Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 64(5): 592-603, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33577398

RESUMEN

Mitochondria have emerged as important signaling organelles where intracellular perturbations are integrated and, consequently, intracellular signaling pathways are modulated to execute appropriate cellular functions. MAVS (mitochondrial antiviral signaling protein) represents such an example that functions as a platform molecule to mediate mitochondrial innate immune signaling. Recently, multimeric aggregation of MAVS has been identified as a key molecular process for its signaling. The underlying mechanisms to regulate this, however, are still incompletely understood. We hypothesized that PINK1 (PTEN-induced kinase 1) plays an important role in the regulation of multimeric MAVS aggregation and its consequent pathobiology. To test whether PINK1 interacts with MAVS, bimolecular fluorescence complementation analysis and IP were performed. RLH (RIG-I-like helicase) and NLRP3 inflammasome signaling were evaluated by in vitro assay. In vivo functional significance of PINK1 in the regulation of MAVS signaling was evaluated from both murine modeling of influenza viral infection and bleomycin-induced experimental pulmonary fibrosis, wherein MAVS plays important roles. Multimeric MAVS aggregation was induced by mitochondria dysfunction, and, during this event, the stabilized PINK1 interacted physically with MAVS and antagonized multimeric MAVS aggregation. Accordingly, the MAVS-mediated antiviral innate immune and NLRP3 inflammasome signaling were enhanced in PINK1 deficiency. In addition, in vivo studies revealed that MAVS-mediated pulmonary antiviral innate immune responses and fibrotic responses after bleomycin injury were enhanced in PINK1 deficiency. In conclusion, these results establish a new role of PINK1 in the regulation of MAVS signaling and the consequent pulmonary pathobiology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Mitocondrias/metabolismo , Infecciones por Orthomyxoviridae/genética , Proteínas Quinasas/genética , Fibrosis Pulmonar/genética , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Bleomicina/administración & dosificación , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Inflamasomas/genética , Inflamasomas/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Noqueados , Mitocondrias/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Peroxisomas/inmunología , Peroxisomas/metabolismo , Agregado de Proteínas/genética , Unión Proteica , Proteínas Quinasas/deficiencia , Proteínas Quinasas/inmunología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Transducción de Señal/inmunología
2.
BMC Med Genet ; 21(1): 229, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213396

RESUMEN

BACKGROUND: Peroxisome biogenesis disorders (PBDs) are a group of metabolic diseases caused by dysfunction of peroxisomes. Different forms of PBDs are described; the most severe one is the Zellweger syndrome (ZS). We report on an unusual presentation of Zellweger syndrome manifesting in a newborn with severe and fulminant sepsis, causing death during the neonatal period. CASE PRESENTATION: A term male Caucasian neonate presented at birth with hypotonia and poor feeding associated with dysmorphic craniofacial features and skeletal abnormalities. Blood tests showed progressive leukopenia; ultrasounds revealed cerebral and renal abnormalities. He died on the fourth day of life because of an irreversible Gram-negative sepsis. Post-mortem tests on blood and urine samples showed biochemical alterations suggestive of ZS confirmed by genetic test. CONCLUSIONS: ZS is an early and severe forms of PBDs. Peroxisomes are known to be involved in lipid metabolism, but recent studies suggest their fundamental role in modulating immune response and inflammation. In case of clinical suspicion of ZS it is important to focus the attention on the prevention and management of infections that can rapidly progress to death.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Infecciones por Bacterias Gramnegativas/genética , Mutación , Peroxisomas/inmunología , Sepsis/genética , Síndrome de Zellweger/genética , ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , ATPasas Asociadas con Actividades Celulares Diversas/inmunología , Resultado Fatal , Expresión Génica , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Humanos , Inmunidad Innata , Recién Nacido , Masculino , Peroxisomas/microbiología , Peroxisomas/patología , Sepsis/inmunología , Sepsis/microbiología , Sepsis/patología , Síndrome de Zellweger/inmunología , Síndrome de Zellweger/microbiología , Síndrome de Zellweger/patología
3.
PLoS Pathog ; 16(7): e1008636, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32614930
4.
Int J Mol Sci ; 20(15)2019 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-31382586

RESUMEN

Peroxisomes are ubiquitous organelles with well-defined functions in lipid and reactive oxygen species metabolism, having a significant impact on a large number of important diseases. Growing evidence points to them, in concert with mitochondria, as important players within the antiviral response. In this review we summarize and discuss the recent findings concerning the relevance of peroxisomes within innate immunity. We not only emphasize their importance as platforms for cellular antiviral signaling but also review the current information concerning their role in the control of bacterial infections. We furthermore review the recent data that pinpoints peroxisomes as regulators of inflammatory processes.


Asunto(s)
Infecciones Bacterianas/inmunología , Inmunidad Innata , Peroxisomas/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Antivirales/uso terapéutico , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/virología , Humanos , Peroxisomas/microbiología , Peroxisomas/virología , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/inmunología
5.
Biochim Biophys Acta Rev Cancer ; 1870(1): 103-121, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30012421

RESUMEN

Cancer is irrevocably linked to aberrant metabolic processes. While once considered a vestigial organelle, we now know that peroxisomes play a central role in the metabolism of reactive oxygen species, bile acids, ether phospholipids (e.g. plasmalogens), very-long chain, and branched-chain fatty acids. Immune system evasion is a hallmark of cancer, and peroxisomes have an emerging role in the regulation of cellular immune responses. Investigations of individual peroxisome proteins and metabolites support their pro-tumorigenic functions. However, a significant knowledge gap remains regarding how individual functions of proteins and metabolites of the peroxisome orchestrate its potential role as a pro-tumorigenic organelle. This review highlights new advances in our understanding of biogenesis, enzymatic functions, and autophagic degradation of peroxisomes (pexophagy), and provides evidence linking these activities to tumorigenesis. Finally, we propose avenues that may be exploited to target peroxisome-related processes as a mode of combatting cancer.


Asunto(s)
Neoplasias/metabolismo , Peroxisomas/metabolismo , Antineoplásicos/farmacología , Autofagia , Carcinogénesis , Humanos , Neoplasias/inmunología , Biogénesis de Organelos , Peroxisomas/efectos de los fármacos , Peroxisomas/enzimología , Peroxisomas/inmunología , Especies Reactivas de Oxígeno/metabolismo
6.
Int J Oncol ; 52(2): 547-559, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29345292

RESUMEN

Alpha-methylacyl-CoA racemase (AMACR) catalyzes the ß-oxidation of fatty acids and is overexpressed in carcinomas in various organs, while its inactivation results in the inhibition of cancer growth. In the present study, we prepared and characterized 20 different mouse monoclonal antibodies against human AMACR. In the course of biopanning of a phage peptide commercial library against in-house prepared 6H9 and 2A5, and commercial 13H4 antibodies, 10 phage mimotopes recognized by each type of the antibody were selected. Using the program Pepitope and the crystal structure of AMACR from Mycobacterium tuberculosis, we reveal for the first time, at least to the best of our knowledge, that the epitopes recognizing the antibody against AMACR are composed of conformation sequences localized inside the AMACR catalytic center. When delivered into live HeLa cells using cationic lipid-based PULSin reagent, the specific antibodies against AMACR were co-localized with peroxisomes. The in-house made 6H9 antibody exhibited a low level of this co-localization compared to the commercially available 63340 antibody, and did not inhibit the growth rate of HeLa and T98G cells. The results obtained suggest that antibody against AMACR may possess anti-AMACR catalytic activity and needs to be further investigated as a potential drug for use in anticancer therapy. On the whole, in this study, we generated several clones of AMACR antibodies and demonstrated that these antibodies can be colonized into live cells. Currently, we are testing the growth inhibitory properties of these antibodies against AMACR.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Racemasas y Epimerasas/inmunología , Racemasas y Epimerasas/metabolismo , Animales , Dominio Catalítico , Línea Celular Tumoral , Epítopos , Femenino , Células HeLa , Humanos , Hibridomas , Ratones Endogámicos BALB C , Biblioteca de Péptidos , Peroxisomas/inmunología , Conejos , Racemasas y Epimerasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
7.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187542

RESUMEN

Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes.IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.


Asunto(s)
Interacciones Huésped-Patógeno , Factor 1 Regulador del Interferón/metabolismo , Interferones/inmunología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Proteínas Virales/metabolismo , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Células Epiteliales/virología , Evasión Inmune , Masculino , Mutación , Peroxisomas/inmunología , Virus de la Diarrea Epidémica Porcina/fisiología , Transducción de Señal , Porcinos/virología , Células Vero
8.
Methods Mol Biol ; 1656: 131-142, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28808966

RESUMEN

The mitochondrial antiviral signaling (MAVS) protein is a central adaptor protein required for antiviral innate immune signaling. To facilitate its roles in innate immunity, MAVS localizes to multiple intracellular membranous compartments, including the mitochondria, the mitochondrial-associated ER membrane (MAM), and peroxisomes. Studies of MAVS function therefore often require an analysis of MAVS localization. To detect MAVS protein on intracellular membranes, biochemical fractionation to isolate MAMs, mitochondria, or peroxisomes can be used. Further, immunofluorescence with antibodies against specific membrane markers can be used to visualize MAVS distribution throughout the cell. Here, we describe the biochemical fractionation and immunofluorescence protocols used to detect MAVS subcellular localization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Retículo Endoplásmico/inmunología , Técnica del Anticuerpo Fluorescente/métodos , Inmunidad Innata , Membranas Intracelulares/inmunología , Mitocondrias/microbiología , Peroxisomas/inmunología , Animales , Humanos , Transporte de Proteínas/inmunología
9.
J Immunol ; 198(6): 2414-2425, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28179495

RESUMEN

Peroxisomes are proposed to play an important role in the regulation of systemic inflammation; however, the functional role of these organelles in inflammatory responses of myeloid immune cells is largely unknown. In this article, we demonstrate that the nonclassical peroxisome proliferator 4-phenyl butyric acid is an efficient inducer of peroxisomes in various models of murine macrophages, such as primary alveolar and peritoneal macrophages and the macrophage cell line RAW264.7, but not in primary bone marrow-derived macrophages. Further, proliferation of peroxisomes blocked the TLR4 ligand LPS-induced proinflammatory response, as detected by the reduced induction of the proinflammatory protein cyclooxygenase (COX)-2 and the proinflammatory cytokines TNF-α, IL-6, and IL-12. In contrast, disturbing peroxisome function by knockdown of peroxisomal gene Pex14 or Mfp2 markedly increased the LPS-dependent upregulation of the proinflammatory proteins COX-2 and TNF-α. Specifically, induction of peroxisomes did not affect the upregulation of COX-2 at the mRNA level, but it reduced the half-life of COX-2 protein, which was restored by COX-2 enzyme inhibitors but not by proteasomal and lysosomal inhibitors. Liquid chromatography-tandem mass spectrometry analysis revealed that various anti-inflammatory lipid mediators (e.g., docosahexaenoic acid) were increased in the conditioned medium from peroxisome-induced macrophages, which blocked LPS-induced COX-2 upregulation in naive RAW264.7 cells and human primary peripheral blood-derived macrophages. Importantly, LPS itself induced peroxisomes that correlated with the regulation of COX-2 during the late phase of LPS activation in macrophages. In conclusion, our findings identify a previously unidentified role for peroxisomes in macrophage inflammatory responses and suggest that peroxisomes are involved in the physiological cessation of macrophage activation.


Asunto(s)
Activación de Macrófagos , Macrófagos/inmunología , Peroxisomas/inmunología , Fenilbutiratos/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Proteína-2 Multifuncional Peroxisomal/genética , Cultivo Primario de Células , Células RAW 264.7 , Proteínas Represoras/genética
10.
J Cell Mol Med ; 20(4): 750-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865163

RESUMEN

Hepatitis C virus (HCV) is the cause of one of the most prevalent viral infections worldwide. Upon infection, the HCV genome activates the RIG-I-MAVS signalling pathway leading to the production of direct antiviral effectors which prevent important steps in viral propagation. MAVS localizes at peroxisomes and mitochondria and coordinate the activation of an effective antiviral response: peroxisomal MAVS is responsible for a rapid but short-termed antiviral response, while the mitochondrial MAVS is associated with the activation of a stable response with delayed kinetics. The HCV NS3-4A protease was shown to specifically cleave the mitochondrial MAVS, inhibiting the downstream response. In this study, we have analysed whether HCV NS3-4A is also able to cleave the peroxisomal MAVS and whether this would have any effect on the cellular antiviral response. We show that NS3-4A is indeed able to specifically cleave this protein and release it into the cytosol, a mechanism that seems to occur at a similar kinetic rate as the cleavage of the mitochondrial MAVS. Under these conditions, RIG-I-like receptor (RLR) signalling from peroxisomes is blocked and antiviral gene expression is inhibited. Our results also show that NS3-4A is able to localize at peroxisomes in the absence of MAVS. However, mutation studies have shown that this localization pattern is preferred in the presence of a fully cleavable MAVS. These findings present evidence of a viral evasion strategy that disrupts RLR signalling on peroxisomes and provide an excellent example of how a single viral evasion strategy can block innate immune signalling from different organelles.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Fibroblastos/virología , Mitocondrias/virología , Peroxisomas/virología , Proteínas no Estructurales Virales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Línea Celular , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Fibroblastos/inmunología , Fibroblastos/ultraestructura , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Hepacivirus/genética , Hepacivirus/inmunología , Humanos , Evasión Inmune , Cinética , Ratones , Mitocondrias/inmunología , Mitocondrias/ultraestructura , Mutación , Peroxisomas/inmunología , Peroxisomas/ultraestructura , Proteolisis , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/inmunología
13.
Nat Immunol ; 15(8): 717-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24952503

RESUMEN

Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.


Asunto(s)
Inmunidad Innata , Interferones/inmunología , Peroxisomas/inmunología , Animales , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Diferenciación Celular , Línea Celular , Ciclohexanos/farmacología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , Inhibidores Enzimáticos/farmacología , Humanos , Interferones/biosíntesis , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Ratones , Piridonas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Receptores Inmunológicos , Reoviridae/inmunología , Infecciones por Reoviridae/inmunología , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Tirfostinos/farmacología , Vidarabina/análogos & derivados , Vidarabina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
14.
Neurochem Int ; 69: 1-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24607700

RESUMEN

Zellweger syndrome (ZS) is a neonatal-lethal genetic disease that affects all tissues, and features neuropathology that involves primary developmental defects as well as neurodegeneration. Neuropathological changes include abnormal neuronal migration affecting the cerebral hemispheres, cerebellum and inferior olivary complex, abnormal Purkinje cell arborisation, demyelination and post-developmental neuronal degeneration. ZS is caused by mutations in peroxisome biogenesis, or PEX, genes which lead to defective peroxisome biogenesis and the resultant loss of peroxisomal metabolic function. The molecular and cellular bases of ZS neuropathology are still not completely understood. Attempts to explain the neuropathogenesis have implicated peroxisomal metabolic dysfunction, and more specifically the loss of peroxisomal products, such as plasmalogens and docosahexaenoic, and the accumulation of peroxisomal substrates, such as very-long-chain-fatty acids. In this review, consideration is also given to recent findings that implicate other candidate pathogenetic factors, such as mitochondrial dysfunction, oxidative stress, protein misfolding, aberrant cell signalling, and inflammation - factors that have also been identified as important in the pathogenesis of other neurological diseases.


Asunto(s)
Cerebelo/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Peroxisomas/metabolismo , Síndrome de Zellweger/metabolismo , Animales , Cerebelo/patología , Humanos , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Peroxisomas/genética , Peroxisomas/inmunología , Síndrome de Zellweger/genética , Síndrome de Zellweger/inmunología , Síndrome de Zellweger/patología
15.
Subcell Biochem ; 69: 67-75, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23821143

RESUMEN

Cell biology and microbiology are some of the oldest areas of scientific inquiry. Despite the depth of knowledge we now have in these respective fields, much remains unclear about how microorganisms interact with host intracellular organelles. Perhaps nowhere is this statement more accurate than in the role of peroxisomes in microbial infections. Peroxisomes were one of the first organelles discovered by Christian De Duve over 50 years ago (de Duve Ann N Y Acad Sci 386:1-4, 1982). These organelles are ubiquitously found in eukaryotic cells, where they serve several well-defined functions in lipid and oxygen homeostasis (Waterham and Wanders Biochim Biophys Acta 1822:1325, 2012). This chapter will discuss the emerging evidence that indicates that in addition to their functions in cellular metabolism, peroxisomes play an important role in viral infections.


Asunto(s)
Peroxisomas/virología , Virosis/virología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Mitocondrias/inmunología , Mitocondrias/metabolismo , Mitocondrias/virología , Peroxisomas/inmunología , Peroxisomas/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Virosis/inmunología , Virosis/metabolismo
17.
Nat Immunol ; 13(5): 474-80, 2012 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-22426352

RESUMEN

The development and maturation of semi-invariant natural killer T cells (iNKT cells) rely on the recognition of self antigens presented by CD1d restriction molecules in thymus. The nature of the stimulatory thymic self lipids remains elusive. We isolated lipids from thymocytes and found that ether-bonded mono-alkyl glycerophosphates and the precursors and degradation products of plasmalogens stimulated iNKT cells. Synthetic analogs showed high potency in activating thymic and peripheral iNKT cells. Mice deficient in the peroxisomal enzyme glyceronephosphate O-acyltransferase (GNPAT), essential for the synthesis of ether lipids, had significant alteration of the thymic maturation of iNKT cells and fewer iNKT cells in both thymus and peripheral organs, which confirmed the role of ether-bonded lipids as iNKT cell antigens. Thus, peroxisome-derived lipids are nonredundant self antigens required for the generation of a full iNKT cell repertoire.


Asunto(s)
Lípidos/inmunología , Células T Asesinas Naturales/inmunología , Peroxisomas/inmunología , Timocitos/inmunología , Timo/inmunología , Animales , Antígenos CD/metabolismo , Antígenos CD1d/inmunología , Antígenos CD1d/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Interleucina-4/metabolismo , Lectinas Tipo C/metabolismo , Lípidos/aislamiento & purificación , Lisofosfolípidos/inmunología , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Células T Asesinas Naturales/metabolismo , Peroxisomas/química , Fosfatidiletanolaminas/inmunología , Fosfatidiletanolaminas/metabolismo , Timocitos/citología , Timocitos/metabolismo , Timo/metabolismo
18.
Curr Opin Immunol ; 23(5): 564-72, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865020

RESUMEN

Sensing of RNA virus infection by the RIG-I-like receptors (RLRs) engages a complex signaling cascade that utilizes the mitochondrial antiviral signaling (MAVS) adapter protein to orchestrate the innate host response to pathogen, ultimately leading to the induction of antiviral and inflammatory responses mediated by type I interferon (IFN) and NF-κB pathways. MAVS is localized to the outer mitochondrial membrane, and has been associated with peroxisomes, the endoplasmic reticulum and autophagosomes, where it coordinates signaling events downstream of RLRs. MAVS not only plays a pivotal role in the induction of antiviral and inflammatory pathways but is also involved in the coordination of apoptotic and metabolic functions. This review summarizes recent findings related to the MAVS adapter and its essential role in the innate immune response to RNA viruses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Transducción de Señal/inmunología , Factores de Transcripción/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/inmunología , ARN Helicasas DEAD-box/inmunología , ARN Helicasas DEAD-box/metabolismo , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1 , Mitocondrias/metabolismo , Membranas Mitocondriales/inmunología , Membranas Mitocondriales/metabolismo , FN-kappa B/inmunología , FN-kappa B/metabolismo , Peroxisomas/inmunología , Peroxisomas/metabolismo , ARN Helicasas/inmunología , ARN Helicasas/metabolismo , Infecciones por Virus ARN/virología , ARN Viral/inmunología , Transactivadores , Factores de Transcripción/metabolismo
19.
Curr Opin Microbiol ; 14(4): 458-69, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21824805

RESUMEN

Viruses that are of great importance for global public health, including HIV, influenza and rotavirus, appear to exploit a remarkable organelle, the peroxisome, during intracellular replication in human cells. Peroxisomes are sites of lipid biosynthesis and catabolism, reactive oxygen metabolism, and other metabolic pathways. Viral proteins are targeted to peroxisomes (the spike protein of rotavirus) or interact with peroxisomal proteins (HIV's Nef and influenza's NS1) or use the peroxisomal membrane for RNA replication. The Nef interaction correlates strongly with the crucial Nef function of CD4 downregulation. Viral exploitation of peroxisomal lipid metabolism appears likely. Mostly, functional significance and mechanisms remain to be elucidated. Recently, peroxisomes were discovered to play a crucial role in the innate immune response by signaling the presence of intracellular virus, leading to the first rapid antiviral response. This review unearths, interprets and connects old data, in the hopes of stimulating new and promising research.


Asunto(s)
Interacciones Huésped-Patógeno , Peroxisomas/virología , Transducción de Señal , Replicación Viral , Animales , Antígenos CD4/metabolismo , Proteínas de la Cápside/metabolismo , VIH/metabolismo , VIH/patogenicidad , VIH/fisiología , Humanos , Inmunidad Innata , Membranas Intracelulares/metabolismo , Orthomyxoviridae/inmunología , Orthomyxoviridae/metabolismo , Orthomyxoviridae/patogenicidad , Orthomyxoviridae/fisiología , Palmitoil-CoA Hidrolasa/metabolismo , Peroxisomas/inmunología , Peroxisomas/metabolismo , Virus de Plantas/metabolismo , Virus de Plantas/patogenicidad , Virus de Plantas/fisiología , Rotavirus/inmunología , Rotavirus/metabolismo , Rotavirus/patogenicidad , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
20.
J Immunol ; 181(5): 3400-12, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18714012

RESUMEN

Type 1 NKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the NOD mouse strain, which is a well-validated model of type 1 diabetes and systemic lupus erythematosus. Genetic control of thymic NKT cell numbers was mapped to two linkage regions: Nkt1 on distal chromosome 1 and Nkt2 on chromosome 2. Herein, we report the production and characterization of a NOD.Nkrp1(b).Nkt2b(b) congenic mouse strain, which has increased thymic and peripheral NKT cells, a decreased incidence of type 1 diabetes, and enhanced cytokine responses in vivo and increased proliferative responses in vitro following challenge with alpha-galactosylceramide. The 19 highly differentially expressed candidate genes within the congenic region identified by microarray expression analyses included Pxmp4. This gene encodes a peroxisome-associated integral membrane protein whose only known binding partner is Pex19, an intracellular chaperone and component of the peroxisomal membrane insertion machinery encoded by a candidate for the NKT cell control gene Nkt1. These findings raise the possibility that peroxisomes play a role in modulating glycolipid availability for CD1d presentation, thereby influencing NKT cell function.


Asunto(s)
Perfilación de la Expresión Génica , Células Asesinas Naturales/inmunología , Proteínas de la Membrana/genética , Peroxisomas/inmunología , Animales , Antígenos CD1 , Antígenos CD1d , Citocinas/biosíntesis , Diabetes Mellitus Tipo 1 , Humanos , Células Asesinas Naturales/citología , Recuento de Linfocitos , Ratones , Ratones Congénicos , Ratones Endogámicos NOD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...