Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.364
Filtrar
1.
Sci Rep ; 14(1): 10011, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693174

RESUMEN

Interacting with the environment often requires the integration of visual and haptic information. Notably, perceiving external objects depends on how our brain binds sensory inputs into a unitary experience. The feedback provided by objects when we interact (through our movements) with them might then influence our perception. In VR, the interaction with an object can be dissociated by the size of the object itself by means of 'colliders' (interactive spaces surrounding the objects). The present study investigates possible after-effects in size discrimination for virtual objects after exposure to a prolonged interaction characterized by visual and haptic incongruencies. A total of 96 participants participated in this virtual reality study. Participants were distributed into four groups, in which they were required to perform a size discrimination task between two cubes before and after 15 min of a visuomotor task involving the interaction with the same virtual cubes. Each group interacted with a different cube where the visual (normal vs. small collider) and the virtual cube's haptic (vibration vs. no vibration) features were manipulated. The quality of interaction (number of touches and trials performed) was used as a dependent variable to investigate the performance in the visuomotor task. To measure bias in size perception, we compared changes in point of subjective equality (PSE) before and after the task in the four groups. The results showed that a small visual collider decreased manipulation performance, regardless of the presence or not of the haptic signal. However, change in PSE was found only in the group exposed to the small visual collider with haptic feedback, leading to increased perception of the cube size. This after-effect was absent in the only visual incongruency condition, suggesting that haptic information and multisensory integration played a crucial role in inducing perceptual changes. The results are discussed considering the recent findings in visual-haptic integration during multisensory information processing in real and virtual environments.


Asunto(s)
Realidad Virtual , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Percepción Visual/fisiología , Adulto Joven , Desempeño Psicomotor/fisiología , Percepción del Tacto/fisiología , Percepción del Tamaño/fisiología
2.
Atten Percept Psychophys ; 86(4): 1067-1074, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38639857

RESUMEN

The link between various codes of magnitude and their interactions has been studied extensively for many years. In the current study, we examined how the physical and numerical magnitudes of digits are mapped into a combined mental representation. In two psychophysical experiments, participants reported the physically larger digit among two digits. In the identical condition, participants compared digits of an identical value (e.g., "2" and "2"); in the different condition, participants compared digits of distinct numerical values (i.e., "2" and "5"). As anticipated, participants overestimated the physical size of a numerically larger digit and underestimated the physical size of a numerically smaller digit. Our results extend the shared-representation account of physical and numerical magnitudes.


Asunto(s)
Juicio , Reconocimiento Visual de Modelos , Percepción del Tamaño , Humanos , Reconocimiento Visual de Modelos/fisiología , Masculino , Femenino , Adulto Joven , Psicofísica , Adulto , Atención , Discriminación en Psicología
3.
Sci Rep ; 14(1): 6434, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499578

RESUMEN

Perceptual grouping is impaired following mild traumatic brain injury (mTBI). This may affect visual size perception, a process influenced by perceptual grouping abilities. We conducted two experiments to evaluate visual size perception in people with self-reported history of mTBI, using two different size-contrast illusions: the Ebbinghaus Illusion (Experiment 1) and the Müller-Lyer illusion (Experiment 2). In Experiment 1, individuals with mTBI and healthy controls were asked to compare the size of two target circles that were either the same size or different sizes. The target circles appeared by themselves (no-context condition), or were surrounded by smaller or larger circles (context condition). Similar levels of accuracy were evident between the groups in the no-context condition. However, size judgements by mTBI participants were more accurate in the context condition, suggesting that they processed the target circles separately from the surrounding circles. In Experiment 2, individuals with mTBI and healthy controls judged the length of parallel lines that appeared with arrowheads (context condition) or without arrowheads (no context condition). Consistent with Experiment 1, size judgements by mTBI participants were more accurate than size judgements by control participants in the context condition. These findings suggest that mTBI influences size perception by impairing perceptual grouping of visual stimuli in near proximity.


Asunto(s)
Conmoción Encefálica , Ilusiones , Ilusiones Ópticas , Humanos , Percepción Visual , Percepción del Tamaño , Juicio
4.
Atten Percept Psychophys ; 86(4): 1287-1302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514597

RESUMEN

Ensemble perception refers to the ability to accurately and rapidly perceive summary statistical representations of specific features from a group of similar objects. However, the specific type of representation involved in this perception within a three-dimensional (3-D) environment remains unclear. In the context of perspective viewing with stereopsis, distal stimuli can be projected onto the retina as different forms of proximal stimuli based on their distances, despite sharing similar properties, such as object size and spatial frequency. This study aimed to investigate the effects of distal and proximal stimuli on the perception of summary statistical information related to orientation. In our experiment, we presented multiple Gabor patches in a stereoscopic environment, allowing us to measure the discrimination threshold of the mean orientation. The object size and spatial frequency were fixed for all patches regardless of depth. However, the physical angular size and absolute spatial frequency covaried with the depth. The results revealed the threshold elevation with depth expansion, especially when the patches formed two clusters at near and far distances, leading to large variations in their retinotopic representations. This finding indicates a minor contribution of similarity of the distal stimuli. Subsequent experiments demonstrated that the variability in physical angular size of the patches significantly influenced the threshold elevation in contrast to that of binocular disparity and absolute spatial frequency. These findings highlight the critical role of physical angular size variability in perceiving mean orientations within the 3-D space.


Asunto(s)
Percepción de Profundidad , Discriminación en Psicología , Humanos , Percepción de Profundidad/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Orientación , Reconocimiento Visual de Modelos/fisiología , Disparidad Visual/fisiología , Percepción del Tamaño , Percepción Espacial/fisiología
5.
Exp Brain Res ; 242(5): 1047-1060, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467759

RESUMEN

Electrotactile stimulation through matrix electrodes is a promising technology to restore high-resolution tactile feedback in extended reality applications. One of the fundamental tactile effects that should be simulated is the change in the size of the contact between the finger and a virtual object. The present study investigated how participants perceive the increase of stimulation area when stimulating the index finger using static or dynamic (moving) stimuli produced by activating 1 to 6 electrode pads. To assess the ability to interpret the stimulation from the natural cues (natural decoding), without any prior training, the participants were instructed to draw the size of the stimulated area and identify the size difference when comparing two consecutive stimulations. To investigate if other "non-natural" cues can improve the size estimation, the participants were asked to enumerate the number of active pads following a training protocol. The results demonstrated that participants could perceive the change in size without prior training (e.g., the estimated area correlated with the stimulated area, p < 0.001; ≥ two-pad difference recognized with > 80% success rate). However, natural decoding was also challenging, as the response area changed gradually and sometimes in complex patterns when increasing the number of active pads (e.g., four extra pads needed for the statistically significant difference). Nevertheless, by training the participants to utilize additional cues the limitations of natural perception could be compensated. After the training, the mismatch in the activated and estimated number of pads was less than one pad regardless of the stimulus size. Finally, introducing the movement of the stimulus substantially improved discrimination (e.g., 100% median success rate to recognize ≥ one-pad difference). The present study, therefore, provides insights into stimulation size perception, and practical guidelines on how to modulate pad activation to change the perceived size in static and dynamic scenarios.


Asunto(s)
Señales (Psicología) , Dedos , Percepción del Tacto , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Dedos/fisiología , Percepción del Tacto/fisiología , Estimulación Eléctrica/métodos , Tacto/fisiología , Percepción del Tamaño/fisiología , Estimulación Física
6.
Neuropsychologia ; 196: 108838, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401629

RESUMEN

To achieve a stable perception of object size in spite of variations in viewing distance, our visual system needs to combine retinal image information and distance cues. Previous research has shown that, not only retinal cues, but also extraretinal sensory signals can provide reliable information about depth and that different neural networks (perception versus action) can exhibit preferences in the use of these different sources of information during size-distance computations. Semantic knowledge of distance, a purely cognitive signal, can also provide distance information. Do the perception and action systems show differences in their ability to use this information in calculating object size and distance? To address this question, we presented 'glow-in-the-dark' objects of different physical sizes at different real distances in a completely dark room. Participants viewed the objects monocularly through a 1-mm pinhole. They either estimated the size and distance of the objects or attempted to grasp them. Semantic knowledge was manipulated by providing an auditory cue about the actual distance of the object: "20 cm", "30 cm", and "40 cm". We found that semantic knowledge of distance contributed to some extent to size constancy operations during perceptual estimation and grasping, but size constancy was never fully restored. Importantly, the contribution of knowledge about distance to size constancy was equivalent between perception and action. Overall, our study reveals similarities and differences between the perception and action systems in the use of semantic distance knowledge and suggests that this cognitive signal is useful but not a reliable depth cue for size constancy under restricted viewing conditions.


Asunto(s)
Anomalías Múltiples , Percepción de Distancia , Humanos , Señales (Psicología) , Semántica , Fuerza de la Mano , Percepción del Tamaño , Percepción de Profundidad
7.
Atten Percept Psychophys ; 86(3): 931-941, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418807

RESUMEN

There is an increasing body of evidence suggesting that there are low-level perceptual processes involved in crossmodal correspondences. In this study, we investigate the involvement of the superior colliculi in three basic crossmodal correspondences: elevation/pitch, lightness/pitch, and size/pitch. Using a psychophysical design, we modulate visual input to the superior colliculus to test whether the superior colliculus is required for behavioural crossmodal congruency effects to manifest in an unspeeded multisensory discrimination task. In the elevation/pitch task, superior colliculus involvement is required for a behavioural elevation/pitch congruency effect to manifest in the task. In the lightness/pitch and size/pitch task, we observed a behavioural elevation/pitch congruency effect regardless of superior colliculus involvement. These results suggest that the elevation/pitch correspondence may be processed differently to other low-level crossmodal correspondences. The implications of a distributed model of crossmodal correspondence processing in the brain are discussed.


Asunto(s)
Reconocimiento Visual de Modelos , Colículos Superiores , Humanos , Colículos Superiores/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Reconocimiento Visual de Modelos/fisiología , Percepción del Tamaño/fisiología , Atención/fisiología , Discriminación de la Altura Tonal/fisiología , Asociación , Psicoacústica , Orientación/fisiología
8.
J Vis ; 24(2): 14, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411955

RESUMEN

In the real world, every object has its canonical distance from observers. For example, airplanes are usually far away from us, whereas eyeglasses are close to us. Do we have an internal representation of the canonical real-world distance of objects in our cognitive system? If we do, does the canonical distance influence the perceived size of an object? Here, we conducted two experiments to address these questions. In Experiment 1, we first asked participants to rate the canonical distance of objects. Participants gave consistent ratings to each object. Then, pairs of object images were presented one by one in a trial, and participants were asked to rate the distance of the second object (i.e., a priming paradigm). We found that the rating of the perceived distance of the target object was modulated by the canonical real-world distance of the prime. In Experiment 2, participants were asked to judge the perceived size of canonically near or far objects that were presented at the converging end (i.e., far location) or the opening end (i.e., near location) of a background image with converging lines. We found that regardless of the presentation location, participants perceived the canonically near object as smaller than the canonically far object even though their retinal and real-world sizes were matched. In all, our results suggest that we have an internal representation of the canonical real-world distance of objects, which affects the perceived distance of subsequent objects and the perceived size of the objects themselves.


Asunto(s)
Percepción de Distancia , Retina , Percepción del Tamaño , Percepción Visual , Humanos
9.
Neuropsychologia ; 193: 108746, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38081353

RESUMEN

A stable representation of object size, in spite of continuous variations in retinal input due to changes in viewing distance, is critical for perceiving and acting in a real 3D world. In fact, our perceptual and visuo-motor systems exhibit size and grip constancies in order to compensate for the natural shrinkage of the retinal image with increased distance. The neural basis of this size-distance scaling remains largely unknown, although multiple lines of evidence suggest that size-constancy operations might take place remarkably early, already at the level of the primary visual cortex. In this study, we examined for the first time the temporal dynamics of size constancy during perception and action by using a combined measurement of event-related potentials (ERPs) and kinematics. Participants were asked to maintain their gaze steadily on a fixation point and perform either a manual estimation or a grasping task towards disks of different sizes placed at different distances. Importantly, the physical size of the target was scaled with distance to yield a constant retinal angle. Meanwhile, we recorded EEG data from 64 scalp electrodes and hand movements with a motion capture system. We focused on the first positive-going visual evoked component peaking at approximately 90 ms after stimulus onset. We found earlier latencies and greater amplitudes in response to bigger than smaller disks of matched retinal size, regardless of the task. In line with the ERP results, manual estimates and peak grip apertures were larger for the bigger targets. We also found task-related differences at later stages of processing from a cluster of central electrodes, whereby the mean amplitude of the P2 component was greater for manual estimation than grasping. Taken together, these findings provide novel evidence that size constancy for real objects at real distances occurs at the earliest cortical stages and that early visual processing does not change as a function of task demands.


Asunto(s)
Percepción de Distancia , Percepción Visual , Humanos , Percepción de Distancia/fisiología , Fenómenos Biomecánicos , Movimiento , Electroencefalografía , Percepción del Tamaño/fisiología
10.
Atten Percept Psychophys ; 86(2): 567-578, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37386344

RESUMEN

Time and space are intimately related to each other. Previous evidence has shown that stimulus size can affect perceived duration even when size differences are illusory. In the present study, we investigated the effect of visual-spatial illusions on duration judgments in a temporal reproduction paradigm. Specifically, we induced the Ebbinghaus illusion (Exp. 1) and the horizontal-vertical illusion (Exp. 2) during the encoding phase of the target interval or the reproduction phase. The results showed (a) that illusory size affects temporal processing similarly to the way physical size does, (b) that the effect is independent of whether the illusion appeared during encoding or reproduction, and (c) that the interference between size and temporal processing is bidirectional. These results suggest a rather late locus of size-time interference in the processing stream.


Asunto(s)
Ilusiones , Ilusiones Ópticas , Percepción del Tiempo , Humanos , Percepción del Tamaño , Juicio , Percepción Visual
11.
Exp Brain Res ; 242(2): 429-442, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147086

RESUMEN

Müller-Lyer (ML) figures bias size estimation consistently, yet different methods can lead to different degrees of illusory bias. Autistic individuals may also be less likely to perceive illusory biases with varying levels of autistic trait expression proposed to modulate reported illusory biases. The Autism-Spectrum Quotient (AQ) and Systemizing Quotient (SQ) are self-report measures that quantify autistic trait expression and systemizing ability in neurotypical individuals. The current study sought to determine if perceptions of illusory size bias negatively correlate with autistic trait expression and the extent to which varying methods of illusion presentation change the magnitude of illusory bias. Thirty neurotypical adults completed both questionnaires as well as four size estimation tasks. Two tasks involved perceptual discrimination of ML figures by concurrent and successive presentation, where participants selected the longer figure by keypress. For Tasks 3 and 4, participants adjusted the size of a non-illusory line (Task 3) or complementary illusory figure (Task 4) to match the perceived length. Overall, task performance was not correlated with autistic trait expression. One exception was a negative correlation with AQ when adjusting a complementary illusory ML figure in Task 4. Illusory biases were also stronger when two illusory figures were presented concurrently. Given these results, illusion susceptibility to the ML is suggested to be reduced with increases in AQ, but only when the method of illusion measurement is adjustment of concurrent illusory figures. Taken together the results provide evidence that traits associated with autism in a neurotypical population may systematically modulate perception.


Asunto(s)
Trastorno Autístico , Ilusiones Ópticas , Adulto , Humanos , Percepción del Tamaño , Fenotipo , Autoinforme
12.
Sci Rep ; 13(1): 20075, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974023

RESUMEN

Changes in perceived eye height influence visually perceived object size in both the real world and in virtual reality. In virtual reality, conflicts can arise between the eye height in the real world and the eye height simulated in a VR application. We hypothesized that participants would be influenced more by variation in simulated eye height when they had a clear expectation about their eye height in the real world such as when sitting or standing, and less so when they did not have a clear estimate of the distance between their eyes and the real-life ground plane, e.g., when lying supine. Using virtual reality, 40 participants compared the height of a red square simulated at three different distances (6, 12, and 18 m) against the length of a physical stick (38.1 cm) held in their hands. They completed this task in all combinations of four real-life postures (supine, sitting, standing, standing on a table) and three simulated eye heights that corresponded to each participant's real-world eye height (123cm sitting; 161cm standing; 201cm on table; on average). Confirming previous results, the square's perceived size varied inversely with simulated eye height. Variations in simulated eye height affected participants' perception of size significantly more when sitting than in the other postures (supine, standing, standing on a table). This shows that real-life posture can influence the perception of size in VR. However, since simulated eye height did not affect size estimates less in the lying supine than in the standing position, our hypothesis that humans would be more influenced by variations in eye height when they had a reliable estimate of the distance between their eyes and the ground plane in the real world was not fully confirmed.


Asunto(s)
Postura , Percepción del Tamaño , Humanos , Posición de Pie , Ojo , Sedestación
13.
Sci Rep ; 13(1): 21134, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036762

RESUMEN

Previous research has shown that neural activity in the primary visual cortex (V1) and V1 surface area may be linked with subjective experience of size illusions. Here, we behaviorally measured the hallway illusion with experimental manipulations as a proxy of V1's influence on size perception. We first tested whether the hallway illusion can persist without further recurrent processing by using backward masking. Next, we examined relations among the hallway illusion magnitude and other perceptual measures that have been suggested to be correlated with V1 surface area. In Experiment 1, the magnitude of the hallway illusion was not affected by the stimulus duration and visual masking when the hallway context was previewed (i.e., complex depth information is already processed). It suggests that V1 activity could support the size illusion to some extent even when recurrent processing between V1 and higher areas is disturbed. In Experiment 2, the hallway illusion magnitude was correlated with the Vernier acuity threshold, but not with physical size discriminability. Our results provide converging evidence with the previous findings in that neural activity in V1 may contribute to size illusions and that V1 surface area is not the sole factor that mediates size perception and visual precision.


Asunto(s)
Ilusiones , Corteza Visual , Humanos , Corteza Visual Primaria , Estimulación Luminosa/métodos , Percepción del Tamaño , Percepción Visual
14.
PLoS One ; 18(9): e0287474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37676917

RESUMEN

Vision has been shown to be an active process that can be shaped by top-down influences. Here, we add to this area of research by showing a surprising example of how visual perception can be affected by cognition (i.e., cognitive penetration). Observers were presented, on each trial, with a picture of a computer-generated football player and asked to rate the slenderness of the player on an analog scale. The results of two experiments showed that observers perceived athletes wearing small jersey numbers as more slender than those with high numbers. This finding suggests that the cognition of numbers quantitatively alters body size perception. We conjecture that this effect is the result of previously learned associations (i.e., prior expectations) affecting perceptual inference. Such associations are likely the result of implicit learning of the statistical regularities of number and size attributes co-occurrences by the nervous system. We discuss how these results are consistent with previous research on statistical learning and how they fit into the Bayesian framework of perception. The current finding supports the notion of top-down influences of cognition on perception.


Asunto(s)
Cognición , Percepción del Tamaño , Humanos , Teorema de Bayes , Aprendizaje , Atletas
15.
Perception ; 52(7): 459-483, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37335155

RESUMEN

The Ebbinghaus and Delboeuf illusions affect the perceived size of a target circle depending on the size and proximity of circular inducers or a ring. Converging evidence suggests that these illusions are driven by interactions between contours mediated by their cortical distance in primary visual cortex. We tested the effect of cortical distance on these illusions using two methods: First, we manipulated retinal distance between target and inducers in a two-interval forced choice design, finding that targets appeared larger with a closer surround. Next, we predicted that targets presented peripherally should appear larger due to cortical magnification. Hence, we tested the illusion strength when positioning the stimuli at various eccentricities, with results supporting this hypothesis. We calculated estimated cortical distances between illusion elements in each experiment and used these estimates to compare the relationship between cortical distance and illusion strength across our experiments. In a final experiment, we modified the Delboeuf illusion to test whether the influence of the inducers/annuli in this illusion is influenced by an inhibitory surround. We found evidence that an additional outer ring makes targets appear smaller compared to a single-ring condition, suggesting that near and distal contours have antagonistic effects on perceived target size.


Asunto(s)
Ilusiones , Ilusiones Ópticas , Humanos , Percepción del Tamaño , Gravitación , Retina
16.
Cortex ; 166: 80-90, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37343313

RESUMEN

Three-dimensional (3D) depth information is important to estimate object sizes. The visual system extracts 3D depth information using both binocular cues and monocular cues. However, how these different depth signals interact with each other to compute the object size in 3D space is unclear. Here, we aim to study the relative contribution of monocular and binocular depth information to size perception in a modified Ponzo context by manipulating their relations in a virtual reality environment. Specifically, we compared the amount of the size illusion in the following two conditions, in which monocular cues and binocular disparity in the Ponzo context can indicate the same depth sign (congruent) or opposite depth sign (incongruent). Our results show an increase in the amount of the Ponzo illusion in the congruent condition. In contrast, in the incongruent condition, we find that the two cues indicating the opposite depth signs do not cancel out the Ponzo illusion, suggesting that the effects of the two cues are not equal. Rather, binocular disparity information seems to be suppressed and the size judgment is mainly dependent on the monocular depth information when the two cues are in conflict. Our results suggest that monocular and binocular depth signals are fused for size perception only when they both indicate the same depth sign and top-down 3D depth information based on monocular cues contributes more to size perception than binocular disparity when they are in conflict in virtual reality.


Asunto(s)
Ilusiones , Realidad Virtual , Humanos , Percepción de Profundidad , Visión Binocular , Señales (Psicología) , Percepción del Tamaño
17.
Perception ; 52(8): 545-575, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37248612

RESUMEN

Ponzo is a familiar name in psychology because of the illusion that takes his name. He had a long and productive career in Italy, and some of his work was translated for international journals already in his lifetime. However, few of these papers are available in English. We provide a commentary that considers how his name came to be associated with an illusion he did not discover. We explain the content of several papers, some of which are often cited in a wrong context in the literature (i.e., papers on touch mentioned in relation to the Ponzo illusion). More importantly, we discuss his contribution to the study of perceived numerosity, and provide a full translation of his important 1928 paper, including a redrawing of its 28 illustrations.


Asunto(s)
Ilusiones , Ilusiones Ópticas , Percepción del Tacto , Masculino , Humanos , Italia , Percepción del Tamaño
18.
Perception ; 52(7): 484-501, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37229751

RESUMEN

We performed four experiments to investigate whether people can perceive the length of a target object (a "fish") that is attached to a freely wielded object (the "fishing pole") by a length of string, and if so, whether this ability is grounded in the sensitivity of the touch system to invariant mechanical parameters that describe the forces and torques required to move the target object. In particular, we investigated sensitivity to mass, static moment, and rotational inertia-the forces required to keep an object from falling due to gravity, the torque required to keep an object from rotating due to gravity, and the torques required to actively rotate an object in different directions, respectively. We manipulated the length of the target object (Experiment 1), the mass of the target object (Experiment 2), and the mass distribution of the target object (Experiments 3 and 4). Overall, the results of the four experiments showed that participants can perform this task. Moreover, when the task is configured such that it more closely approximates a wielding at a distance task, the ability to do so is grounded in sensitivity to such forces and torques.


Asunto(s)
Percepción del Tamaño , Percepción del Tacto , Humanos , Tacto
19.
Sci Rep ; 13(1): 6594, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087480

RESUMEN

Visual illusions are a gateway to understand how we construct our experience of reality. Unfortunately, important questions remain open, such as the hypothesis of a common factor underlying the sensitivity to different types of illusions, as well as of personality correlates of illusion sensitivity. In this study, we used a novel parametric framework for visual illusions to generate 10 different classic illusions (Delboeuf, Ebbinghaus, Rod and Frame, Vertical-Horizontal, Zöllner, White, Müller-Lyer, Ponzo, Poggendorff, Contrast) varying in strength, embedded in a perceptual discrimination task. We tested the objective effect of the illusions on errors and response times, and extracted participant-level performance scores (n=250) for each illusion. Our results provide evidence in favour of a general factor underlying the sensitivity to different illusions (labelled Factor i). Moreover, we report a positive link between illusion sensitivity and personality traits such as Agreeableness, Honesty-Humility, and negative relationships with Psychoticism, Antagonism, Disinhibition, and Negative Affect.


Asunto(s)
Ilusiones , Ilusiones Ópticas , Humanos , Percepción del Tamaño , Trastornos de la Personalidad , Personalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...