Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Cancer Immunol Immunother ; 73(5): 78, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554152

RESUMEN

BACKGROUND: Lipid droplets (LDs) as major lipid storage organelles are recently reported to be innate immune hubs. Perilipin-3 (PLIN3) is indispensable for the formation and accumulation of LDs. Since cancer patients show dysregulated lipid metabolism, we aimed to elaborate the role of LDs-related PLIN3 in oral squamous cell carcinoma (OSCC). METHODS: PLIN3 expression patterns (n = 87), its immune-related landscape (n = 74) and association with B7-H2 (n = 51) were assessed by immunohistochemistry and flow cytometry. Real-time PCR, Western blot, Oil Red O assay, immunofluorescence, migration assay, spheroid-forming assay and flow cytometry were performed for function analysis. RESULTS: Spotted LDs-like PLIN3 staining was dominantly enriched in tumor cells than other cell types. PLIN3high tumor showed high proliferation index with metastasis potential, accompanied with less CD3+CD8+ T cells in peripheral blood and in situ tissue, conferring immunosuppressive microenvironment and shorter postoperative survival. Consistently, PLIN3 knockdown in tumor cells not only reduced LD deposits and tumor migration, but benefited for CD8+ T cells activation in co-culture system with decreased B7-H2. An OSCC subpopulation harbored PLIN3highB7-H2high tumor showed more T cells exhaustion, rendering higher risk of cancer-related death (95% CI 1.285-6.851). CONCLUSIONS: LDs marker PLIN3 may be a novel immunotherapeutic target in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Gotas Lipídicas/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Oncogenes , Perilipina-3/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Microambiente Tumoral
2.
Cancer Sci ; 115(4): 1141-1153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287724

RESUMEN

The indigenous microbial milieu within tumorous tissues exerts a pivotal influence on the genesis and advancement of gastric cancer (GC). This investigation scrutinizes the functions and molecular mechanisms attributed to Prevotella intermedia in the malignant evolution of GC. Isolation of P. intermedia from paired GC tissues was undertaken. Quantification of P. intermedia abundance in 102 tissues was accomplished using quantitative real-time PCR (qRT-PCR). Assessment of the biological effects of P. intermedia on GC cells was observed using culture medium supernatant. Furthermore, the protein profile of GC cells treated with tumor-derived P. intermedia was examined through label-free protein analysis. The functionality of perilipin 3 (PLIN3) was subsequently confirmed using shRNA. Our investigation revealed that the relative abundance of P. intermedia in tumor tissues significantly surpassed that of corresponding healthy tissues. The abundance of P. intermedia exhibited correlations with tumor differentiation (p = 0.006), perineural invasion (p = 0.004), omentum majus invasion (p = 0.040), and the survival duration of GC patients (p = 0.042). The supernatant derived from tumor-associated P. intermedia bolstered the proliferation, clone formation, migration, and invasion of GC cells. After indirect co-cultivation with tumor-derived P. intermedia, dysregulation of 34 proteins, including PLIN3, was discerned in GC cells. Knockdown of PLIN3 mitigated the malignancy instigated by P. intermedia in GC cells. Our findings posit that P. intermedia from the tumor microenvironment plays a substantial role in the malignant progression of GC via the modulation of PLIN3 expression. Moreover, the relative abundance of P. intermedia might serve as a potential biomarker for the diagnosis and prognosis of GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Perilipina-3 , Prevotella intermedia , Pronóstico , Neoplasias Gástricas/patología , Microambiente Tumoral
3.
Int J Biol Macromol ; 261(Pt 1): 129636, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272402

RESUMEN

BACKGROUND: Renal cell cancer (RCC) is characterized by abnormal lipid accumulation. However, the specific mechanism by which such lipid deposition is eliminated remains unclear. Circular RNAs (circRNAs) widely regulate various biological processes, but the effect of circRNAs on lipid metabolism in cancers, especially clear cell renal cell carcinoma (ccRCC), remains poorly understood. METHODS: The downregulated circRNA, hsa_circ_0086414, was identified from high-throughput RNA-sequencing data of human ccRCC and pair-matched normal tissues. The target relationship between circRNA_0086414 and miR-661, and the transducer of ERBB2 (TOB2) was predicted using publicly available software programs and verified by luciferase reporter assays. The clinical prognostic value of TOB2 was evaluated by bioinformatic analysis. The expression levels of circRNA_0086414, miR-661, TOB2, and perilipin 3 (PLIN3) were measured by quantitative reverse-transcription polymerase chain reaction or western blot analysis. Cell Counting Kit-8, transwell assays, and xenograft models were employed to assess the biological behaviors of the hsa_circ_0086414/TOB2 axis. Oil Red staining and triglyceride assay was conducted to assess lipid deposition. RESULTS: Herein, we identified a downregulated circRNA, hsa_circ_0086414. Functionally, the restored hsa_circ_0086414 inhibited ccRCC proliferation, metastasis, and lipid accumulation in vitro and in vivo. Furthermore, the downregulated TOB2 predicted adverse prognosis and promoted cancer progression and lipid deposition in ccRCC. Mechanically, the binding of hsa_circ_0086414 to miR-661, as a miRNA sponge, upregulates the expression of TOB2, wielding an anti-oncogene effect. Importantly, the restored hsa_circ_0086414/TOB2 axis significantly contributed to the elimination of lipid deposition by inhibiting the lipid metabolism regulator PLIN3 in ccRCC cells. CONCLUSIONS: Our data highlight the importance of the hsa_circ_0086414/TOB2/PLIN3 axis as a tumor suppressor and lipid eliminator in ccRCC. The positive modulation of the hsa_circ_0086414/TOB2 axis might lead to the development of novel treatment strategies for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/genética , Perilipina-3 , ARN Circular/genética , Neoplasias Renales/genética , Proliferación Celular/genética , Lípidos , MicroARNs/genética , Línea Celular Tumoral , Receptor ErbB-2
4.
J Biol Chem ; 299(12): 105384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898398

RESUMEN

Perilipins (PLINs) constitute an evolutionarily conserved family of proteins that specifically associate with the surface of lipid droplets (LDs). These proteins function in LD biogenesis and lipolysis and help to stabilize the surface of LDs. PLINs are typically composed of three different protein domains. They share an N-terminal PAT domain of unknown structure and function, a central region containing 11-mer repeats that form amphipathic helices, and a C-terminal domain that adopts a 4-helix bundle structure. How exactly these three distinct domains contribute to PLIN function remains to be determined. Here, we show that the N-terminal PAT domain of PLIN3 binds diacylglycerol (DAG), the precursor to triacylglycerol, a major storage lipid of LDs. PLIN3 and its PAT domain alone bind liposomes with micromolar affinity and PLIN3 binds artificial LDs containing low concentrations of DAG with nanomolar affinity. The PAT domain of PLIN3 is predicted to adopt an amphipathic triangular shaped structure. In silico ligand docking indicates that DAG binds to one of the highly curved regions within this domain. A conserved aspartic acid residue in the PAT domain, E86, is predicted to interact with DAG, and we found that its substitution abrogates high affinity binding of DAG as well as DAG-stimulated association with liposome and artificial LDs. These results indicate that the PAT domain of PLINs harbor specific lipid-binding properties that are important for targeting these proteins to the surface of LDs and to ER membrane domains enriched in DAG to promote LD formation.


Asunto(s)
Diglicéridos , Perilipina-3 , Diglicéridos/metabolismo , Gotas Lipídicas/metabolismo , Lipólisis , Perilipina-1 , Perilipina-2/metabolismo , Perilipina-3/química , Perilipina-3/metabolismo , Dominios Proteicos , Proteínas/metabolismo , Humanos
5.
Immunol Invest ; 52(7): 815-831, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37578465

RESUMEN

BACKGROUND: Perilipin 3 (PLIN3), a lipid droplet-associated protein, is found to be highly expressed in human cancers. This study aimed to investigate the biological functions and underlying mechanism of PLIN3 in lung adenocarcinoma (LUAD). METHODS: To analyse PLIN3 expression in normal and cancerous tissues, relevance between PLIN3 expression and survival prognosis, and to predict the pathways related to PLIN3, bioinformatic analysis was performed. In A549 and H1299 cells, qRT-PCR or western blotting was used to determine mRNA/protein expression of PLIN3, PD-L1, and c-Myc. In A549 and H1299 cells, CCK-8 assay, EdU, and flow cytometry were used to assess cell viability, proliferation, and apoptosis. Chip and luciferase reporter assays were performed to verify the binding of PD-L1 with c-Myc. The functions of PLIN3 were examined in vivo in a xenograft tumor model. RESULTS: In LUAD tissues and cells, PLIN3 expression was downregulated. A shorter survival time was observed in patients with high PLIN3 expression than in patients with low PLIN3 expression. Silencing of PLIN3 inhibited cell proliferation, PD-L1 expression, and Myc pathway, as well as induced apoptosis in LUAD cells. c-Myc acts as a transcription factor of PD-L1. Moreover, the inhibitory actions of PLIN3 silencing on c-Myc and PD-L1 expression as well as cell proliferation and stimulatory action of PLIN3 silencing on cell apoptosis were reversed by c-Myc overexpression. In vivo, PLIN3 silencing inhibited the growth of xenograft tumour and reduced PLIN3, PD-L1, and c-Myc protein expression. CONCLUSION: Silencing of PLIN3 inhibited tumour growth by regulating the Myc/PD-L1 pathway.


1. Silencing of PLIN3 inhibited tumour growth in vivo and in vitro.2. Silencing of PLIN3 inhibited PD-L1 expression and Myc pathway in LUAD cells.3. c-Myc acted as a transcription factor of PD-L1.4. Silencing of PLIN3 exerted anti-tumour effects by regulating c-Myc/PD-L1.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Pulmonares/metabolismo , Perilipina-3
6.
Nat Commun ; 14(1): 3204, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268630

RESUMEN

Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.


Asunto(s)
Diglicéridos , Perilipina-3 , Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Perilipina-1/metabolismo , Perilipina-3/metabolismo , Triglicéridos/metabolismo
7.
Eur J Appl Physiol ; 123(12): 2771-2778, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37368137

RESUMEN

PURPOSE: Smaller lipid droplet morphology and GLUT 4 protein expression have been associated with greater muscle oxidative capacity and glucose uptake, respectively. The main purpose of this study was to determine the effect of an acute long-duration exercise bout on skeletal muscle lipid droplet morphology, GLUT4, perilipin 3, and perilipin 5 expressions. METHODS: Twenty healthy men (age 24.0 ± 1.0 years, BMI 23.6 ± 0.4 kg/m2) were recruited for the study. The participants were subjected to an acute bout of exercise on a cycle ergometer at 50% VO2max until they reached a total energy expenditure of 650 kcal. The study was conducted after an overnight fast. Vastus lateralis muscle biopsies were obtained before and immediately after exercise for immunohistochemical analysis to determine lipid, perilipin 3, perilipin 5, and GLUT4 protein contents while GLUT 4 mRNA was quantified using RT-qPCR. RESULTS: Lipid droplet size decreased whereas total intramyocellular lipid content tended to reduce (p = 0.07) after an acute bout of endurance exercise. The density of smaller lipid droplets in the peripheral sarcoplasmic region significantly increased (0.584 ± 0.04 to 0.638 ± 0.08 AU; p = 0.01) while larger lipid droplets significantly decreased (p < 0.05). GLUT4 mRNA tended to increase (p = 0.05). There were no significant changes in GLUT 4, perilipin 3, and perilipin 5 protein levels. CONCLUSION: The study demonstrates that exercise may impact metabolism by enhancing the quantity of smaller lipid droplets over larger lipid droplets.


Asunto(s)
Gotas Lipídicas , Perilipina-5 , Masculino , Humanos , Adulto Joven , Adulto , Perilipina-1/metabolismo , Gotas Lipídicas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Perilipina-5/metabolismo , Perilipina-3/metabolismo , Músculo Esquelético/fisiología , Lípidos , ARN Mensajero/metabolismo , Metabolismo de los Lípidos/fisiología
8.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293388

RESUMEN

For rapid and unlimited cell growth and proliferation, cancer cells require large quantities of nutrients. Many metabolic pathways and nutrient uptake systems are frequently reprogrammed and upregulated to meet the demand from cancer cells, including the demand for lipids. The lipids for most adult normal cells are mainly acquired from the circulatory system. Whether different cancer cells adopt identical mechanisms to ensure sufficient lipid supply, and whether the lipid demand and supply meet each other, remains unclear, and was investigated in lung cancer cells. Results showed that, despite frequent upregulation in de novo lipogenesis and the lipid transporter system, different lung cancer cells adopt different proteins to acquire sufficient lipids, and the lipid supply frequently exceeds the demand, as significant amounts of lipids stored in the lipid droplets could be found within lung cancer cells. Lipid droplet surface protein, PLIN3, was found frequently overexpressed since the early stage in lung cancer tissues. Although the expression is not significantly associated with a specific gender, age, histology type, disease stage, and smoking habit, the frequently elevated expression of PLIN3 protein indicates the importance of lipid droplets for lung cancer. These lipid droplets are not only for nutrient storage, but are also crucial for tumor growth and proliferation, as well as survival in starvation. These results suggest that manipulation of lipid droplet formation or TG storage in lung cancer cells could potentially decrease the progression of lung cancer. Further exploration of lipid biology in lung cancer could help design novel treatment strategies.


Asunto(s)
Neoplasias Pulmonares , Inanición , Adulto , Humanos , Gotas Lipídicas/metabolismo , Perilipina-3/metabolismo , Metabolismo de los Lípidos , Proliferación Celular , Proteínas de la Membrana/metabolismo , Inanición/metabolismo , Neoplasias Pulmonares/metabolismo , Lípidos/fisiología
9.
J Mol Cell Biol ; 14(8)2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36107452

RESUMEN

Comparative gene identification-58 (CGI-58), also known as α/ß hydrolase domain containing 5, is the co-activator of adipose triglyceride lipase that hydrolyzes triglycerides stored in the cytosolic lipid droplets. Mutations in CGI-58 gene cause Chanarin-Dorfman syndrome (CDS), an autosomal recessive neutral lipid storage disease with ichthyosis. The liver pathology of CDS manifests as steatosis and steatohepatitis, which currently has no effective treatments. Perilipin-3 (Plin3) is a member of the Perilipin-ADRP-TIP47 protein family that is essential for lipid droplet biogenesis. The objective of this study was to test a hypothesis that deletion of a major lipid droplet protein alleviates fatty liver pathogenesis caused by CGI-58 deficiency in hepatocytes. Adult CGI-58-floxed mice were injected with adeno-associated vectors simultaneously expressing the Cre recombinase and microRNA against Plin3 under the control of a hepatocyte-specific promoter, followed by high-fat diet feeding for 6 weeks. Liver and blood samples were then collected from these animals for histological and biochemical analysis. Plin3 knockdown in hepatocytes prevented steatosis, steatohepatitis, and necroptosis caused by hepatocyte CGI-58 deficiency. Our work is the first to show that inhibiting Plin3 in hepatocytes is sufficient to mitigate hepatocyte CGI-58 deficiency-induced hepatic steatosis and steatohepatitis in mice.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa , Hígado Graso , Ratones , Animales , Perilipina-3 , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Triglicéridos/metabolismo
10.
Int J Radiat Oncol Biol Phys ; 113(2): 401-414, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121129

RESUMEN

PURPOSE: Radiation therapy is a principal treatment modality for localized and locally advanced prostate cancer (PCa). Metabolic alterations, including lipid metabolism, may reduce treatment efficacy, resulting in tumor relapse and poor therapeutic outcome. In the current study, we investigated the role of the lipophagy-related protein perilipin-3 (PLIN3) and the lysosomal acid lipase (LAL) in PCa response to radiation therapy. METHODS AND MATERIALS: We explored the in vitro and xenograft (in NOD SCID and R2G2 mice) response to radiation of either PLIN3-depleted or LAL-depleted hormone-refractory (DU145, PC3) and hormone-responsive (22Rv1) PCa cell lines. Moreover, we evaluated the clinical role of PLIN3 and LAL protein expression in a series of PCa tissue specimens from patients treated with radical radiation therapy. RESULTS: In vitro and in vivo experiments showed reduced proliferation and strong radiosensitization of all studied PCa cell lines upon PLIN3 depletion. In vivo experiments demonstrated the significantly augmented radiation therapy efficacy upon PLIN3 depletion, resulting in extensive tissue necrosis. Overexpression of PLIN3 in tissue specimens was correlated with an increased MIB1 proliferation index, increased autophagy flux, reduced response to radiation therapy, and poor prognosis. The effect of LAL depletion on radiation therapy was of lesser importance. CONCLUSIONS: Assessment of PLIN3 expression may identify subgroups of patients with PCa who are less responsive to radiation therapy and at high risk of relapse after irradiation. Whether radiation therapy efficacy may be enhanced by concurrent autophagy or PLIN3 inhibition in this subgroup of patients demands clinical evaluation.


Asunto(s)
Perilipina-3 , Neoplasias de la Próstata , Animales , Autofagia , Línea Celular Tumoral , Humanos , Metabolismo de los Lípidos/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células PC-3 , Perilipina-3/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/radioterapia , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Dis Markers ; 2021: 4791915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765049

RESUMEN

OBJECTIVE: The role of lipid metabolism disorders in the pathogenesis of T2DM has been recognized. Lipid droplets (LDs) are dynamic organelles that store lipids. Perilipin 3 (PLIN3) is one of the five LD coat proteins that is relatively understudied as compared to other LDs. This study is aimed at determining levels of PLIN3 among adults with varying levels of obesity and insulin resistance to determine metabolic associations of PLIN3. Methodology. A total of 280 Saudi adults (n = 127 males; n = 153 females) were randomly recruited and divided into three groups according to their body mass index (BMI) and fasting glucose levels: healthy and lean (HL), obese and T2DM (OD), or obese and nondiabetic (OND). Lipid profiles, fasting glucose levels, insulin, and perilipin 3 levels were measured. RESULTS: Circulating PLIN3 was significantly lower in the OD group [8.3 ng/mL (1.2-22.5; p < 0.001)] than the HL group [23.1 ng/mL (6.2-39.1; p < 0.001)]. Triglycerides, total cholesterol, glucose, and insulin levels were inversely correlated with PLIN3 in all subjects. Lastly, glucose, insulin, and total cholesterol cumulatively predict circulating levels of PLIN3 by as much as 11% of the variances perceived (p < 0.001). CONCLUSION: Circulating PLIN3 is significantly associated with insulin resistance markers and maybe a promising candidate as a protective biomarker for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Resistencia a la Insulina , Perilipina-3/sangre , Adulto , Biomarcadores/sangre , Glucemia/metabolismo , Índice de Masa Corporal , Colesterol/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Triglicéridos/sangre
12.
Med Oncol ; 38(10): 116, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34410522

RESUMEN

Lipid metabolism reprogramming is one of the adaptive events that drive tumor development and survival, and may account for resistance to chemotherapeutic drugs. Perilipins are structural proteins associated with lipophagy and lipid droplet integrity, and their overexpression is associated with tumor aggressiveness. Here, we sought to explore the role of lipid droplet-related protein perilipin-3 (PLIN3) in prostate cancer (PCa) chemotherapy. We investigated the role of PLIN3 suppression in docetaxel cytotoxic activity in PCa cell lines. Additional effects of PLIN3 depletion on autophagy-related proteins and gene expression patterns, apoptotic potential, proliferation rate, and ATP levels were examined. Depletion of PLIN3 resulted in docetaxel resistance, accompanied by enhanced autophagic flux. We further assessed the synergistic effect of autophagy suppression with chloroquine on docetaxel cytotoxicity. Inhibition of autophagy with chloroquine reversed chemoresistance of stably transfected shPLIN3 PCa cell lines, with no effect on the parental ones. The shPLIN3 cell lines also exhibited reduced Caspase-9 related apoptosis initiation. Moreover, we assessed PLIN3 expression in a series of PCa tissue specimens, were complete or partial loss of PLIN3 expression was frequently noted in 70% of the evaluated specimens. Following PLIN3 silencing, PCa cells were characterized by impaired lipophagy and acquired an enhanced autophagic response upon docetaxel-induced cytotoxic stress. Such an adaptation leads to resistance to docetaxel, which could be reversed by the autophagy blocker chloroquine. Given the frequent loss of PLIN3 expression in PCa specimens, we suggest that combination of docetaxel with chloroquine may improve the efficacy of docetaxel treatment in PLIN3-deficient cancer patients.


Asunto(s)
Autofagia/efectos de los fármacos , Cloroquina/farmacología , Docetaxel/farmacología , Resistencia a Antineoplásicos , Perilipina-3/genética , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Silenciador del Gen , Humanos , Masculino , Neoplasias de la Próstata/genética
13.
Elife ; 102021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387191

RESUMEN

Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.


Asunto(s)
Adipocitos/metabolismo , Gotas Lipídicas/metabolismo , Perilipina-2/metabolismo , Perilipina-3/metabolismo , Proteínas de Pez Cebra/metabolismo , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Homeostasis , Metabolismo de los Lípidos , Perilipina-2/genética , Perilipina-3/genética , Pez Cebra/metabolismo
14.
Hepatology ; 74(6): 3441-3459, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34233024

RESUMEN

BACKGROUND AND AIMS: NAFLD is the most common hepatic pathology in western countries and no treatment is currently available. NAFLD is characterized by the aberrant hepatocellular accumulation of fatty acids in the form of lipid droplets (LDs). Recently, it was shown that liver LD degradation occurs through a process termed lipophagy, a form of autophagy. However, the molecular mechanisms governing liver lipophagy are elusive. Here, we aimed to ascertain the key molecular players that regulate hepatic lipophagy and their importance in NAFLD. APPROACH AND RESULTS: We analyzed the formation and degradation of LD in vitro (fibroblasts and primary mouse hepatocytes), in vivo and ex vivo (mouse and human liver slices) and focused on the role of the autophagy master regulator mammalian target of rapamycin complex (mTORC) 1 and the LD coating protein perilipin (Plin) 3 in these processes. We show that the autophagy machinery is recruited to the LD on hepatic overload of oleic acid in all experimental settings. This led to activation of lipophagy, a process that was abolished by Plin3 knockdown using RNA interference. Furthermore, Plin3 directly interacted with the autophagy proteins focal adhesion interaction protein 200 KDa and autophagy-related 16L, suggesting that Plin3 functions as a docking protein or is involved in autophagosome formation to activate lipophagy. Finally, we show that mTORC1 phosphorylated Plin3 to promote LD degradation. CONCLUSIONS: These results reveal that mTORC1 regulates liver lipophagy through a mechanism dependent on Plin3 phosphorylation. We propose that stimulating this pathway can enhance lipophagy in hepatocytes to help protect the liver from lipid-mediated toxicity, thus offering a therapeutic strategy in NAFLD.


Asunto(s)
Autofagia , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Perilipina-3/metabolismo , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Cell Rep ; 36(4): 109451, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320341

RESUMEN

Lipid droplets (LDs) are dynamic organelles that undergo dynamic changes in response to changing cellular conditions. During nutrient depletion, LD numbers increase to protect cells against toxic fatty acids generated through autophagy and provide fuel for beta-oxidation. However, the precise mechanisms through which these changes are regulated have remained unclear. Here, we show that the small GTPase RalA acts downstream of autophagy to directly facilitate LD growth during nutrient depletion. Mechanistically, RalA performs this function through phospholipase D1 (PLD1), an enzyme that converts phosphatidylcholine (PC) to phosphatidic acid (PA) and that is recruited to lysosomes during nutrient stress in a RalA-dependent fashion. RalA inhibition prevents recruitment of the LD-associated protein perilipin 3, which is required for LD growth. Our data support a model in which RalA recruits PLD1 to lysosomes during nutrient deprivation to promote the localized production of PA and the recruitment of perilipin 3 to expanding LDs.


Asunto(s)
Gotas Lipídicas/metabolismo , Nutrientes , Fosfolipasa D/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Animales , Autofagia , Fibroblastos/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Ratones Noqueados , Perilipina-3/metabolismo , Ácidos Fosfatidicos/metabolismo , Triglicéridos/metabolismo
16.
Theranostics ; 11(2): 841-860, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391508

RESUMEN

Current endocrine therapy for prostate cancer (PCa) mainly inhibits androgen/androgen receptor (AR) signaling. However, due to increased intratumoural androgen synthesis and AR variation, PCa progresses to castration-resistant prostate cancer (CRPC), which ultimately becomes resistant to endocrine therapy. A search for new therapeutic perspectives is urgently needed. Methods: By screening lipid metabolism-related gene sets and bioinformatics analysis in prostate cancer database, we identified the key lipid metabolism-related genes in PCa. Bisulfite genomic Sequence Polymerase Chain Reaction (PCR) (BSP) and Methylation-Specific Polymerase Chain Reaction (PCR) (MSP) were preformed to detect the promoter methylation of ACSS3. Gene expression was analyzed by qRT-PCR, Western blotting, IHC and co-IP. The function of ACSS3 in PCa was measured by CCK-8, Transwell assays. LC/MS, Oil Red O assays and TG and cholesterol measurement assays were to detect the levels of TG and cholesterol in cells. Resistance to Enzalutamide in C4-2 ENZR cells was examined in a xenograft tumorigenesis model in vivo. Results: We found that acyl-CoA synthetase short chain family member 3 (ACSS3) was downregulated and predicted a poor prognosis in PCa. Loss of ACSS3 expression was due to gene promoter methylation. Restoration of ACSS3 expression in PCa cells significantly reduced LD deposits, thus promoting apoptosis by increasing endoplasmic reticulum (ER) stress, and decreasing de novo intratumoral androgen synthesis, inhibiting CRPC progression and reversing Enzalutamide resistance. Mechanistic investigations demonstrated that ACSS3 reduced LD deposits by regulating the stability of the LD coat protein perilipin 3 (PLIN3). Conclusions: Our study demonstrated that ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Coenzima A Ligasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Gotas Lipídicas/metabolismo , Perilipina-3/antagonistas & inhibidores , Perilipina-3/metabolismo , Neoplasias de la Próstata/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Coenzima A Ligasas/genética , Resistencia a Antineoplásicos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Perilipina-3/genética , Pronóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell Cycle ; 19(17): 2195-2206, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32783497

RESUMEN

Sunitinib is the most commonly used first-line therapy for the treatment of advanced renal cell carcinoma (RCC), but intrinsic and extrinsic resistance to targeted therapies dramatically compromise the benefit of clinical outcome. Dissecting the underlying mechanisms and discovering reliable predictive biomarkers are urgently needed in clinic. Here, we discovered miR-885-5p was notably decreased after sunitinib treatment and associated with poor disease progression in clear cell renal cell carcinoma (ccRCC). In vitro and in vivo studies identified miR-885-5p inhibition contributed to sunitinib resistance. Mechanistically, sunitinib treatment reduced GATA1 expression, which in turn reduced its binding to MIR885 promoter and resulted in miR-885-5p downregulation in transcriptional level. In addition, PLIN3 was confirmed to be directly targeted by miR-885-5p and its upregulation significantly increased lipid droplets formation to decrease sunitinib sensitivity. Therefore, GATA1/miR-885-5p/ PLIN3 pathway may serve as a potential therapeutic strategy and a biomarker for sunitinib treatment in ccRCC.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Retroalimentación Fisiológica , Factor de Transcripción GATA1/metabolismo , Neoplasias Renales/tratamiento farmacológico , MicroARNs/metabolismo , Perilipina-3/metabolismo , Sunitinib/uso terapéutico , Animales , Secuencia de Bases , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Renales/patología , Gotas Lipídicas/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
18.
J Nutr Biochem ; 77: 108296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32007822

RESUMEN

The existing treatments for nonalcoholic steatohepatitis (NASH) are not completely effective. The need for new alternatives without adverse effects and low cost, such as the flavonoid (-)-epicatechin (EC), which has beneficial effects on lipid metabolism and cardiovascular diseases, arises. The objective of this work was to analyze EC effects in the NASH induced by a Paigen-type diet (PD). Mice were administered with (1) normal chow and water, (2) PD + fructose 30% and (3) PD + fructose 30% + EC (1 mg/kg) per gavage during 9 weeks. At the end of each treatment, serum was collected for analysis of the biochemical profile and liver enzymes. The liver was collected for microscopic analysis and for the evaluation of the relative expression of Plin2, Plin3, CD36, adiponectin and UCP2. Results showed that EC reduced weight gain and decreased triglyceride (TG), low-density lipoprotein cholesterol, TG/high-density lipoprotein and the activity of liver enzymes (alanine aminotransferase and alkaline phosphatase), suggesting lower liver damage. The microscopic analysis showed less "balloonization" of the hepatocyte, small drops of lipids, less accumulation of collagen and infiltration of inflammatory cells as compared to nontreated group. Finally, a decrease in the expression of Plin 2 was observed. While CD36 decreased, adiponectin and UCP2 increased. In conclusion, EC improves the biochemical profile, the microscopic characteristics and protein expression. Therefore, it may be a possible therapeutic approach for NASH since it prevents the progression of the hepatic and metabolic damage induced by high-fat diets.


Asunto(s)
Catequina/farmacología , Hígado Graso/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Perilipinas/metabolismo , Adiponectina/metabolismo , Animales , Antígenos CD36/metabolismo , Catequina/química , LDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Fructosa/administración & dosificación , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Malondialdehído/química , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Perilipina-2/metabolismo , Perilipina-3/metabolismo , Factores de Riesgo , Triglicéridos/metabolismo , Proteína Desacopladora 2/metabolismo
19.
J Physiol ; 598(6): 1151-1167, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958145

RESUMEN

KEY POINTS: We have recently shown that a high-fat, high-calorie (HFHC) diet decreases whole body glucose clearance without impairing skeletal muscle insulin signalling, in healthy lean individuals. These diets are also known to increase skeletal muscle IMTG stores, but the effect on lipid metabolites leading to skeletal muscle insulin resistance has not been investigated. This study measured the effect of 7 days' HFHC diet on (1) skeletal muscle concentration of lipid metabolites, and (2) potential changes in the perilipin (PLIN) content of the lipid droplets storing intramuscular triglyceride (IMTG). The HFHC diet increased PLIN3 protein expression and redistributed PLIN2 to lipid droplet stores in type I fibres. The HFHC diet increased IMTG content in type I fibres, while lipid metabolite concentrations remained the same. The data suggest that the increases in IMTG stores assists in reducing the accumulation of lipid metabolites known to contribute to skeletal muscle insulin resistance. ABSTRACT: A high-fat, high-calorie (HFHC) diet reduces whole body glucose clearance without impairing skeletal muscle insulin signalling in healthy lean individuals. HFHC diets also increase skeletal muscle lipid stores. However, unlike certain lipid metabolites, intramuscular triglyceride (IMTG) stored within lipid droplets (LDs) does not directly contribute to skeletal muscle insulin resistance. Increased expression of perilipin (PLIN) proteins and colocalisation to LDs has been shown to assist in IMTG storage. We aimed to test the hypothesis that 7 days on a HFHC diet increases IMTG content while minimising accumulation of lipid metabolites known to disrupt skeletal muscle insulin signalling in sedentary and obese individuals. We also aimed to identify changes in expression and subcellular distribution of proteins involved in IMTG storage. Muscle biopsies were obtained from the m. vastus lateralis of 13 (11 males, 2 females) healthy lean individuals (age: 23 ± 2.5 years; body mass index: 24.5 ± 2.4 kg m-2 ), following an overnight fast, before and after consuming a high-fat (64% energy), high-calorie (+47% kcal) diet for 7 days. After the HFHC diet, IMTG content increased in type I fibres only (+101%; P < 0.001), whereas there was no change in the concentration of either total diacylglycerol (P = 0.123) or total ceramides (P = 0.150). Of the PLINs investigated, only PLIN3 content increased (+50%; P < 0.01) solely in type I fibres. LDs labelled with PLIN2 increased (+80%; P < 0.01), also in type I fibres only. We propose that these adaptations of LDs support IMTG storage and minimise accumulation of lipid metabolites to protect skeletal muscle insulin signalling following 7 days' HFHC diet.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Perilipinas/metabolismo , Triglicéridos/análisis , Adulto , Femenino , Humanos , Masculino , Perilipina-2 , Perilipina-3 , Adulto Joven
20.
Sci Rep ; 10(1): 360, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941931

RESUMEN

Lipids are secreted into milk as bilayer-coated structures: milk fat globules (MFGs). Adipophilin (ADRP) and perilipin 3 (TIP47) are associated with MFGs in human breast milk; however, the role of these proteins in milk lipid secretion is not fully understood. The study aimed to investigate levels of ADRP, TIP47 and total lipid content in human breast milk, their mutual correlations, and dynamics during lactation. Milk samples from 22 healthy lactating women (Caucasian, Central European) were collected at five time points during lactation (1-3, 12-14, 29-30, 88-90 and 178-180 days postpartum). Mass spectrometry-based method was used for quantification of ADRP and TIP47 in the samples. The gravimetric method was used to determine milk total lipid content. We observed distinctive trends in ADRP, TIP47 levels and lipid content in human breast milk during the first six months of lactation. We also found a significant association between lipid content and ADRP, lipid content and TIP47, and ADRP and TIP47 concentrations in breast milk at all sampling points. A mass spectrometry-based method was developed for quantifying ADRP and TIP47 in human breast milk. Strong mutual correlations were found between ADRP, TIP47 and total lipid content in human breast milk.


Asunto(s)
Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Leche Humana/metabolismo , Perilipina-2/metabolismo , Perilipina-3/metabolismo , Adulto , Femenino , Humanos , Lactancia/metabolismo , Gotas Lipídicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...