Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.221
Filtrar
1.
BMC Neurosci ; 25(1): 36, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103771

RESUMEN

BACKGROUND: Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS: Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION: In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.


Asunto(s)
Fibronectinas , Trastornos de la Memoria , Pentilenotetrazol , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Convulsiones , Animales , Masculino , Trastornos de la Memoria/etiología , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Fibronectinas/metabolismo , Fibronectinas/administración & dosificación , Ratas , Enfermedades Neuroinflamatorias , Epilepsia , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología
2.
J Physiol Pharmacol ; 75(3)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39042385

RESUMEN

Pentylenetetrazole- (PTZ)-induced kindling is a broadly used experimental model to evaluate the impact of antiseizure drugs and their novel combination on seizure progression. The current study aimed to evaluate the anti-kindling effects of ivermectin (IVM) and rufinamide (RUFI) alone and their combination with vitamin E. The mice were administered 11 injections of PTZ (40 mg/kg) followed by assessment for anxiety-like behavior and cognitive abilities in a series of behavior tests with subsequent brain isolation for biochemical and histopathological evaluation. The outcomes showed a marked protection by IVM + RUFI (P<0.001) from kindling progression, anxiety-like behavior and cognitive deficit. However, additional supplementation with vitamin E worked superior to duo therapy as these mice were noted to be most fearless to visiting open, illuminated and elevated zones of open field, light/dark and elevated-plus maze (P<0.0001). Further, they showed marked remembrance of the familiar milieu in y-maze (P<0.01) and novel objection recognition (P<0.05) tests. Additionally, their recollection of aversive stimuli in passive avoidance and spatial memory in Morris water maze were evident (P<0.0001), in comparison to kindled mice. The IVM + RUFI duo therapy and its co-administration with vitamin E prevented kindling-triggered oxidative stress in brains and neuronal damage in hippocampus. We conclude that the benefits of the co-administration of vitamin E might be the results of antioxidant and anti-inflammatory effects of vitamin E which might be potentiating the antiseizure effects of RUFI and GABA-A modulating potential by ivermectin.


Asunto(s)
Anticonvulsivantes , Conducta Animal , Ivermectina , Excitación Neurológica , Pentilenotetrazol , Convulsiones , Triazoles , Vitamina E , Animales , Excitación Neurológica/efectos de los fármacos , Vitamina E/farmacología , Vitamina E/administración & dosificación , Ratones , Ivermectina/farmacología , Ivermectina/administración & dosificación , Anticonvulsivantes/farmacología , Anticonvulsivantes/administración & dosificación , Masculino , Convulsiones/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Triazoles/farmacología , Triazoles/administración & dosificación , Quimioterapia Combinada , Ansiedad/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000086

RESUMEN

Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.


Asunto(s)
Pentilenotetrazol , Convulsiones , Animales , Pentilenotetrazol/toxicidad , Ratones , Convulsiones/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Masculino , Naloxona/farmacología , Modelos Animales de Enfermedad , Diazepam/farmacología , Susceptibilidad a Enfermedades , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Antagonistas de Narcóticos/farmacología
4.
Epilepsy Res ; 205: 107419, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029440

RESUMEN

The aim of the present study was to develop a novel formulation of berberine (BBR) and demonstrate its anti-seizure effect in pentylenetetrazole (PTZ) induced kindling model in rats. Nanoparticles of BBR were formulated using Poly Lactic-co-Glycolic Acid (PLGA) as a polymer. Emulsification and solvent evaporation technique was used. PTZ induced kindling model in male wistar rat was used to demonstrate the anti-seizure effect of nano-BBR. The particle size obtained for the final formulation was 242.8 ± 67.35 nm with a PDI of 0.140 ± 0.01. PLGA encapsulated BBR nanoparticles showed the % encapsulation efficiency of 87.33 ± 2.42 % and % drug loading of 48.47 ± 1.34 %. In-vitro drug release data showed sustained release of nano-BBR as compared to BBR. Kinetic study data showed increase in AUC of nano-BBR (35,429.46 h.ng/ml) as compared to BBR (28,211.07 h.ng/ml). Cmax for nano- BBR (2251.90 ng/ml) is approximately 1.6 times greater than BBR (1505.50 ng/ml). Nano- BBR has shown the significant effect on the seizure score. The PLGA encapsulated berberine nanoparticles were prepared by an innovative simple method and offers excellent potential as an antiepileptic agent.


Asunto(s)
Anticonvulsivantes , Berberina , Modelos Animales de Enfermedad , Epilepsia , Nanopartículas , Pentilenotetrazol , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Wistar , Berberina/farmacología , Berberina/administración & dosificación , Animales , Masculino , Epilepsia/tratamiento farmacológico , Anticonvulsivantes/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Excitación Neurológica/efectos de los fármacos , Ratas , Tamaño de la Partícula , Ácido Láctico , Ácido Poliglicólico , Convulsiones/tratamiento farmacológico
5.
Epilepsy Res ; 205: 107421, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068729

RESUMEN

Epilepsy, a chronic neurological disorder characterized by recurrent unprovoked seizures, presents a substantial challenge in approximately one-third of cases exhibiting resistance to conventional pharmacological treatments. This study investigated the effect of 4-allyl-2,6-dimethoxyphenol, a phenolic compound derived from various natural sources, in different models of induced seizures and its impact on animal electroencephalographic (EEG) recordings. Adult male Swiss albino mice were pre-treated (i.p.) with a dose curve of 4-allyl-2,6-dimethoxyphenol (50, 100, or 200 mg/kg), its vehicle (Tween), or standard antiepileptic drug (Diazepam; or Phenytoin). Subsequently, the mice were subjected to different seizure-inducing models - pentylenetetrazole (PTZ), 3-mercaptopropionic acid (3-MPA), pilocarpine (PILO), or maximal electroshock seizure (MES). EEG analysis was performed on other animals surgically implanted with electrodes to evaluate brain activity. Significant results revealed that animals treated with 4-allyl-2,6-dimethoxyphenol exhibited increased latency to the first myoclonic jerk in the PTZ and PILO models; prolonged latency to the first tonic-clonic seizure in the PTZ, 3-MPA, and PILO models; reduced total duration of tonic-clonic seizures in the PTZ and PILO models; decreased intensity of convulsive seizures in the PTZ and 3-MPA models; and diminished mortality in the 3-MPA, PILO, and MES models. EEG analysis indicated an increase in the percentage of total power attributed to beta waves following 4-allyl-2,6-dimethoxyphenol administration. Notably, the substance protected from behavioral and electrographic seizures in the PTZ model, preventing increases in the average amplitude of recording signals while also inducing an increase in the participation of theta and gamma waves. These findings suggest promising outcomes for the tested phenolic compound across diverse pre-clinical seizure models, highlighting the need for further comprehensive studies to elucidate its underlying mechanisms and validate its clinical relevance in epilepsy management.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Electroencefalografía , Electrochoque , Pentilenotetrazol , Convulsiones , Animales , Masculino , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Ratones , Anticonvulsivantes/farmacología , Pentilenotetrazol/toxicidad , Electroencefalografía/efectos de los fármacos , Anisoles/farmacología , Relación Dosis-Respuesta a Droga , Pilocarpina/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Ácido 3-Mercaptopropiónico/farmacología , Convulsivantes/toxicidad
6.
Biochem Biophys Res Commun ; 729: 150333, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38991397

RESUMEN

BACKGROUND: Epilepsy is a paroxysmal abnormal hypersynchronous electrical discharge characterized by recurrent seizures. It affects more than 50 million people worldwide. Stress is the leading cause of neurodegeneration and can produce seizures that may lead to or aggravate epilepsy. Inflammation plays a vital role in epilepsy by modulating oxidative stress, and levels of neuroinflammatory cytokines including NF-κB, TNF-α, and IL-1ß. METHODS: Stress-induced changes in behavior were evaluated in mice by employing behavioral assessment tests such as an elevated plus maze, light-dark box, open field test, tail suspension test, Y-maze, novel object recognition test, and Morris water maze in pentylenetetrazole (PTZ) kindled mice. Behavioral changes in all these paradigms including seizure score, latency, and frequency showed an increase in symptoms in PTZ (35 mg/kg) induced seizures in stressed mice (RS-PTZ) as compared to PTZ, Stress, and normal animals. RESULTS: The Enzyme-linked immunosorbent assay (ELISA) results confirmed increased in serum cortisol levels. Histological examinations showed neurodegenerative changes in the hippocampus and cortex regions. The spectrophotometric evaluation showed an increase in oxidative stress by decreasing antioxidant production i.e. reduced glutathione, glutathione -s- transferase, and catalase (CAT), and increasing oxidant levels such as maloaldehyde and nitric oxide. Immunohistochemistry results showed increased expression of NF-κB, TNF-α, and IL-1ß in the cortex and hippocampus of mice brains. CONCLUSIONS: Results from the study conclude that stress increases the likelihood of eliciting an epileptic attack by increasing the level of reactive oxygen species and neuroinflammation.


Asunto(s)
Enfermedades Neuroinflamatorias , Estrés Oxidativo , Pentilenotetrazol , Convulsiones , Animales , Ratones , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Convulsiones/patología , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad Crónica , Conducta Animal
7.
Epilepsy Behav ; 158: 109898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002273

RESUMEN

GABA modulators such as phenobarbital (PB) and sodium channel blockers such as phenytoin (PHT) have long been the mainstay of pharmacotherapy for the epilepsies. In the context of neonatal seizures, both PB and PHT display incomplete clinical efficacy. Moreover, in animal models, neonatal exposure to these medications result in neurodegeneration raising concerns about safety. Cenobamate, a more recently approved medication, displays unique pharmacology as it is both a positive allosteric modulator of GABA-A receptors, and a voltage-gated sodium channel blocker. While cenobamate is approved for adult use, its efficacy and safety profile against neonatal seizures is poorly understood. To address this gap, we assessed the efficacy and safety of cenobamate in immature rodents. Postnatal day (P)7 rat pups were pretreated with cenobamate and challenged with the chemoconvulsant pentylenetetrazole (PTZ) to screen for anti-seizure effects. In a separate experiment, P7 rats were treated with cenobamate, and brains were processed to assess induction of cell death. Cenobamate displays dose-dependent anti-seizure efficacy in neonatal rats. Unlike PHB and PHT, it does not induce neurotoxicity in P7 rats. Thus, cenobamate may be effective at treating neonatal seizures while avoiding unwanted neurotoxic side effects such as cell death.


Asunto(s)
Animales Recién Nacidos , Anticonvulsivantes , Carbamatos , Muerte Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ratas Sprague-Dawley , Convulsiones , Animales , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/farmacología , Ratas , Muerte Celular/efectos de los fármacos , Carbamatos/farmacología , Carbamatos/uso terapéutico , Clorofenoles/farmacología , Pentilenotetrazol/toxicidad , Masculino , Femenino , Convulsivantes/toxicidad , Encéfalo/efectos de los fármacos , Tetrazoles
8.
Eur J Pharmacol ; 978: 176704, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38830458

RESUMEN

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.


Asunto(s)
Anticonvulsivantes , Fármacos Neuroprotectores , Péptidos , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Venenos de Escorpión , Convulsiones , Animales , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Venenos de Escorpión/farmacología , Venenos de Escorpión/química , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/química , Pentilenotetrazol , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Calor , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Modelos Animales de Enfermedad
9.
J Pharmacol Toxicol Methods ; 128: 107532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38852687

RESUMEN

Zebrafish larvae exposed to chemoconvulsants show behavioral seizures and electrographic abnormalities similar to the other mammalian models, making it a potential tool in epilepsy research. During the embryonic stage, zebrafish remains transparent which enables real-time developmental detection and in-situ gene/protein expression. However, pigmentation during the larval stage restricts transparency. Phenylthiourea (1-phenyl-2-thiourea; PTU) is a commonly used pigmentation blocker that maintains larval transparency. It is widely used along with chemoconvulsants to study in situ expressions in epileptic larvae, however, its effect on seizures largely remains unknown. Therefore, in the present study, the effect of PTU-mediated depigmentation was studied on pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. After spawning, the fish embryos were subjected to standard depigmentation protocol using 0.13 mM PTU. At 7-days post fertilization seizures were induced using 8 mM PTZ. PTU exposure significantly reduced PTZ-mediated hyperactive responses indicated by decreased distance travelled and swimming velocity of the larvae. Furthermore, PTU-exposed depigmented larvae also showed an increase in the latency to the onset of PTZ-mediated clonic-like seizures. The results concluded that PTU depigmentation protocol reduces the seizurogenic response of PTZ, hence its usage for imaging zebrafish larvae must be carefully monitored to avoid erroneous results.


Asunto(s)
Larva , Pentilenotetrazol , Feniltiourea , Convulsiones , Pez Cebra , Animales , Pez Cebra/embriología , Larva/efectos de los fármacos , Feniltiourea/farmacología , Convulsiones/inducido químicamente , Pigmentación/efectos de los fármacos , Modelos Animales de Enfermedad , Convulsivantes
10.
J Ethnopharmacol ; 333: 118408, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38823659

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Saffron, a traditional Chinese medicine, is derived from Crocus sativus L. stigmas and has been reported to possess neuroprotective properties and potentially contribute to the inhibition of apoptosis and inflammation. Safranal, a potent monothyral aldehyde, is a main component of saffron that has been reported to have antiepileptic activity. However, the specific mechanism by which safranal suppresses epileptic seizures via its antiapoptotic and anti-inflammatory properties is unclear. AIM: To evaluate the effect of safranal on seizure severity, inflammation, and postictal neuronal apoptosis in a mouse model of pentetrazole (PTZ)-induced seizures and explore the underlying mechanism involved. MATERIALS AND METHODS: The seizure stage and latency of stage 2 and 4 were quantified to assess the efficacy of safranal in mitigating PTZ-induced epileptic seizures in mice. Electroencephalography (EEG) was employed to monitor epileptiform afterdischarges in each experimental group. The cognitive abilities and motor functions of the mice were evaluated using the novel object recognition test and the open field test, respectively. Neurons were quantified using hematoxylin and eosin staining. Additionally, bioinformatics tools were utilized to predict the interactions between safranal and specific target proteins. Glycogen synthase kinase-3ß (GSK-3ß), mitochondrial apoptosis-related proteins, and inflammatory factor levels were analyzed through western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) concentrations in brain tissue were assessed by ELISA. RESULTS: Safranal decreased the average seizure stage and increased the lantency of stage 2 and 4 seizures in PTZ-induced epileptic mice. Additionally, safranal exhibited neuroprotective effects on hippocampal CA1 and CA3 neurons and reduced hyperactivity caused by postictal hyperexcitability. Bioinformatics analysis revealed that safranal can bind to five specific proteins, including GSK-3ß. By promoting Ser9 phosphorylation and inhibiting GSK-3ß activity, safranal effectively suppressed the NF-κB signaling pathway. Moreover, the findings indicate that safranal treatment can decrease TNF-α and IL-1ß levels in the cerebral tissues of epileptic mice and downregulate mitochondrial apoptosis-related proteins, including Bcl-2, Bax, Bak, Caspase 9, and Caspase 3. CONCLUSION: Safranal can suppress the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3ß inactivation, suggesting that it is a promising therapeutic agent for epilepsy treatment.


Asunto(s)
Apoptosis , Ciclohexenos , Glucógeno Sintasa Quinasa 3 beta , Mitocondrias , FN-kappa B , Pentilenotetrazol , Convulsiones , Transducción de Señal , Terpenos , Animales , Ciclohexenos/farmacología , Ciclohexenos/uso terapéutico , Apoptosis/efectos de los fármacos , Terpenos/farmacología , Terpenos/uso terapéutico , Masculino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Ratones , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Modelos Animales de Enfermedad
11.
Molecules ; 29(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893448

RESUMEN

Epilepsy is a prevalent neurological disorder characterized by recurrent seizures. Validamycin A (VA) is an antibiotic fungicide that inhibits trehalase activity and is widely used for crop protection in agriculture. In this study, we identified a novel function of VA as a potential anti-seizure medication in a zebrafish epilepsy model. Electroencephalogram (EEG) analysis demonstrated that VA reduced pentylenetetrazol (PTZ)-induced seizures in the brains of larval and adult zebrafish. Moreover, VA reduced PTZ-induced irregular movement in a behavioral assessment of adult zebrafish. The developmental toxicity test showed no observable anatomical alteration when the zebrafish larvae were treated with VA up to 10 µM within the effective range. The median lethal dose of VA in adult zebrafish was > 14,000 mg/kg. These results imply that VA does not demonstrate observable toxicity in zebrafish at concentrations effective for generating anti-seizure activity in the EEG and alleviating abnormal behavior in the PTZ-induced epileptic model. Furthermore, the effectiveness of VA was comparable to that of valproic acid. These results indicate that VA may have a potentially safer anti-seizure profile than valproic acid, thus offering promising prospects for its application in agriculture and medicine.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Epilepsia , Pentilenotetrazol , Pez Cebra , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Pentilenotetrazol/efectos adversos , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Electroencefalografía , Ácido Valproico/farmacología , Larva/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inositol/análogos & derivados
12.
Sci Rep ; 14(1): 14239, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902338

RESUMEN

Glutamatergic neurotransmission and oxidative stress are involved in the pathophysiology of seizures. Some anticonvulsants exert their effects through modulation of these pathways. Trigonelline (TRG) has been shown to possess various pharmacological effects like neuroprotection. Therefore, this study was performed to determine TRG's anticonvulsant effects, focusing on its potential effects on N-methyl-D-aspartate (NMDA) receptors, a type of glutamate receptor, and oxidative stress state in the prefrontal cortex (PFC) in PTZ-induced seizure in mice. Seventy-two male mice were randomly divided into nine groups. The groups included mice that received normal saline, TRG at doses of 10, 50, and 100 mg/kg, diazepam, NMDA (an agonist), ketamine (an antagonist), the effective dose of TRG with NMDA, as well as sub-effective dose of TRG with ketamine, respectively. All agents were administrated intraperitoneally 60 min before induction of seizures by PTZ. Latency to seizure, total antioxidant capacity (TAC), and malondialdehyde (MDA) levels in serum and PFC were measured. Furthermore, the gene expression of NR2A and NR2B, subunits of NMDA receptors, was measured in the PFC. TRG administration increased the latency to seizure onset and enhanced TAC while reducing MDA levels in both the PFC and serum. TRG also decreased the gene expression of NR2B in the PFC. Unexpectedly, the findings revealed that the concurrent administration of ketamine amplified, whereas NMDA mitigated, the impact of TRG on latency to seizure. Furthermore, NMDA diminished the positive effects of TRG on antioxidant capacity and oxidative stress, while ketamine amplified these beneficial effects, indicating a complex interaction between TRG and NMDA receptor modulation. In the gene expression of NMDA receptors, results showed that ketamine significantly decreased the gene expression of NR2B when co-administrated with a sub-effective dose of TRG. It was found that, at least partially, the anticonvulsant effect of TRG in PTZ-induced seizures in male mice was mediated by the attenuation of glutamatergic neurotransmission as well as the reduction of oxidative stress.


Asunto(s)
Alcaloides , Anticonvulsivantes , Estrés Oxidativo , Receptores de N-Metil-D-Aspartato , Convulsiones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Estrés Oxidativo/efectos de los fármacos , Anticonvulsivantes/farmacología , Ratones , Masculino , Alcaloides/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Malondialdehído/metabolismo , Ketamina/farmacología , Pentilenotetrazol/toxicidad , Antioxidantes/farmacología
13.
Neurochem Int ; 178: 105796, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936553

RESUMEN

The Ocimum species present active compounds with the potential to develop drugs for treating chronic disease conditions, such as anxiety and seizures. The present study aims to investigate the anticonvulsant and anxiolytic-like effect of the essential oil from O. basilicum Linn (OEFOb) leaves and its major constituent estragole (ES) in vivo on adult zebrafish (aZF) and in silico. The aZF were treated with OEFOb or ES or vehicle and submitted to the tests of toxicity, open-field, anxiety, and convulsion and validated the interactions of the estragole on the involvement of GABAergic and serotonergic receptors by molecular docking assay. The results showed that the oral administration of OEFOb and ES did not have a toxic effect on the aZF and showed anxiolytic-like effects with the involvement of GABAA, 5-HT1, 5-HT2A/2C and 5-HT3A/3B as well on anxiety induced by alcohol withdrawal. The OEFOb and ES showed anticonvulsant potential attenuating the seizures induced by pentylenetetrazole (PTZ) by modulation of the GABAA system. Both anxiolytic and anticonvulsant effects were corroborated by the potential of the interaction of ES by in silico assay. These study samples demonstrate the pharmacological evidence and potential for using these compounds to develop new anxiolytic and anticonvulsant drugs.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Ansiolíticos , Anticonvulsivantes , Ocimum basilicum , Aceites Volátiles , Hojas de la Planta , Convulsiones , Pez Cebra , Animales , Ansiolíticos/farmacología , Ansiolíticos/química , Ansiolíticos/aislamiento & purificación , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Anticonvulsivantes/aislamiento & purificación , Aceites Volátiles/farmacología , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/química , Hojas de la Planta/química , Ocimum basilicum/química , Anisoles/farmacología , Anisoles/aislamiento & purificación , Derivados de Alilbenceno/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Simulación del Acoplamiento Molecular , Ansiedad/tratamiento farmacológico , Masculino , Pentilenotetrazol/toxicidad
14.
Chem Biodivers ; 21(8): e202400642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822644

RESUMEN

New 2-(4-benzothiazol-2-yl-phenoxy)-1-(3,5-diphenyl-4,5-dihydro-pyrazol-1-yl)-ethanones (9a-o) have been designed and synthesized. All the synthesized compounds were characterized by thin layer chromatography and spectral analysis. The antiepileptic potential of the synthesized compounds has been tested by following standard animal screening models, including maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) models. The neurotoxic and antidepression effects of the synthesized compounds were checked by utilizing rotarod apparatus, and motor impairment test (by actophotometer) respectively. The study concluded that compounds 9c, 9d, 9f, 9i, 9n, and 9o possessed good antiepileptic potential compared to standard drugs like carbamazepine and phenytoin. The results of the rotarod performance test also established them without any neurotoxicity. The motor impairment test revealed that the synthesized compounds are also good antidepressants. In-silico studies have been performed for calculation of pharmacophore pattern, prediction of pharmacokinetic properties which determine the eligibility of synthesized compounds as orally administered molecules and interactions with the target proteins. The result of in-silico studies reinforced results obtained by in vivo study of the synthesized compounds and their possible mechanism of antiepileptic action i. e. via inhibiting voltage-gated sodium channels (VGSCs) and gamma-aminobutyric acid-A receptor.


Asunto(s)
Anticonvulsivantes , Benzotiazoles , Pirazoles , Anticonvulsivantes/química , Anticonvulsivantes/síntesis química , Anticonvulsivantes/farmacología , Animales , Benzotiazoles/química , Benzotiazoles/antagonistas & inhibidores , Benzotiazoles/farmacología , Benzotiazoles/síntesis química , Ratones , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Pentilenotetrazol , Electrochoque , Relación Estructura-Actividad , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Masculino , Estructura Molecular , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad
15.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731442

RESUMEN

Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.


Asunto(s)
Anticonvulsivantes , Pentilenotetrazol , Receptores de GABA-A , Convulsiones , Anticonvulsivantes/farmacología , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Animales , Ratones , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Receptores de GABA-A/metabolismo , Quinazolinonas/farmacología , Quinazolinonas/química , Quinazolinonas/síntesis química , Simulación del Acoplamiento Molecular , Masculino , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Simulación por Computador , Modelos Animales de Enfermedad , Estructura Molecular , Sitio Alostérico
16.
Biomed Pharmacother ; 175: 116746, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739991

RESUMEN

Brain apoptosis is one of the main causes of epileptogenesis. The antiapoptotic effect and potential mechanism of Q808, an innovative anticonvulsant chemical, have never been reported. In this study, the seizure stage and latency to reach stage 2 of pentylenetetrazol (PTZ) seizure rat model treated with Q808 were investigated. The morphological change and neuronal apoptosis in the hippocampus were detected by hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, respectively. The hippocampal transcriptomic changes were observed using RNA sequencing (RNA-seq). The expression levels of hub genes were verified by quantitative reverse-transcription PCR (qRT-PCR). Results revealed that Q808 could allay the seizure score and prolong the stage 2 latency in seizure rats. The morphological changes of neurons and the number of apoptotic cells in the DG area were diminished by Q808 treatment. RNA-seq analysis revealed eight hub genes, including Map2k3, Nfs1, Chchd4, Hdac6, Siglec5, Slc35d3, Entpd1, and LOC103690108, and nine hub pathways among the control, PTZ, and Q808 groups. Hub gene Nfs1 was involved in the hub pathway sulfur relay system, and Map2k3 was involved in the eight remaining hub pathways, including Amyotrophic lateral sclerosis, Cellular senescence, Fc epsilon RI signaling pathway, GnRH signaling pathway, Influenza A, Rap1 signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. qRT-PCR confirmed that the mRNA levels of these hub genes were consistent with the RNA-seq results. Our findings might contribute to further studies exploring the new apoptosis mechanism and actions of Q808.


Asunto(s)
Anticonvulsivantes , Apoptosis , Epilepsia , Perfilación de la Expresión Génica , Hipocampo , Pentilenotetrazol , Ratas Sprague-Dawley , Transcriptoma , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Apoptosis/efectos de los fármacos , Anticonvulsivantes/farmacología , Masculino , Transcriptoma/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Epilepsia/genética , Perfilación de la Expresión Génica/métodos , Ratas , Modelos Animales de Enfermedad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/tratamiento farmacológico
17.
Int Immunopharmacol ; 134: 112247, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759374

RESUMEN

BACKGROUND: Epilepsy is a chronic disabling disease poorly controlled by available antiseizure medications. Oridonin, a bioactive alkaloid with anti-inflammatory properties and neuroprotective effects, can inhibit the increased excitability of neurons caused by glutamate accumulation at the cellular level. However, whether oridonin affects neuronal excitability and whether it has antiepileptic potential has not been reported in animal models or clinical studies. METHOD: Pentylenetetrazol was injected into mice to create a model of chronic epilepsy. Seizure severity was assessed using the Racine scale, and the duration and latency of seizures were observed. Abnormal neuronal discharge was detected using electroencephalography, and neuronal excitability was assessed using calcium imaging. Damage to hippocampal neurons was evaluated using Hematoxylin-Eosin and Nissl staining. The expression of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and other pyroptosis-related proteins was determined using western blotting and immunofluorescence. A neuronal pyroptosis model was established using the supernatant of BV2 cells treated with lipopolysaccharide and adenosine triphosphate to stimulate hippocampal neurons. RESULTS: Oridonin (1 and 5 mg/kg) reduced neuronal damage, increased the latency of seizures, and shortened the duration of fully kindled seizures in chronic epilepsy model mice. Oridonin decreased abnormal discharge during epileptic episodes and suppressed increased neuronal excitability. In vitro experiments showed that oridonin alleviated pyroptosis in hippocampal HT22 neurons. CONCLUSION: Oridonin exerts neuroprotective effects by inhibiting pyroptosis through the NLRP3/caspase-1 pathway in chronic epilepsy model mice. It also reduces pyroptosis in hippocampal neurons in vitro, suggesting its potential as a therapy for epilepsy.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Diterpenos de Tipo Kaurano , Epilepsia , Hipocampo , Proteína con Dominio Pirina 3 de la Familia NLR , Neuronas , Fármacos Neuroprotectores , Piroptosis , Animales , Diterpenos de Tipo Kaurano/farmacología , Diterpenos de Tipo Kaurano/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Epilepsia/tratamiento farmacológico , Piroptosis/efectos de los fármacos , Ratones , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Pentilenotetrazol , Ratones Endogámicos C57BL , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Línea Celular , Convulsiones/tratamiento farmacológico
18.
Biomed Pharmacother ; 175: 116791, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776672

RESUMEN

Epilepsy is an abiding condition associated with recurrent seizure attacks along with associated neurological and psychological emanation owing to disparity of excitatory and inhibitory neurotransmission. The current study encompasses the assessment of the Nyctanthes arbor-tristis L. methanolic extract (Na.Cr) in the management of convulsive state and concomitant conditions owing to epilepsy. The latency of seizure incidence was assessed using pentylenetetrazol (PTZ) kindling models along with EEG in Na.Cr pretreated mice, trailed by behavior assessment (anxiety and memory), biochemical assay, histopathological alterations, chemical profiling through GCMS, and molecular docking. The chronic assessment of PTZ-induced kindled mice depicted salvation in a dose-related pattern and outcomes were noticeable with extract at 400 mg/kg. The extract at 400 mg/kg defends the progress of kindling seizures and associated EEG. Co-morbid conditions in mice emanating owing to epileptic outbreaks were validated by behavioral testing and the outcome depicted a noticeable defense related to anxiety (P<0.001) and cognitive deficit (P<0.001) at 400 mg/kg. The isolated brains were evaluated for oxidative stress and the outcome demonstrated a noticeable effect in a dose-dependent pattern. Treatment with Na.Cr. also preserved the brain from PTZ induced neuronal damage as indicated by histopathological analysis. Furthermore, the GCMS outcome predicted 28 compounds abundantly found in the plant. The results congregated in the current experiments deliver valued evidence about the defensive response apportioned by Na.Cr which might be due to decline in oxidative stress, AChE level, and GABAergic modulation. These activities may contribute to fundamental pharmacology and elucidate some mechanisms behind the activities of Nyctanthes arbor-tristis.


Asunto(s)
Anticonvulsivantes , Electroencefalografía , Excitación Neurológica , Pentilenotetrazol , Extractos Vegetales , Convulsiones , Animales , Excitación Neurológica/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología , Masculino , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Anticonvulsivantes/farmacología , Conducta Animal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación por Computador , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico
19.
Brain Behav Immun ; 120: 121-140, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777288

RESUMEN

BACKGROUND: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS: Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS: RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS: Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Microglía , Neuronas , Receptores Purinérgicos P2X7 , Convulsiones , Animales , Microglía/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Masculino , Ratones , Convulsiones/metabolismo , Convulsiones/genética , Neuronas/metabolismo , Femenino , Ratones Endogámicos C57BL , Ácido Kaínico , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/genética , Hipocampo/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/genética , Ratones Noqueados , Pentilenotetrazol , Transducción de Señal , Neuronas GABAérgicas/metabolismo , Epilepsia/metabolismo , Epilepsia/genética , Encéfalo/metabolismo
20.
Epilepsia Open ; 9(4): 1252-1264, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38700951

RESUMEN

OBJECTIVE: The objective of this study is to determine whether inhibition of mitophagy affects seizures through Clathrin-mediated endocytosis (CME). METHODS: Pentylenetetrazol (PTZ) was intraperitoneally injected daily to establish a chronic PTZ-kindled seizure. The Western blot (WB) was used to compare the differences in Parkin protein expression between the epilepsy group and the control group. Immunofluorescence was used to detect the expression of MitoTracker and LysoTracker. Transferrin-Alexa488 (Tf-A488) was injected into the hippocampus of mice. We evaluated the effect of 3-methyladenine (3-MA) on epilepsy behavior through observation in PTZ-kindled models. RESULTS: The methylated derivative of adenine, known as 3-MA, has been extensively utilized in the field of autophagy research. The transferrin protein is internalized from the extracellular environment into the intracellular space via the CME pathway. Tf-A488 uses a fluorescent marker to track CME. Western blot showed that the expression of Parkin was significantly increased in the PTZ-kindled model (p < 0.05), while 3-MA could reduce the expression (p < 0.05). The fluorescence uptake of MitoTracker and LysoTracker was increased in the primary cultured neurons induced by magnesium-free extracellular fluid (p < 0.05); the fluorescence uptake of Tf-A488 was significantly decreased in the 3-MA group compared with the control group (p < 0.05). Following hippocampal injection of Tf-A488, both the epilepsy group and the 3-MA group exhibited decreased fluorescence uptake, with a more pronounced effect observed in the 3-MA group. Inhibition of mitophagy by 3-MA from day 3 to day 9 progressively exacerbated seizure severity and shortened latency. SIGNIFICANCE: It is speculated that the aggravation of seizures by 3-MA may be related to the failure to remove damaged mitochondria in time and effectively after inhibiting mitochondrial autophagy, affecting the vesicle endocytosis function of CME and increasing the susceptibility to epilepsy. SUMMARY: Abnormal mitophagy was observed in a chronic pentylenetetrazol-induced seizure model and a Mg2+-free-induced spontaneous recurrent epileptiform discharge model. A fluorescent transferrin marker was utilized to track clathrin-mediated endocytosis. Using an autophagy inhibitor (3-methyladenine) on primary cultured neurons, we discovered that inhibition of autophagy led to a reduction in fluorescent transferrin uptake, while impairing clathrin-mediated endocytosis function mediated by mitophagy. Finally, we examined the effects of 3-methyladenine in an animal model of seizures showing that it exacerbated seizure severity. Ultimately, this study provides insights into potential mechanisms through which mitophagy regulates clathrin-mediated endocytosis in epilepsy.


Asunto(s)
Autofagia , Clatrina , Endocitosis , Epilepsia , Mitocondrias , Mitofagia , Animales , Ratones , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Endocitosis/fisiología , Endocitosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Clatrina/metabolismo , Masculino , Pentilenotetrazol , Adenina/análogos & derivados , Adenina/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Modelos Animales de Enfermedad , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA