Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Med Chem ; 67(2): 885-921, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38179950

RESUMEN

Hepatitis C viral (HCV) infection is the leading cause of liver failure and still represents a global health burden. Over the past decade, great advancements made HCV curable, and sustained viral remission significantly improved to more than 98%. Historical treatment with pegylated interferon alpha and ribavirin has been displaced by combinations of direct-acting antivirals. These regimens include drugs targeting different stages of the HCV life cycle. However, the emergence of viral resistance remains a big concern. The design of peptidomimetic inhibitors (PIs) able to fit and fill the conserved substrate envelope region within the active site helped avoid contact with the vulnerable sites of the most common resistance-associated substitutions Arg155, Ala156, and Asp168. Herein, we give an overview of HCV NS3 PIs discovered during the past decade, and we deeply discuss the rationale behind the structural optimization efforts essential to achieve pangenotypic activity.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Peptidomiméticos , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Inhibidores de Proteasas/farmacología , Hepatitis C Crónica/tratamiento farmacológico , Proteínas no Estructurales Virales , Hepatitis C/tratamiento farmacológico , Hepacivirus , Farmacorresistencia Viral
2.
Cancer Lett ; 586: 216633, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281663

RESUMEN

Primary cutaneous melanoma is the most lethal of all skin neoplasms and its incidence is increasing. Clinical management of advanced melanoma in the last decade has been revolutionised by the availability of immunotherapies and targeted therapies, used alone and in combination. This article summarizes advances in the treatment of late-stage melanoma including use of protein kinase inhibitors, antibody-based immune checkpoint inhibitors, adoptive immunotherapy, vaccines and more recently, small molecules and peptidomimetics as emerging immunoregulatory agents.


Asunto(s)
Melanoma , Peptidomiméticos , Neoplasias Cutáneas , Humanos , Melanoma/terapia , Neoplasias Cutáneas/terapia , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Inmunoterapia , Inmunoterapia Adoptiva , Terapia Molecular Dirigida
3.
Nanoscale ; 16(6): 2993-3005, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38259156

RESUMEN

The aggregation of amyloid proteins in the brain is a significant neurotoxic event that contributes to neurodegenerative disorders. The aggregation of amyloid beta (Aß), particularly Aß42 monomers, into various forms such as oligomers, protofibrils, fibrils, and amyloid plaques is a key pathological feature in Alzheimer's disease. As a result, Aß42 is a primary target and the development of molecular strategies for the dissolution of Aß42 aggregates is considered a promising approach to mitigating Alzheimer's disease pathology. A set of pyrene-conjugated peptidomimetics derived from Aß14-23 (AkdcPy, AkdmPy, and AkdnPy) by incorporating an unnatural amino acid [kd: cyclo(Lys-Asp)] were studied for their ability to modulate Aß42 aggregation. AkdcPy and AkdmPy formed vesicular structures in aqueous media. The vesicles of AkdmPy loaded with the neuroprotective compound berberine (Ber), dissipated mutually in the presence of preformed Aß42 fibrils. During this process, the active drug Ber was released. This work is expected to inspire the development of drug-loaded peptidomimetic-based therapeutic formulations to modulate disorders associated with amyloid toxicity.


Asunto(s)
Enfermedad de Alzheimer , Peptidomiméticos , Humanos , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/metabolismo , Peptidomiméticos/uso terapéutico , Fragmentos de Péptidos/química , Amiloide/química
4.
Curr Med Chem ; 31(10): 1289-1295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37143268

RESUMEN

This patent describes the synthesis of compounds, methods, and compositions for preventing, treating, and/or curing Covid-19, human coronavirus, and enterovirus infections. Some peptidomimetic compounds are very potent and could be a game changer in new treatment therapy for COVID-19.


Asunto(s)
COVID-19 , Infecciones por Enterovirus , Enterovirus , Peptidomiméticos , Humanos , Peptidomiméticos/uso terapéutico
5.
Cell Chem Biol ; 31(3): 593-606.e9, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38039968

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotropic factor that modulates unfolded protein response (UPR) pathway signaling and alleviates endoplasmic reticulum (ER) stress providing cytoprotective effects in different models of neurodegenerative disorders. Here, we developed a brain-penetrating peptidomimetic compound based on human CDNF. This compound called HER-096 shows similar potency and mechanism of action as CDNF, and promotes dopamine neuron survival, reduces α-synuclein aggregation and modulates UPR signaling in in vitro models. HER-096 is metabolically stable and able to penetrate to cerebrospinal (CSF) and brain interstitial fluids (ISF) after subcutaneous administration, with an extended CSF and brain ISF half-life compared to plasma. Subcutaneously administered HER-096 modulated UPR pathway activity, protected dopamine neurons, and reduced α-synuclein aggregates and neuroinflammation in substantia nigra of aged mice with synucleinopathy. Peptidomimetic HER-096 is a candidate for development of a disease-modifying therapy for Parkinson's disease with a patient-friendly route of administration.


Asunto(s)
Enfermedad de Parkinson , Peptidomiméticos , Sinucleinopatías , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Neuronas Dopaminérgicas , alfa-Sinucleína , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Encéfalo , Factores de Crecimiento Nervioso
6.
Inflammation ; 46(6): 2402-2414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37581761

RESUMEN

Mesangial proliferative glomerulonephritis (MsPGN), the most common pathological change in primary glomerulonephritis, is characterized by increased macrophage infiltration into glomeruli, which results in proinflammatory cytokine release. Macrophage infiltration and differentiation are induced by the Janus kinase 2 and signal transducer and activator of the transcription 1 (JAK2/STAT1) pathway. As a suppressor of cytokine signaling 1 (SOCS1) downregulates the immune response by inhibiting the JAK2/STAT1 pathway, we investigated whether a peptide mimicking the SOCS1 kinase inhibitor region, namely, SOCS1 peptidomimetic, protects against nephropathy. Glomerular JAK2/STAT1 pathway activation was synchronized with kidney injury in an MsPGN rat model. Rats treated with the SOCS1 peptidomimetic exhibited reduced pathological glomerular changes and lessened macrophage recruitment. Moreover, in vivo, the phosphorylation of the JAK2/STAT1 pathway was downregulated in infiltrated macrophages of glomeruli. In vitro, the SOCS1 peptidomimetic inhibited macrophage M1 polarization by suppressing JAK2/STAT1 activation. In conclusion, our study demonstrated that the SOCS1 peptidomimetic plays a protective role against pathologic glomerular changes in MsPGN by reducing macrophage infiltration and inhibiting macrophage polarizing to the M1 phenotype. SOCS1 peptidomimetic, therefore, presents a feasible therapeutic strategy to alleviate renal inflammation in MsPGN.


Asunto(s)
Glomerulonefritis , Peptidomiméticos , Ratas , Animales , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Inflamación , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/patología , Citocinas/metabolismo , Macrófagos/metabolismo
7.
Bioorg Med Chem Lett ; 93: 129439, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557925

RESUMEN

Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. We report the design and the parallel synthesis of novel linear oligocyclic guanidine peptidomimetics from predesigned reduced polyamides. A screening of these compounds identified active Mycobacterium tuberculosis DNA gyrase inhibitors which do not inhibit human DNA topoisomerase IIα and topoisomerase I.


Asunto(s)
Mycobacterium tuberculosis , Peptidomiméticos , Tuberculosis , Humanos , Girasa de ADN , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Guanidinas , Técnicas de Síntesis en Fase Sólida , Tuberculosis/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Guanidina
8.
Indian J Pharmacol ; 55(1): 53-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960521

RESUMEN

Novel SARS-CoV-2 (COVID-19) is affecting worldwide as declared pandemic by the WHO. Various repositioning and novel therapeutic agents are being evaluated under different clinical setups; however, there is no promising therapeutic agent reported to date. Small molecules like peptides have their popularity as their specificity, delivery, and synthesizability as promising therapeutic agents. In this study, we have reviewed the published literature describing peptide designing, in silico binding mode, antiviral activity, preventive measures, and in vivo assessments. Here, we reported all the results which are promising against SARS-CoV-2 as therapeutic and preventive (vaccine candidates), and their status in the drug development process.


Asunto(s)
COVID-19 , Peptidomiméticos , Humanos , SARS-CoV-2 , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Reposicionamiento de Medicamentos , Antivirales/uso terapéutico , Antivirales/química , Péptidos/uso terapéutico
9.
Sci Rep ; 13(1): 5099, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991169

RESUMEN

OCS-05 (aka BN201) is a peptidomimetic that binds to serum glucocorticoid kinase-2 (SGK2), displaying neuroprotective activity. The objective of this randomized, double-blind 2-part study was to test safety and pharmacokinetics of OCS-05 administered by intravenous (i.v.) infusion in healthy volunteers. Subjects (n = 48) were assigned to receive placebo (n = 12) or OCS-05 (n = 36). , Doses tested were 0.05, 0.2, 0.4, 0.8, 1.6, 2.4 and 3.2 mg/kg in the single ascending dose (SAD) part. In the multiple ascending dose (MAD) part, 2.4 and 3.0 mg/kg doses were administered with 2 h i.v. infusion for 5 consecutive days. Safety assessments included adverse events, blood tests, ECG, Holter monitoring, brain MRI and EEG. No serious adverse events were reported in the OCS-05 group (there was one serious adverse event in the placebo group). Adverse events reported in the MAD part were not clinically significant, and no changes on the ECG, EEG or brain MRI were observed. Single-dose (0.05-3.2 mg/kg) exposure (Cmax and AUC) increased in a dose-proportional manner. Steady state was reached by Day 4 and no accumulation was observed. Elimination half-life ranged from 3.35 to 8.23 h (SAD) and 8.63 to 12.2 h (MAD). Mean individual Cmax concentrations in the MAD part were well below the safety thresholds. OCS-05 administered as 2-h i.v. infusions of multiple doses up to 3.0 mg/Kg daily for up to 5 consecutive days was safe and well tolerated. Based on this safety profile, OCS-05 is currently being tested in a phase 2 trial in patient with acute optic neuritis (NCT04762017, date registration 21/02/2021).


Asunto(s)
Esclerosis Múltiple , Peptidomiméticos , Humanos , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Electrocardiografía Ambulatoria , Voluntarios Sanos , Esclerosis Múltiple/tratamiento farmacológico , Peptidomiméticos/uso terapéutico
10.
Clin Drug Investig ; 43(1): 13-22, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36462104

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has swept the whole world and brought about a public health crisis of unprecedented proportions. To combat the rapid transmission and possible deaths due to the disease, researchers and companies around the world are developing all possible strategies. Due to the advantages of safety, specificity, and fewer adverse effects, polypeptide and peptidomimetic drugs are considered promising strategies. This review comprehensively summarizes and discusses the progress in development of peptide drugs for use in the treatment of COVID-19. Based on the latest results in this field, we divided them into clinically approved drugs, clinical trial drugs, and clinically ineffective drugs, and outlined the molecular targets and mechanisms of action one by one to reveal their feasibility as promising therapeutic agents for COVID-19. Notably, monoclonal antibodies have shown beneficial effects in the early stages of infection, while Paxlovid can significantly reduce hospitalization and mortality among non-vaccinated patients. Among clinical experimental drugs, both the interleukin-1 receptor antagonist anakinra and the bradykinin B2 receptor antagonist icatibant are well tolerated and effective in patients with COVID-19, but long-term trials are needed to confirm the durability of efficacy.


Asunto(s)
COVID-19 , Peptidomiméticos , Humanos , COVID-19/prevención & control , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales/efectos adversos
11.
Mol Med ; 28(1): 146, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476230

RESUMEN

The low efficiency of treatment strategies is one of the main obstacles to developing cancer inhibitors. Up to now, various classes of therapeutics have been developed to inhibit cancer progression. Peptides due to their small size and easy production compared to proteins are highly regarded in designing cancer vaccines and oncogenic pathway inhibitors. Although peptides seem to be a suitable therapeutic option, their short lifespan, instability, and low binding affinity for their target have not been widely applicable against malignant tumors. Given the peptides' disadvantages, a new class of agents called peptidomimetic has been introduced. With advances in physical chemistry and biochemistry, as well as increased knowledge about biomolecule structures, it is now possible to chemically modify peptides to develop efficient peptidomimetics. In recent years, numerous studies have been performed to the evaluation of the effectiveness of peptidomimetics in inhibiting metastasis, angiogenesis, and cancerous cell growth. Here, we offer a comprehensive review of designed peptidomimetics to diagnose and treat cancer.


Asunto(s)
Neoplasias , Peptidomiméticos , Humanos , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Péptidos
12.
Biomolecules ; 12(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36139079

RESUMEN

Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.


Asunto(s)
Péptidos Opioides , Peptidomiméticos , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Descubrimiento de Drogas , Péptidos Opioides/química , Péptidos Opioides/farmacología , Péptidos Opioides/uso terapéutico , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Receptores Opioides
13.
Eur J Med Chem ; 238: 114460, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35597010

RESUMEN

Parasitic cysteine proteases such as rhodesain (TbCatL) from Trypanosoma brucei rhodesiense are relevant targets for developing new potential drugs against parasitic diseases (e. g. Human African Trypanosomiasis). Designing selective inhibitors for parasitic cathepsins can be challenging as they share high structural similarities with human cathepsins. In this paper, we describe the development of novel peptidomimetic rhodesain inhibitors by applying a structure-based de novo design approach and molecular docking protocols. The inhibitors with a new scaffold in P2 and P3 position display high selectivity towards trypanosomal rhodesain over human cathepsins L and B and high antitrypanosomal activity. Vinylsulfonate 2a has emerged as a potent rhodesain inhibitor (k2nd = 883 • 103 M-1 s-1) with single-digit nanomolar binding affinity (Ki = 9 nM) and more than 150-fold selectivity towards human cathepsins and it thus constitutes an interesting starting compound for the further development of selective drugs against Human African Trypanosomiasis.


Asunto(s)
Peptidomiméticos , Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Catepsinas , Cisteína Endopeptidasas , Inhibidores de Cisteína Proteinasa/química , Humanos , Simulación del Acoplamiento Molecular , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Relación Estructura-Actividad , Tripanocidas/farmacología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico
14.
J Pharmacol Sci ; 149(3): 124-138, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35641025

RESUMEN

Protein-protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Helianthus , Peptidomiméticos , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Antígenos CD58/química , Antígenos CD58/metabolismo , Helianthus/química , Helianthus/metabolismo , Humanos , Inmunidad , Inmunomodulación , Ratones , Péptidos/farmacología , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Inhibidores de Tripsina/uso terapéutico
15.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054860

RESUMEN

Based on the mechanism of neuropathic pain induction, a new type of bifunctional hybrid peptidomimetics was obtained for potential use in this type of pain. Hybrids consist of two types of pharmacophores that are connected by different types of linkers. The first pharmacophore is an opioid agonist, and the second pharmacophore is an antagonist of the pronociceptive system, i.e., an antagonist of the melanocortin-4 receptor. The results of tests in acute and neuropathic pain models of the obtained compounds have shown that the type of linker used to connect pharmacophores had an effect on antinociceptive activity. Peptidomimetics containing longer flexible linkers were very effective at low doses in the neuropathic pain model. To elucidate the effect of linker lengths, two hybrids showing very high activity and two hybrids with lower activity were further tested for affinity for opioid (mu, delta) and melanocortin-4 receptors. Their complexes with the target receptors were also studied by molecular modelling. Our results do not show a simple relationship between linker length and affinity for particular receptor types but suggest that activity in neuropathic pain is related to a proper balance of receptor affinity rather than maximum binding to any or all of the target receptors.


Asunto(s)
Melanocortinas/química , Neuralgia/tratamiento farmacológico , Peptidomiméticos/uso terapéutico , Secuencia de Aminoácidos , Analgésicos , Animales , Sitios de Unión , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
17.
Curr Drug Discov Technol ; 19(2): e211221199189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34939544

RESUMEN

BACKGROUND: Diabetes affects millions of people worldwide, with predicted numbers of about 700 million adults affected by 2045. Among the several anti-diabetic drug therapies available in the market, Dipeptidyl Peptidase-4 (DPP-4) inhibitors have emerged as a promising therapeutic approach with scope for exploration in the segment of peptidomimetics. OBJECTIVE: Series of proline-containing peptidomimetic compounds were designed and investigated for their drug-likeness through Lipinski's rule of five, lead-likeness through the rule of three, predictive pharmacokinetic studies (absorption, distribution, metabolism, and excretion), and toxicity properties through in-silico approaches. The designed compounds were evaluated for their interactions with binding sites of the enzyme DPP-4 using an extra precision docking approach. METHODS: Proline-containing peptidomimetic compounds were designed rationally. Drug-likeness and lead-likeness properties were calculated using Schrödinger Maestro v11.2 software. ADME and toxicity properties were predicted using PreADMET version 2.0. Docking study was performed using Schrödinger Maestro v11.2 software, and ligands for the study were designed using MarvinSketch software. RESULTS: 5(S)-methyl-L-proline containing 17 ligands were designed. All of them were found to obey Lipinski's rule of five. Compounds were found to have good ADME profile and low toxicity predictions. CONCLUSION: Four compounds were found to have good interactions with DPP-4 binding sites and hence created the scope to develop DPP-4 inhibitors containing 5(S)-methyl-L-proline moiety.


Asunto(s)
Diabetes Mellitus , Inhibidores de la Dipeptidil-Peptidasa IV , Peptidomiméticos , Diabetes Mellitus/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Prolina/farmacología , Prolina/uso terapéutico
18.
Molecules ; 26(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833851

RESUMEN

The vascular endothelial growth factor (VEGF) family of cytokines plays a key role in vasculogenesis, angiogenesis, and lymphangiogenesis. VEGF-A is the main member of this family, alongside placental growth factor (PlGF), VEGF-B/C/D in mammals, and VEGF-E/F in other organisms. To study the activities of these growth factors under physiological and pathological conditions, resulting in therapeutic applications in cancer and age-related macular degeneration, blocking ligands have been developed. These have mostly been large biomolecules like antibodies. Ligands with high affinities, at least in the nanomolar range, and accurate structural data from X-ray crystallography and NMR spectroscopy have been described. They constitute the main focus of this overview, which evidences similarities and differences in their binding modes. For VEGF-A ligands, and to a limited extent also for PlGF, a transition is now observed towards developing smaller ligands like nanobodies and peptides. These include unnatural amino acids and chemical modifications for designed and improved properties, such as serum stability and greater affinity. However, this review also highlights the scarcity of such small molecular entities and the striking lack of small organic molecule ligands. It also shows the gap between the rather large array of ligands targeting VEGF-A and the general absence of ligands binding other VEGF members, besides some antibodies. Future developments in these directions are expected in the upcoming years, and the study of these growth factors and their promising therapeutic applications will be welcomed.


Asunto(s)
Inhibidores de la Angiogénesis , Degeneración Macular , Neoplasias , Neovascularización Patológica , Peptidomiméticos , Factores de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Humanos , Ligandos , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Degeneración Macular/patología , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Peptidomiméticos/química , Peptidomiméticos/uso terapéutico , Factores de Crecimiento Endotelial Vascular/química , Factores de Crecimiento Endotelial Vascular/uso terapéutico
19.
Curr Top Med Chem ; 21(28): 2574-2592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34315367

RESUMEN

Peptidomimetics are studied for medicinal application because of their ability to mimic hierarchical structures of peptides and proteins. To break the limitation and expand the peptidomimetics family, a new class of peptidomimetics based on peptide nucleic acids (PNAs) backbone - "γ-AApeptides" was developed. Compared with previous peptidomimetics, γ-AApeptides possess prominent advantages such as resistance to proteolytic degradation, enhanced chemodiversity, good selectivity and outstanding bioactivity. The synthesis of γ-AApeptides is carried out using a ''monomer building block'' strategy which is facile and efficient. γ-AApeptides are able to mimic primary and secondary structures of therapeutic peptides, which make them promising candidates for molecular probes and potential drug leads. In the past decade, several interesting structures and applications of γ-AApeptides have been developed by different approaches such as structure-based design, combinatorial library screening, and peptides selfassembly and folding. By following the mechanism of host-defense peptides (HDPs), antibiotic γ- AApeptides showed broad-spectrum activity. At the same time, γ-AApeptides can be used for combinatorial library screening because of their structural stability and their chemodiversity. Anticancer agents, anti-T2DM (Type 2 diabetes mellitus) agents, anti-HIV (human immuno-deficiency virus) agents and anti-Alzheimer's disease agents were developed by combinatorial screening and rational design. Furthermore, γ-AApeptides as biopolymers, nanomaterials, supramolecular structures and self-assembly architectures were studied due to their unique backbone structures. Therefore, γ-AApeptides may play an important role in the development of peptidomimetics.


Asunto(s)
Amidas/farmacología , Amidas/uso terapéutico , Diseño de Fármacos , Peptidomiméticos/clasificación , Peptidomiméticos/síntesis química , Enfermedad de Alzheimer/tratamiento farmacológico , Amidas/síntesis química , Amidas/clasificación , Animales , Fármacos Anti-VIH , Antineoplásicos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Peptidomiméticos/química , Peptidomiméticos/uso terapéutico
20.
Curr Protein Pept Sci ; 22(7): 526-533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34137361

RESUMEN

Neurodegenerative diseases have emerged as one of the major age-associated diseases in recent years. Hence, the urge to understand the mechanism and to find targeted therapeutics becomes inevitable. Peptide-based compounds have emerged as one of the important tools for their therapy. However, due to a lack of tolerability, specificity, and proteolytic degradation, they have lost their applicability in the broader sense. Thus, the search for suitable alternatives or peptidomimetics becomes an important criterion for neurotherapeutics. One of the versatile peptidomimetics is N-substituted glycines or peptoids, which retain many properties of peptides but successfully evade the drawbacks of peptides. Peptoids are manifested with greater cellular permeability, less immunogenicity, and their ability to be administered intra-nasally. These properties enhance their potential as neurotherapeutics with respect to their peptide counterparts. Recently, peptoids have been explored for neurotherapeutic applications as aggregation inhibitors, cell signaling pathways modulators, and agents for inhibiting inflammation via multiple mechanisms. Peptoids, due to their versatility and low production cost, are becoming popular among peptidomimetics as potential neurotherapeutic agents. In this review, the diverse applications of peptoids with respect to neurodegenerative disease have been explored.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Peptidomiméticos/uso terapéutico , Peptoides/uso terapéutico , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...