 91 kDa heteropolysaccharide (F2) was isolated from Mangifera indica fruit via extraction with H2O, purification by C2H5OH, starch removal and ion exchange chromatography. This polymer was made up mostly of Ara, Gal, Glc, Rha, Xyl, and GalA in a 37: 29: 9:3:2:19 molar proportion. It inherited a small backbone containing GalpA and Rhap units substituted with very large side chains containing differently linked Ara and Gal units plus esterified gallic acid (GA) residue. Several enzymes generated oligosaccharides including (i) Ara2-10Ac6-22, (ii) Gal1-8Ac5-26 and (iii) GA1Gal1Ac7 were characterized. This polysaccharide, which showed dose dependent antioxidant activity, exhibited synergism with gallic acid, and formed a complex (K = 1.2 × 106 M-1) with ß-lactoglobulin. Accordingly, H2O treatment produces a polysaccharide with desired biochemical properties; this could be effective in designing innovative functional food with flexible makeup.


Asunto(s)
Antioxidantes/química , Lactoglobulinas/química , Mangifera/química , Polisacáridos/química , Antioxidantes/aislamiento & purificación , Secuencia de Carbohidratos/genética , Carbohidratos de la Dieta/aislamiento & purificación , Frutas/química , Frutas/genética , Humanos , Lactoglobulinas/genética , Mangifera/genética , Monosacáridos/química , Monosacáridos/genética , Monosacáridos/aislamiento & purificación , Oligosacáridos/química , Oligosacáridos/genética , Oligosacáridos/aislamiento & purificación , Pectinas/química , Pectinas/genética , Polisacáridos/genética , Polisacáridos/aislamiento & purificación
8.
Plant Cell ; 32(11): 3576-3597, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32883711

RESUMEN

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Celulosa/biosíntesis , Metiltransferasas/metabolismo , Mutación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Adhesión Celular/genética , Pared Celular/genética , Celulosa/genética , Dinitrobencenos/farmacología , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Metiltransferasas/genética , Microtúbulos/metabolismo , Pectinas/biosíntesis , Pectinas/genética , Pectinas/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Sulfanilamidas/farmacología , Ácidos Urónicos/metabolismo
9.
Plant Cell ; 32(10): 3188-3205, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32753430

RESUMEN

Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.


Asunto(s)
Frutas/citología , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Solanum lycopersicum/citología , Sistemas CRISPR-Cas , Ciclo Celular/genética , Diferenciación Celular , Tamaño de la Célula , Pared Celular/genética , Pared Celular/metabolismo , Endorreduplicación , Frutas/genética , Frutas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Edición Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutación , Pectinas/genética , Pectinas/metabolismo , Fenotipo , Células Vegetales , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Ploidias
10.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650624

RESUMEN

Although cell wall dynamics, particularly modification of homogalacturonan (HGA, a major component of pectin) during pollen tube growth, have been extensively studied in dicot plants, little is known about how modification of the pollen tube cell wall regulates growth in monocot plants. In this study, we assessed the role of HGA modification during elongation of the rice pollen tube by adding a pectin methylesterase (PME) enzyme or a PME-inhibiting catechin extract (Polyphenon 60) to in vitro germination medium. Both treatments led to a severe decrease in the pollen germination rate and elongation. Furthermore, using monoclonal antibodies toward methyl-esterified and de-esterified HGA epitopes, it was found that exogenous treatment of PME and Polyphenon 60 resulted in the disruption of the distribution patterns of low- and high-methylesterified pectins upon pollen germination and during pollen tube elongation. Eleven PMEs and 13 PME inhibitors (PMEIs) were identified by publicly available transcriptome datasets and their specific expression was validated by qRT-PCR. Enzyme activity assays and subcellular localization using a heterologous expression system in tobacco leaves demonstrated that some of the pollen-specific PMEs and PMEIs possessed distinct enzymatic activities and targeted either the cell wall or other compartments. Taken together, our findings are the first line of evidence showing the essentiality of HGA methyl-esterification status during the germination and elongation of pollen tubes in rice, which is primarily governed by the fine-tuning of PME and PMEI activities.


Asunto(s)
Oryza/genética , Pectinas/genética , Proteínas de Plantas/genética , Tubo Polínico/genética , Hidrolasas de Éster Carboxílico/genética , Pared Celular/efectos de los fármacos , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Germinación/efectos de los fármacos , Germinación/genética , Oryza/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Tubo Polínico/efectos de los fármacos , Polifenoles/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
11.
Gene ; 741: 144522, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32145329

RESUMEN

Virus-induced gene silencing (VIGS) is a transient based reverse genetic tool used to elucidate the function of novel gene in N. benthamiana. In current study, 14 UDP-D-glucuronate 4-epimerase (GAE) family members were identified and their gene structure, phylogeny and expression pattern were analyzed. VIGS system was optimized for the functional characterization of NbGAE6 homologous genes in N. benthamiana. Whilst the GAE family is well-known for the interconversion of UDP-D-GlcA and UDP-D-GalA during pectin synthesis. Our results revealed that the downregulation of these genes significantly reduced the amount of GalA in the homogalacturunan which is the major component of pectin found in primary cell wall. Biphenyl assay and high performance liquid chromatography analysis (HPLC) depicted that the level of 'GalA' monosaccharide reduced to 40-51% in VIGS plants as compared to the wild type plants. Moreover, qRT-PCR also confirmed the downregulation of the NbGAE6 mRNA in VIGS plants. In all, this is the first comprehensive study of the optimization of VIGS system for the provision of rapid silencing of GAE family members in N. benthamiana, eliminating the need of stable transformants.


Asunto(s)
Proteínas de Arabidopsis/genética , Carbohidrato Epimerasas/genética , Pared Celular/metabolismo , Nicotiana/genética , Pectinas/genética , Arabidopsis/genética , Pared Celular/genética , Pared Celular/virología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Vectores Genéticos/genética , Monosacáridos/metabolismo , Pectinas/biosíntesis , Péptidos , Virus de Plantas/genética , ARN Mensajero/genética , Nicotiana/virología
12.
Biochem J ; 477(2): 341-356, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31967651

RESUMEN

Plant polysaccharides (cellulose, hemicellulose, pectin, starch) are either direct (i.e. leaf starch) or indirect products of photosynthesis, and they belong to the most abundant organic compounds in nature. Although each of these polymers is made by a specific enzymatic machinery, frequently in different cell locations, details of their synthesis share certain common features. Thus, the production of these polysaccharides is preceded by the formation of nucleotide sugars catalyzed by fully reversible reactions of various enzymes, mostly pyrophosphorylases. These 'buffering' enzymes are, generally, quite active and operate close to equilibrium. The nucleotide sugars are then used as substrates for irreversible reactions of various polysaccharide-synthesizing glycosyltransferases ('engine' enzymes), e.g. plastidial starch synthases, or plasma membrane-bound cellulose synthase and callose synthase, or ER/Golgi-located variety of glycosyltransferases forming hemicellulose and pectin backbones. Alternatively, the irreversible step might also be provided by a carrier transporting a given immediate precursor across a membrane. Here, we argue that local equilibria, established within metabolic pathways and cycles resulting in polysaccharide production, bring stability to the system via the arrangement of a flexible supply of nucleotide sugars. This metabolic system is itself under control of adenylate kinase and nucleoside-diphosphate kinase, which determine the availability of nucleotides (adenylates, uridylates, guanylates and cytidylates) and Mg2+, the latter serving as a feedback signal from the nucleotide metabolome. Under these conditions, the supply of nucleotide sugars to engine enzymes is stable and constant, and the metabolic process becomes optimized in its load and consumption, making the system steady and self-regulated.


Asunto(s)
Redes y Vías Metabólicas/genética , Fosfotransferasas/genética , Fotosíntesis/genética , Polisacáridos/genética , Adenilato Quinasa/genética , Pared Celular/genética , Pared Celular/metabolismo , Celulosa/biosíntesis , Celulosa/genética , Celulosa/metabolismo , Metabolismo Energético/genética , Glucosa-1-Fosfato Adenililtransferasa/genética , Nucleósido-Difosfato Quinasa/genética , Pectinas/biosíntesis , Pectinas/genética , Pectinas/metabolismo , Fosfotransferasas/metabolismo , Plantas , Polisacáridos/biosíntesis , Polisacáridos/metabolismo , Almidón/biosíntesis , Almidón/genética , Almidón/metabolismo
13.
Genes (Basel) ; 11(1)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935825

RESUMEN

Pectin is a major polysaccharide component that promotes plant growth and fiber elongation in cotton. In previous studies, the galacturonosyltransferase-like (GATL) gene family has been shown to be involved in pectin synthesis. However, few studies have been performed on cotton GATL genes. Here, a total of 33, 17, and 16 GATL genes were respectively identified in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum. In multiple plant species, phylogenetic analysis divided GATL genes into five groups named GATL-a to GATL-e, and the number of groups was found to gradually change over evolution. Whole genome duplication (WGD) and segmental duplication played a significant role in the expansion of the GATL gene family in G. hirsutum. Selection pressure analyses revealed that GATL-a and GATL-b groups underwent a great positive selection pressure during evolution. Moreover, the expression patterns revealed that most of highly expressed GhGATL genes belong to GATL-a and GATL-b groups, which have more segmental duplications and larger positive selection value, suggesting that these genes may play an important role in the evolution of cotton plants. We overexpressed GhGATL2, GhGATL9, GhGATL12, and GhGATL15 in Arabidopsis and silenced the GhGATL15 gene in cotton through a virus induced gene silencing assay (VIGS). The transgenic and VIGS lines showed significant differences in stem diameter, epidermal hair length, stamen length, seed size, and fiber length than the control plant. In addition, the pectin content test proved that the pectin was significantly increased in the transgenic lines and reduced in VIGS plants, demonstrating that GhGATL genes have similar functions and act on the pectin synthesis to regulate plant growth and fiber elongation. In summary, we performed a comprehensive analysis of GhGATL genes in G. hirsutum including evolution, structure and function, in order to better understand GhGATL genes in cotton for further studies.


Asunto(s)
Galactosiltransferasas/genética , Gossypium/genética , Pectinas/genética , Galactosiltransferasas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Familia de Multigenes/genética , Pectinas/biosíntesis , Filogenia , Proteínas de Plantas/genética
14.
Biochem Biophys Res Commun ; 523(2): 416-422, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31870548

RESUMEN

Poplar is a superior forestation species with high adaptability. The woody tissue of poplar is mainly derived from cell wall. Cell wall formation determines cell shape and woody growth. Pectin is rich in primary cell wall, but it is also involved in the regulation of wood formation. In our study, we cloned a gene from poplar (Populus tomentos), designed as PtoPME35, which encodes a putative pectin methylesterase. PtoPME35 has higher sequence similarity with Arabidopsis AtPME35. Gene expression analysis shows that PtoPME35 has a constitutive expression pattern in multiple tissues, with the highest expression in stem. Subcellular localization result indicates that PtoPME35 is localized to the cell wall. To elucidate the biological function of PtoPME35 in vivo, we generated overexpression plants in poplar and Arabidopsis. The degree of pectin methylesterification is decreased in PtoPME35-overexpressing transgenic poplar, although no obvious phenotypes were displayed. In PtoPME35-overexpressing Arabidopsis plants, stomatal opening is inhibited and water loss rate is decreased under the drought condition. Moreover, the expression levels of drought-stress responsive genes were higher with mannitol treatment in PtoPME35-overexpressing Arabidopsis plants than in wild type controls. Accordingly, these results suggest that PtoPME35 may regulate osmotic stress responses by modulating stomatal functions.


Asunto(s)
Arabidopsis/fisiología , Hidrolasas de Éster Carboxílico/genética , Estomas de Plantas/fisiología , Populus/genética , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ósmosis/fisiología , Pectinas/genética , Pectinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Estomas de Plantas/genética , Plantas Modificadas Genéticamente
15.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766739

RESUMEN

Chrysanthemum (Chrysanthemum morifolium (Ramat.) Kitamura) plants have great ornamental value, but their flowers can also be a source of pollen contamination. Previously, morphological and cytological studies have shown that anthers of some chrysanthemum cultivars such as 'Qx-115' fail to dehisce, although the underlying mechanism is largely unknown. In this study, we investigated the molecular basis of anther indehiscence in chrysanthemum via transcriptome analysis of a dehiscent cultivar ('Qx-097') and an indehiscent cultivar ('Qx-115'). We also measured related physiological indicators during and preceding the period of anther dehiscence. Our results showed a difference in pectinase accumulation and activity between the two cultivars during dehiscence. Detection of de-esterified pectin and highly esterified pectin in anthers during the period preceding anther dehiscence using LM19 and LM20 monoclonal antibodies showed that both forms of pectin were absent in the stomium region of 'Qx-097' anthers but were abundant in that of 'Qx-115' anthers. Analysis of transcriptome data revealed a significant difference in the expression levels of two transcription factor-encoding genes, CmLOB27 and CmERF72, between 'Qx-097' and 'Qx-115' during anther development. Transient overexpression of CmLOB27 and CmERF72 separately in tobacco leaves promoted pectinase biosynthesis. We conclude that CmLOB27 and CmERF72 are involved in the synthesis of pectinase, which promotes the degradation of pectin. Our results lay a foundation for further investigation of the role of CmLOB27 and CmERF72 transcription factors in the process of anther dehiscence in chrysanthemum.


Asunto(s)
Chrysanthemum , Flores , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Pectinas , Proteínas de Plantas , Poligalacturonasa , Chrysanthemum/enzimología , Chrysanthemum/genética , Flores/enzimología , Flores/genética , Pectinas/genética , Pectinas/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Poligalacturonasa/biosíntesis , Poligalacturonasa/genética
16.
Plant Physiol ; 181(4): 1498-1518, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591153

RESUMEN

On imbibition, Arabidopsis (Arabidopsis thaliana) seeds release polysaccharides from their epidermal cells that form a two-layered hydrogel, termed mucilage. Analysis of a publicly available data set of outer seed mucilage traits of over 300 accessions showed little natural variation in composition. This mucilage is almost exclusively made up of rhamnogalacturonan I (RGI), highlighting the importance of this pectin for outer mucilage function. In a genome-wide association study, observed variations in polymer amount and macromolecular characteristics were linked to several genome polymorphisms, indicating the complexity of their genetic regulation. Natural variants with high molar mass were associated with a gene encoding a putative glycosyltransferase called MUCILAGE-RELATED70 (MUCI70). muci70 insertion mutants produced many short RGI polymers that were highly substituted with xylan, confirming that polymorphism in this gene can affect RGI polymer size. A second gene encoding a putative copper amine oxidase of clade 1a (CuAOα1) was associated with natural variation in the amount of RGI present in the outer mucilage layer; cuaoα1 mutants validated its role in pectin production. As the mutant phenotype is unique, with RGI production only impaired for outer mucilage, this indicates that CuAOα1 contributes to a further mechanism controlling mucilage synthesis.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Variación Genética , Pectinas/genética , Mucílago de Planta/genética , Semillas/genética , Adaptación Fisiológica/genética , Amina Oxidasa (conteniendo Cobre)/metabolismo , Sustitución de Aminoácidos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biopolímeros/metabolismo , Celulosa/metabolismo , Ecotipo , Estudio de Asociación del Genoma Completo , Sustancias Macromoleculares/metabolismo , Modelos Biológicos , Anotación de Secuencia Molecular , Mutación/genética , Pectinas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Xilanos/metabolismo
17.
Plant Physiol ; 180(1): 66-77, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30804009

RESUMEN

Stomatal pores are vital for the diffusion of gasses into and out of land plants and are, therefore, gatekeepers for photosynthesis and transpiration. Although much published literature has described the intercellular signaling and transcriptional regulators involved in early stomatal development, little is known about the cellular details of the local separation between sister guard cells that give rise to the stomatal pore or how formation of this pore is achieved. Using three-dimensional (3D) time-lapse imaging, we found that stomatal pore formation in Arabidopsis (Arabidopsis thaliana) is a highly dynamic process involving pore initiation and enlargement and traverses a set of morphological milestones in 3D. Confocal imaging data revealed an enrichment of exocytic machinery, de-methyl-esterified pectic homogalacturonan (HG), and an HG-degrading enzyme at future pore sites, suggesting that both localized HG deposition and degradation might function in pore formation. By manipulating HG modification via enzymatic, chemical, and genetic perturbations in seedling cotyledons, we found that augmenting HG modification promotes pore formation, whereas preventing HG de-methyl-esterification delays pore initiation and inhibits pore enlargement. Through mechanical modeling and experimentation, we tested whether pore formation is an outcome of sister guard cells being pulled away from each other upon turgor increase. Osmotic treatment to reduce turgor pressure did not prevent pore initiation but did lessen pore enlargement. Together, these data provide evidence that HG delivery and modification, and guard cell pressurization, make functional contributions to stomatal pore initiation and enlargement.


Asunto(s)
Arabidopsis/citología , Pectinas/metabolismo , Estomas de Plantas/citología , Arabidopsis/metabolismo , Modelos Biológicos , Presión Osmótica , Pectinas/genética , Imagen de Lapso de Tiempo
18.
Plant Physiol ; 179(2): 544-557, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30459263

RESUMEN

Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and ß-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to ß-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.


Asunto(s)
Sistemas CRISPR-Cas , Enzimas/genética , Frutas/fisiología , Pectinas/metabolismo , Solanum lycopersicum/fisiología , Pared Celular/química , Pared Celular/metabolismo , Enzimas/metabolismo , Esterificación , Galactanos/genética , Galactanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Solanum lycopersicum/genética , Mutación , Pectinas/genética , Pectinas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
19.
Fungal Genet Biol ; 123: 53-59, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30496805

RESUMEN

l-Arabinose and d-galactose are the principal constituents of l-arabinogalactan, and also co-occur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while l-arabinose is utilised faster in the presence than in the absence of d-galactose. Furthermore, the first two genes of the Leloir pathway for d-galactose catabolism - encoding d-galactose 1-epimerase and galactokinase - are induced more rapidly by l-arabinose than by d-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. d-Galactose 1-epimerase is hyperinduced by l-arabinose, d-xylose and l-arabitol but not by xylitol. The results suggest that in A. nidulans, l-arabinose and d-xylose - both requiring NADPH for their catabolisation - actively promote the enzyme infrastructure necessary to convert ß-d-galactopyranose via the Leloir pathway with its α-anomer specific enzymes, into ß-d-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of d-galactose.


Asunto(s)
Arabinosa/metabolismo , Aspergillus nidulans/genética , Galactosa/metabolismo , Xilosa/metabolismo , Aspergillus nidulans/metabolismo , Galactanos/genética , Galactanos/metabolismo , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas/genética , Metabolismo/genética , Pectinas/genética , Pectinas/metabolismo , Polisacáridos/genética , Polisacáridos/metabolismo , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , Xilosa/genética
20.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30455396

RESUMEN

Nephrotoxicity is a major toxic effect in chemotherapy, which constitutes up to 60% of hospitalized acute kidney injury (AKI). Very few treatment options exist to slow the transition from AKI to subsequent chronic kidney diseases (CKD). Here, we demonstrate that galectin-3 (Gal-3), a ß-galactoside binding lectin that plays an important role in kidney fibrosis and renal failure, is one of the key factors for renal injury progression. Ectopic overexpression of Gal-3 significantly decreased the viability of HEK293, simultaneously inducing of cell cycle arrest and apoptosis. However, inhibition of Gal-3, mediated by modified citrus pectin (MCP), predominantly antagonized the pro-apoptotic effects. Mice were pre-treated with normal or 1% MCP-supplemented drinking water 1 week before cisplatin injection. Analyses of serum creatinine and renal tissue damage indicated that MCP-treated mice demonstrated increased renal function and attenuated renal fibrosis after cisplatin-induced injury. MCP-treated mice also demonstrated decreased renal fibrosis and apoptosis, as revealed by masson trichrome staining and Western blot analysis of cleaved caspase-3. Additionally, the protective role of Gal-3 inhibition in the kidney injury was shown to be mediated by protein kinase C α (PKC-α), which promoted cell apoptosis and collagen I synthesis in HEK293 cells. These results demonstrated the potential Gal-3 and PKC-α as therapeutic targets for the treatment of AKI and CKD.


Asunto(s)
Lesión Renal Aguda/genética , Cisplatino/efectos adversos , Fibrosis/genética , Galectina 3/genética , Proteína Quinasa C-alfa/genética , Lesión Renal Aguda/sangre , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Apoptosis/genética , Proteínas Sanguíneas , Caspasa 3/genética , Cisplatino/administración & dosificación , Creatinina/sangre , Modelos Animales de Enfermedad , Fibrosis/sangre , Fibrosis/inducido químicamente , Fibrosis/patología , Galectina 3/antagonistas & inhibidores , Galectinas , Regulación de la Expresión Génica , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Pectinas/genética , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...