Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
J Mol Biol ; 436(2): 168368, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977298

RESUMEN

The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Membrana , Imagen Individual de Molécula , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análisis , Fluorescencia , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/metabolismo , Periplasma/química , Transporte de Proteínas , Imagen Individual de Molécula/métodos
2.
J Mol Biol ; 436(4): 168420, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38143021

RESUMEN

The width of the periplasmic space of Gram-negative bacteria is only about 25-30 nm along the long axis of the cell, which affects free diffusion of (macro)molecules. We have performed single-particle displacement measurements and diffusion simulation studies to determine the impact of confinement on the apparent mobility of proteins in the periplasm of Escherichia coli. The diffusion of a reporter protein and of OsmY, an osmotically regulated periplasmic protein, is characterized by a fast and slow component regardless of the osmotic conditions. The diffusion coefficient of the fast fraction increases upon osmotic upshift, in agreement with a decrease in macromolecular crowding of the periplasm, but the mobility of the slow (immobile) fraction is not affected by the osmotic stress. We observe that the confinement created by the inner and outer membranes results in a lower apparent diffusion coefficient, but this can only partially explain the slow component of diffusion in the particle displacement measurements, suggesting that a fraction of the proteins is hindered in its mobility by large periplasmic structures. Using particle-based simulations, we have determined the confinement effect on the apparent diffusion coefficient of the particles for geometries akin the periplasmic space of Gram-negative bacteria.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Periplasma , Difusión , Escherichia coli/química , Proteínas de Escherichia coli/química , Presión Osmótica , Periplasma/química , Imagen Individual de Molécula
3.
Microbiol Spectr ; 9(3): e0074321, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908461

RESUMEN

Although glutathione (GSH) has been shown to influence the antimicrobial effects of many kinds of antibiotics, little is known about its role in relation to trimethoprim (TMP), a widely used antifolate. In this study, several genes related to glutathione metabolism were deleted in different Escherichia coli strains (i.e., O157:H7 and ATCC 25922), and their effects on susceptibility to TMP were tested. The results showed that deleting gshA, gshB, grxA, and cydD caused TMP resistance, and deleting cydD also caused resistance to other drugs. Meanwhile, deleting gshA, grxA, and cydD resulted in a significant decrease of the periplasmic glutathione content. Supplementing exogenous GSH or further deleting glutathione importer genes (gsiB and ggt) restored TMP sensitivity to ΔcydD. Subsequently, the results of quantitative-reverse transcription PCR experiments showed that expression levels of acrA, acrB, and tolC were significantly upregulated in both ΔgrxA and ΔcydD. Correspondingly, deleting cydD led to a decreased accumulation of TMP within bacterial cells, and further deleting acrA, acrB, or tolC restored TMP sensitivity to ΔcydD. Inactivation of CpxR and SoxS, two transcriptional factors that modulate the transcription of acrAB-tolC, restored TMP sensitivity to ΔcydD. Furthermore, mutations of gshA, gshB, grxA, cydC, and cydD are highly prevalent in E. coli clinical strains. Collectively, these data suggest that reducing the periplasmic glutathione content of E. coli leads to increased expression of acrAB-tolC with the involvement of CpxR and SoxS, ultimately causing drug resistance. To the best of our knowledge, this is the first report showing a linkage between periplasmic GSH and drug resistance in bacteria. IMPORTANCE After being used extensively for decades, trimethoprim still remains one of the key accessible antimicrobials recommended by the World Health Organization. A better understanding of the mechanisms of resistance would be beneficial for the future utilization of this drug. It has been shown that the AcrAB-TolC efflux pump is associated with trimethoprim resistance in E. coli clinical strains. In this study, we show that E. coli can sense the periplasmic glutathione content with the involvement of the CpxAR two-component system. As a result, reducing the periplasmic glutathione content leads to increased expression of acrA, acrB, and tolC via CpxR and SoxS, causing resistance to antimicrobials, including trimethoprim. Meanwhile, mutations in the genes responsible for periplasmic glutathione content maintenance are highly prevalent in E. coli clinical isolates, indicating a potential correlation of the periplasmic glutathione content and clinical antimicrobial resistance, which merits further investigation.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Glutatión/metabolismo , Periplasma/química , Trimetoprim/farmacología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/farmacología , Eliminación de Gen , Genoma Bacteriano/genética , Humanos
4.
STAR Protoc ; 2(4): 100960, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825220

RESUMEN

Bacteriophages of the Podoviridae family densely package their genomes into precursor capsids alongside internal virion proteins called ejection proteins. In phage T7 these proteins (gp14, gp15, and gp16) are ejected into the host envelope forming a DNA-ejectosome for genome delivery. Here, we describe the purification and characterization of recombinant gp14, gp15, and gp16. This protocol was used for high-resolution cryo-EM structure analysis of the T7 periplasmic tunnel and can be adapted to study ejection proteins from other phages. For complete details on the use and execution of this protocol, please refer to Swanson et al. (2021).


Asunto(s)
Bacteriófago T7 , Microscopía por Crioelectrón/métodos , Proteínas Recombinantes , Proteínas Virales , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Escherichia coli/genética , Periplasma/química , Periplasma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo
5.
mBio ; 12(6): e0309921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34844428

RESUMEN

Gram-negative bacteria resist external stresses due to cell envelope rigidity, which is provided by two membranes and a peptidoglycan layer. The outer membrane (OM) surface contains lipopolysaccharide (LPS; contains O-antigen) or lipooligosaccharide (LOS). LPS/LOS are essential in most Gram-negative bacteria and may contribute to cellular rigidity. Acinetobacter baumannii is a useful tool for testing these hypotheses as it can survive without LOS. Previously, our group found that strains with naturally high levels of penicillin binding protein 1A (PBP1A) could not become LOS deficient unless the gene encoding it was deleted, highlighting the relevance of peptidoglycan biosynthesis and suggesting that high PBP1A levels were toxic during LOS deficiency. Transposon sequencing and follow-up analysis found that axial peptidoglycan synthesis by the elongasome and a peptidoglycan recycling enzyme, ElsL, were vital in LOS-deficient cells. The toxicity of high PBP1A levels during LOS deficiency was clarified to be due to a negative impact on elongasome function. Our data suggest that during LOS deficiency, the strength of the peptidoglycan specifically imparted by elongasome synthesis becomes essential, supporting that the OM and peptidoglycan contribute to cell rigidity. IMPORTANCE Gram-negative bacteria have a multilayered cell envelope with a layer of cross-linked polymers (peptidoglycan) sandwiched between two membranes. Peptidoglycan was long thought to exclusively provide rigidity to the cell providing mechanical strength. Recently, the most outer membrane of the cell was also proposed to contribute to rigidity due to properties of a unique molecule called lipopolysaccharide (LPS). LPS is located on the cell surface in the outer membrane and is typically required for growth. By using Acinetobacter baumannii, a Gram-negative bacterium that can grow without LPS, we found that key features of the peptidoglycan structure also become essential. This finding supports that both the outer membrane and peptidoglycan contribute to cell rigidity.


Asunto(s)
Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/metabolismo , Membrana Externa Bacteriana/metabolismo , Lipopolisacáridos/biosíntesis , Peptidoglicano/biosíntesis , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Membrana Externa Bacteriana/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lipopolisacáridos/química , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/química , Periplasma/química , Periplasma/genética , Periplasma/metabolismo
6.
Nat Commun ; 12(1): 4349, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272394

RESUMEN

Bacterial extracellular polysaccharides (EPSs) play critical roles in virulence. Many bacteria assemble EPSs via a multi-protein "Wzx-Wzy" system, involving glycan polymerization at the outer face of the cytoplasmic/inner membrane. Gram-negative species couple polymerization with translocation across the periplasm and outer membrane and the master regulator of the system is the tyrosine autokinase, Wzc. This near atomic cryo-EM structure of dephosphorylated Wzc from E. coli shows an octameric assembly with a large central cavity formed by transmembrane helices. The tyrosine autokinase domain forms the cytoplasm region, while the periplasmic region contains small folded motifs and helical bundles. The helical bundles are essential for function, most likely through interaction with the outer membrane translocon, Wza. Autophosphorylation of the tyrosine-rich C-terminus of Wzc results in disassembly of the octamer into multiply phosphorylated monomers. We propose that the cycling between phosphorylated monomer and dephosphorylated octamer regulates glycan polymerization and translocation.


Asunto(s)
Cápsulas Bacterianas/química , Cápsulas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de la Membrana/química , Periplasma/metabolismo , Polisacáridos Bacterianos/metabolismo , Proteínas Tirosina Quinasas/química , Secuencias de Aminoácidos , Dominio Catalítico , Microscopía por Crioelectrón , Citoplasma/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Periplasma/química , Fosforilación , Conformación Proteica en Hélice alfa , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Tirosina/química , Tirosina/metabolismo
7.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34214465

RESUMEN

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Asunto(s)
Bacteriófago T7/genética , ADN Viral/química , Periplasma/química , Proteínas del Núcleo Viral/química , Biología Computacional , Microscopía por Crioelectrón , Citoplasma/química , ADN Viral/metabolismo , Membrana Dobles de Lípidos/metabolismo , Periplasma/genética , Periplasma/metabolismo , Podoviridae/química , Podoviridae/genética , Proteínas del Núcleo Viral/metabolismo
8.
Nature ; 593(7859): 445-448, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33981042

RESUMEN

Mycobacterium tuberculosis is the cause of one of the most important infectious diseases in humans, which leads to 1.4 million deaths every year1. Specialized protein transport systems-known as type VII secretion systems (T7SSs)-are central to the virulence of this pathogen, and are also crucial for nutrient and metabolite transport across the mycobacterial cell envelope2,3. Here we present the structure of an intact T7SS inner-membrane complex of M. tuberculosis. We show how the 2.32-MDa ESX-5 assembly, which contains 165 transmembrane helices, is restructured and stabilized as a trimer of dimers by the MycP5 protease. A trimer of MycP5 caps a central periplasmic dome-like chamber that is formed by three EccB5 dimers, with the proteolytic sites of MycP5 facing towards the cavity. This chamber suggests a central secretion and processing conduit. Complexes without MycP5 show disruption of the EccB5 periplasmic assembly and increased flexibility, which highlights the importance of MycP5 for complex integrity. Beneath the EccB5-MycP5 chamber, dimers of the EccC5 ATPase assemble into three bundles of four transmembrane helices each, which together seal the potential central secretion channel. Individual cytoplasmic EccC5 domains adopt two distinctive conformations that probably reflect different secretion states. Our work suggests a previously undescribed mechanism of protein transport and provides a structural scaffold to aid in the development of drugs against this major human pathogen.


Asunto(s)
Microscopía por Crioelectrón , Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII/metabolismo , Sistemas de Secreción Tipo VII/ultraestructura , Citosol/química , Citosol/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/ultraestructura , Periplasma/química , Periplasma/metabolismo , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Tuberculosis/virología , Sistemas de Secreción Tipo VII/química
9.
J Bacteriol ; 203(12): e0051520, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846116

RESUMEN

Clarifying the molecular mechanisms by which bacteria acquire virulence traits is important for understanding the bacterial virulence system. In the present study, we utilized a bacterial evolution method in a silkworm infection model and revealed that deletion of the opgGH operon, encoding synthases for osmoregulated periplasmic glucan (OPG), increased the virulence of a nonpathogenic laboratory strain of Escherichia coli against silkworms. The opgGH knockout mutant exhibited resistance to host antimicrobial peptides and antibiotics. Compared with the parent strain, the opgGH knockout mutant produced greater amounts of colanic acid, which is involved in E. coli resistance to antibiotics. RNA sequence analysis revealed that the opgGH knockout altered the expression of various genes, including the evgS/evgA two-component system that functions in antibiotic resistance. In both a colanic acid-negative background and an evgS-null background, the opgGH knockout increased E. coli resistance to antibiotics and increased the silkworm-killing activity of E. coli. In the null background of the envZ/ompR two-component system, which genetically interacts with opgGH, the opgGH knockout increased antibiotic resistance and virulence in silkworms. These findings suggest that the absence of OPG confers antimicrobial resistance and virulence in E. coli in a colanic acid-, evgS/evgA-, and envZ/ompR-independent manner. IMPORTANCE The gene mutation types that increase the bacterial virulence of Escherichia coli remain unclear, in part due to the limited number of methods available for isolating bacterial mutants with increased virulence. We utilized a bacterial evolution method in the silkworm infection model, in which silkworms were infected with mutagenized bacteria and highly virulent bacterial mutants were isolated from dead silkworms. We revealed that knockout of OPG synthases increased E. coli virulence against silkworms. The OPG knockout mutants were resistant to host antimicrobial peptides as well as antibiotics. Our findings not only suggest a novel mechanism for virulence acquisition in E. coli but also support the usefulness of the bacterial experimental evolution method in the silkworm infection model.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Glucanos/metabolismo , Osmorregulación/fisiología , Periplasma/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucanos/genética , Virulencia
10.
Methods Mol Biol ; 2178: 329-344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33128759

RESUMEN

The bacterium Escherichia coli is still considered the first option as a microbial cell factory for recombinant protein production, and affinity chromatography is by far the preferred technique for initial purification after protein expression and cell lysis. In this chapter, we describe the methodology to express and purify recombinant proteins in E. coli tagged with the first two metal-binding proteins proposed as fusion partners. They are the small metal-binding protein SmbP and a mutant of the copper resistance protein CusF3H+. There are several advantages of using them as protein tags: they prevent the formation of inclusion bodies by increasing solubility of the target proteins, they enable purification by immobilized metal-affinity chromatography using Ni(II) ions with high purity, and because of their low molecular weights, excellent final yields are obtained for the target proteins after cleavage and removal of the protein tag. Here we also describe the protocol for the production of proteins in the periplasm of E. coli tagged with two SmbP variants that include the PelB or the TorA signal sequences for transport via the Sec or the Tat pathway, respectively. Based on these methods, we consider CusF3H+ and SmbP excellent alternatives as fusion proteins for the production of recombinant proteins in E. coli.


Asunto(s)
Cromatografía de Afinidad , Proteínas Transportadoras de Cobre , Proteínas de Escherichia coli , Escherichia coli/química , Níquel/química , Periplasma/química , Proteínas Transportadoras de Cobre/química , Proteínas Transportadoras de Cobre/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Periplasma/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
11.
Biochim Biophys Acta Biomembr ; 1863(2): 183502, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130098

RESUMEN

The YidC insertase of Escherichia coli inserts membrane proteins with small periplasmic loops (~20 residues). However, it has difficulty transporting loops that contain positively charged residues compared to negatively charged residues and, as a result, increasing the positive charge has an increased requirement for the Sec machinery as compared to negatively charged loops (Zhu et al., 2013; Soman et al., 2014). This suggested that the polarity and charge of the periplasmic regions of membrane proteins determine the YidC and Sec translocase requirements for insertion. Here we tested this polarity/charge hypothesis by showing that insertion of our model substrate protein procoat-Lep can become YidC/Sec dependent when the periplasmic loop was converted to highly polar even in the absence of any charged residues. Moreover, adding a number of hydrophobic amino acids to a highly polar loop can decrease the Sec-dependence of the otherwise strictly Sec-dependent membrane proteins. We also demonstrate that the length of the procoat-Lep loop is indeed a determinant for Sec-dependence by inserting alanine residues that do not markedly change the overall hydrophilicity of the periplasmic loop. Taken together, the results support the polarity/charge hypothesis as a determinant for the translocase requirement for procoat insertion.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Periplasma/metabolismo , Canales de Translocación SEC/metabolismo , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Ratones , Periplasma/química , Periplasma/genética , Estructura Secundaria de Proteína , Canales de Translocación SEC/química , Canales de Translocación SEC/genética
12.
FEBS J ; 288(1): 244-261, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255259

RESUMEN

Certain facultative anaerobes such as the opportunistic human pathogen Pseudomonas aeruginosa can respire on nitrate, a process generally known as denitrification. This enables denitrifying bacteria to survive in anoxic environments and contributes, for example, to the formation of biofilm, hence increasing difficulties in eradicating P. aeruginosa infections. A central step in denitrification is the reduction of nitrite to nitric oxide by nitrite reductase NirS, an enzyme that requires the unique cofactor heme d1 . While heme d1 biosynthesis is mostly understood, the role of the essential periplasmatic protein NirF in this pathway remains unclear. Here, we have determined crystal structures of NirF and its complex with dihydroheme d1 , the last intermediate of heme d1 biosynthesis. We found that NirF forms a bottom-to-bottom ß-propeller homodimer and confirmed this by multi-angle light and small-angle X-ray scattering. The N termini are adjacent to each other and project away from the core structure, which hints at simultaneous membrane anchoring via both N termini. Further, the complex with dihydroheme d1 allowed us to probe the importance of specific residues in the vicinity of the ligand binding site, revealing residues not required for binding or stability of NirF but essential for denitrification in experiments with complemented mutants of a ΔnirF strain of P. aeruginosa. Together, these data suggest that NirF possesses a yet unknown enzymatic activity and is not simply a binding protein of heme d1 derivatives. DATABASE: Structural data are available in PDB database under the accession numbers 6TV2 and 6TV9.


Asunto(s)
Proteínas Bacterianas/química , Hemo/análogos & derivados , Periplasma/genética , Pseudomonas aeruginosa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Desnitrificación/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hemo/biosíntesis , Hemo/química , Modelos Moleculares , Periplasma/química , Periplasma/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
13.
mSphere ; 5(6)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148829

RESUMEN

The mycobacterial cell envelope has a diderm structure, composed of an outer mycomembrane, an arabinogalactan-peptidoglycan cell wall, a periplasm, and an inner membrane. Lipomannan (LM) and lipoarabinomannan (LAM) are structural and immunomodulatory components of this cell envelope. LM/LAM biosynthesis involves a number of mannosyltransferases and acyltransferases, and MptA is an α1,6-mannosyltransferase involved in the final extension of the mannan chain. Recently, we reported the periplasmic protein LmeA being involved in the maturation of the mannan backbone in Mycobacterium smegmatis Here, we examined the role of LmeA under stress conditions. We found that lmeA transcription was upregulated under two stress conditions: stationary growth phase and nutrient starvation. Under both conditions, LAM was decreased, but LM was relatively stable, suggesting that maintaining the cellular level of LM under stress is important. Surprisingly, the protein levels of MptA were decreased in an lmeA deletion (ΔlmeA) mutant under both stress conditions. The transcript levels of mptA in the ΔlmeA mutant were similar to or even higher than those in the wild type, indicating that the decrease of MptA protein was a posttranscriptional event. The ΔlmeA mutant was unable to maintain the cellular level of LM under stress, consistent with the decrease in MptA. Even during active growth, overexpression of LmeA led the cells to produce more LM and become more resistant to several antibiotics. Altogether, our study reveals the roles of LmeA in the homeostasis of the MptA mannosyltransferase, particularly under stress conditions, ensuring the stable expression of LM and the maintenance of cell envelope integrity.IMPORTANCE Mycobacteria differentially regulate the cellular amounts of lipoglycans in response to environmental changes, but the molecular mechanisms of this regulation remain unknown. Here, we demonstrate that cellular lipoarabinomannan (LAM) levels rapidly decline under two stress conditions, stationary growth phase and nutrient starvation, while the levels of another related lipoglycan, lipomannan (LM), stay relatively constant. The persistence of LM under stress correlated with the maintenance of two key mannosyltransferases, MptA and MptC, in the LM biosynthetic pathway. We further showed that the stress exposures lead to the upregulation of lmeA gene expression and that the periplasmic protein LmeA plays a key role in maintaining the enzyme MptA and its product LM under stress conditions. These findings reveal new aspects of how lipoglycan biosynthesis is regulated under stress conditions in mycobacteria.


Asunto(s)
Proteínas Bacterianas/genética , Lipopolisacáridos/metabolismo , Manosiltransferasas/genética , Mycobacterium smegmatis/genética , Periplasma/química , Periplasma/metabolismo , Estrés Fisiológico/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Membrana Celular/fisiología , Homeostasis/genética , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/genética , Manosiltransferasas/metabolismo , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Regulación hacia Arriba
14.
Proc Natl Acad Sci U S A ; 117(45): 28355-28365, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097670

RESUMEN

FtsEX is a bacterial ABC transporter that regulates the activity of periplasmic peptidoglycan amidases via its interaction with the murein hydrolase activator, EnvC. In Escherichia coli, FtsEX is required to separate daughter cells after cell division and for viability in low-osmolarity media. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for amidase activation, but the process itself is poorly understood. Here we present the 2.1 Å structure of the FtsX periplasmic domain in complex with its periplasmic partner, EnvC. The EnvC-FtsX periplasmic domain complex has a 1-to-2 stoichiometry with two distinct FtsX-binding sites located within an antiparallel coiled coil domain of EnvC. Residues involved in amidase activation map to a previously identified groove in the EnvC LytM domain that is here found to be occluded by a "restraining arm" suggesting a self-inhibition mechanism. Mutational analysis, combined with bacterial two-hybrid screens and in vivo functional assays, verifies the FtsEX residues required for EnvC binding and experimentally test a proposed mechanism for amidase activation. We also define a predicted link between FtsEX and integrity of the outer membrane. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for resistance to membrane-attacking antibiotics and detergents to which E. coli would usually be considered intrinsically resistant. These structural and functional data provide compelling mechanistic insight into FtsEX-mediated regulation of EnvC and its downstream control of periplasmic peptidoglycan amidases.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , División Celular/fisiología , Endopeptidasas/química , Periplasma/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Modelos Moleculares , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Periplasma/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas
15.
J Struct Biol ; 212(2): 107610, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890780

RESUMEN

Bacterial two-component regulatory systems (TCS) play important roles in sensing environmental stimuli and responding to them by regulating gene expression. VbrK/VbrR, a TCS in Vibrio parahaemolyticus, confers resistance to ß-lactam antibiotics through activating a ß-lactamase gene. Its periplasmic sensor domain was previously suggested to detect ß-lactam antibiotics by direct binding. Here, we report a crystal structure of the periplasmic sensing domain of VbrK (VbrKSD) using sulfur-based single-wavelength anomalous diffraction (S-SAD) phasing. Contrary to most bacterial sensor domains which form dimers, we show that VbrKSD is a monomer using size exclusion chromatography coupled with multi-angle light scattering. This observation is also supported by molecular dynamics simulations. To quantify the binding affinity of ß-lactam antibiotics to VbrKSD, we performed isothermal titration calorimetry and other biophysical analyses. Unexpectedly, VbrKSD did not show any significant binding to ß-lactam antibiotics. Therefore, we propose that the detection of ß-lactam antibiotics by VbrK is likely to be indirect via an as yet unidentified mechanism.


Asunto(s)
Antibacterianos/química , Histidina Quinasa/química , Periplasma/química , beta-Lactamas/química , Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Unión Proteica , Vibrio parahaemolyticus/química , beta-Lactamasas/química
16.
Nature ; 584(7821): 479-483, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788728

RESUMEN

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Asunto(s)
Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/patogenicidad , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Secuencias de Aminoácidos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Estabilidad de Enzimas , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Genes Esenciales , Hidrolasas/química , Hidrolasas/metabolismo , Lípido A/química , Lípido A/metabolismo , Lipopolisacáridos/biosíntesis , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Periplasma/química , Periplasma/metabolismo , Unión Proteica , Virulencia
17.
Sci Rep ; 10(1): 9002, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488093

RESUMEN

ToxR is a transmembrane transcription factor that, together with its integral membrane periplasmic binding partner ToxS, is conserved across the Vibrionaceae family. In some pathogenic Vibrios, including V. parahaemolyticus and V. cholerae, ToxR is required for bile resistance and virulence, and ToxR is fully activated and protected from degradation by ToxS. ToxS achieves this in part by ensuring formation of an intra-chain disulfide bond in the C-terminal periplasmic domain of ToxR (dbToxRp). In this study, biochemical analysis showed dbToxRp to have a higher affinity for the ToxS periplasmic domain than the non-disulfide bonded conformation. Analysis of our dbToxRp crystal structure showed this is due to disulfide bond stabilization. Furthermore, dbToxRp is structurally homologous to the V. parahaemolyticus VtrA periplasmic domain. These results highlight the critical structural role of disulfide bond in ToxR and along with VtrA define a domain fold involved in environmental sensing conserved across the Vibrionaceae family.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Disulfuros/química , Proteínas de la Membrana/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de la Membrana/química , Modelos Moleculares , Periplasma/química , Periplasma/metabolismo , Dominios Proteicos , Multimerización de Proteína , Factores de Transcripción/genética
18.
Metallomics ; 12(2): 280-289, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31853532

RESUMEN

Candidatus Liberibacter asiaticus (CLas), a phloem-limited unculturable Gram-negative bacterium, causes citrus greening disease. The proteome analysis of CLas showed the presence of a heavy metal permease and Co/Zn/Cd cation exporter system. However, there is no designated metal uptake protein specific for the heavy metal permease in CLas. One of the metal uptake proteins, designated as CLas-ZnuA2, in our previous studies, showed a lower metal-binding affinity for Mn2+ and Zn2+ and was postulated to bind and transport metals rather non-specifically. The present study focused on the characterization of the heavy metal binding properties of CLas-ZnuA2 using SPR, CD, DSC and crystallographic studies. The crystal structure analysis of Cd2+ bound CLas-ZnuA2 showed octahedral geometry for Cd2+ binding as compared to a non-preferred square-pyramidal geometry for Mn2+ and Zn2+ binding in earlier reported crystal structures. In SPR analysis, the binding affinities of 4.7 × 10-6 M, 7.2 × 10-6 M, 5.3 × 10-5 M and 4.3 × 10-5 M for Hg2+, Cd2+, Ba2+ and Co2+ respectively were higher as compared to earlier reported values for Mn2+ and Zn2+. Likewise, CD and DSC analysis showed relatively higher thermal stability for CLas-ZnuA2 on heavy metal binding. Taken together with the expression of the permease and exporter system for heavy metals, our results indicate that CLas-ZnuA2 may be involved in sequestering and transport of various transition divalent metals in environmentally stressed conditions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas de Transporte de Catión/química , Liberibacter/metabolismo , Cadmio/química , Cationes Bivalentes/química , Cobalto/química , Modelos Moleculares , Periplasma/química , Proteoma/química , Zinc/química
19.
Mol Biol (Mosk) ; 53(6): 968-981, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-31876276

RESUMEN

This review summarizes the main achievements of recent years in molecular organization research of yeast cell surface, i.e., the compartment that consists of the coordinately functioning plasma membrane, periplasmic space, and cell wall. There are data on vesicular transport to the external environment through the cell wall and the formation of channels in the wall, which indicate the possibility of dynamic rearrangements of the molecular structure of the yeast cell wall. There is an idea about the mosaic arrangement of the compartments of the plasma membrane. The hypothesis has been suggested on the heterogeneity of the molecular structure of the cell wall, which is usually considered as uniform except for the budding zones. The groups of proteins that form the molecular assembly of the yeast cell surface have been described. Special attention has been paid for proteins with amyloid properties, including Bgl2p glucanosyltransglycosylase, which is important for virulence in pathogenic yeast, and Gas1p, the first of the studied proteins of the cell surface, which is involved in the regulation of ribosomal DNA transcriptional silencing. The data on the structure of receptors localized on the cell surface and the "moonlight" proteins, involved in the cell stress response of yeasts, have been given.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Periplasma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Amiloide/química , Amiloide/metabolismo , Membrana Celular/química , Pared Celular/química , Periplasma/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Microbiol Spectr ; 7(4)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31373267

RESUMEN

Periplasmic flagella are complex nanomachines responsible for distinctive morphology and motility of spirochetes. Although bacterial flagella have been extensively studied for several decades in the model systems Escherichia coli and Salmonella enterica, our understanding of periplasmic flagella in many disease-causing spirochetes remains incomplete. Recent advances, including molecular genetics, biochemistry, structural biology, and cryo-electron tomography, have greatly increased our understanding of structure and function of periplasmic flagella. In this chapter, we summarize some of the recent findings that provide new insights into the structure, assembly, and function of periplasmic flagella.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Flagelos/metabolismo , Periplasma/metabolismo , Proteínas Bacterianas/genética , Borrelia burgdorferi/química , Borrelia burgdorferi/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/química , Flagelos/genética , Periplasma/química , Periplasma/genética , Salmonella enterica/química , Salmonella enterica/genética , Salmonella enterica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...