Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Arch Microbiol ; 204(8): 467, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804270

RESUMEN

This study investigated the impact of Brochothrix (B.) thermosphacta and Pseudomonas (Ps.) fragi on the transcriptomes of Photobacterium (P.) phosphoreum and P. carnosum on chicken meat under modified atmosphere (MA) and air atmosphere (AA). P. phosphoreum TMW2.2103 responded to MA with a reduced transcript number related to cell division and an enhanced number related to oxidative stress. Concomitantly, the analysis revealed upregulation of fermentation and downregulation of respiration. It predicts enhanced substrate competition in presence of co-contaminants/MA. In contrast, the strain upregulated the respiration in AA, supposably due to improved substrate accessibility in this situation. For P. carnosum TMW2.2149 the respiration was downregulated, and the pyruvate metabolism upregulated under MA. MA/co-contaminant resulted in multiple upregulated metabolic routes. Conversely, AA/co-contaminant resulted only in minor regulations, showing inability to cope with fast growing competitors. Observations reveal different strategies of photobacteria to react to co-contaminants on meat.


Asunto(s)
Pollos , Photobacterium , Animales , Pollos/microbiología , Microbiología de Alimentos , Carne/microbiología , Photobacterium/genética , Photobacterium/metabolismo , Transcriptoma
2.
Appl Environ Microbiol ; 88(14): e0022222, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862683

RESUMEN

Photobacterium damselae comprises two subspecies, P. damselae subsp. damselae and P. damselae subsp. piscicida, that contrast remarkably despite their taxonomic relationship. The former is opportunistic and free-living but can cause disease in compromised individuals from a broad diversity of taxa, while the latter is a highly specialized, primary fish pathogen. Here, we employ new closed curated genome assemblies from Australia to estimate the global phylogenetic structure of the species P. damselae. We identify genes responsible for the shift from an opportunist to a host-adapted fish pathogen, potentially via an arthropod vector as fish-to-fish transmission was not achieved in repeated cohabitation challenges despite high virulence for Seriola lalandi. Acquisition of ShdA adhesin and of thiol peroxidase may have allowed the environmental, generalist ancestor to colonize zooplankton and to occasionally enter in fish host sentinel cells. As dependence on the host has increased, P. damselae has lost nonessential genes, such as those related to nitrite and sulfite reduction, urea degradation, a type 6 secretion system (T6SS) and several toxin-antitoxin (TA) systems. Similar to the evolution of Yersinia pestis, the loss of urease may be the crucial event that allowed the pathogen to stably colonize zooplankton vectors. Acquisition of host-specific genes, such as those required to form a sialic acid capsule, was likely necessary for the emergent P. damselae subsp. piscicida to become a highly specialized, facultative intracellular fish pathogen. Processes that have shaped P. damselae subsp. piscicida from subsp. damselae are similar to those underlying evolution of Yersinia pestis from Y. pseudotuberculosis. IMPORTANCE Photobacterium damselae subsp. damselae is a ubiquitous marine bacterium and opportunistic pathogen of compromised hosts of diverse taxa. In contrast, its sister subspecies P. damselae subsp. piscicida (Pdp) is highly virulent in fish. Pdp has evolved from a single subclade of Pdd through gene loss and acquisition. We show that fish-to-fish transmission does not occur in repeated infection models in the primary host, Seriola lalandi, and present genomic evidence for vector-borne transmission, potentially via zooplankton. The broad genomic changes from generalist Pdd to specialist Pdp parallel those of the environmental opportunist Yersinia pseudotuberculosis to vector-borne plague bacterium Y. pestis and demonstrate that evolutionary processes in bacterial pathogens are universal between the terrestrial and marine biosphere.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Enfermedades de los Peces/microbiología , Peces/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Photobacterium/metabolismo , Filogenia
3.
J Microbiol Biotechnol ; 32(5): 672-679, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35354762

RESUMEN

Microbial lipases are used widely in the synthesis of various compounds due to their substrate specificity and position specificity. 4-Ethyl malate (4-EM) made from diethyl malate (DEM) is an important starting material used to make argon fluoride (ArF) photoresist. We tested several microbial lipases and found that Photobacterium lipolyticum M37 lipase position-specifically hydrolyzed DEM to produce 4-EM. We purified the reaction product through silica gel chromatography and confirmed that it was 4-EM through nuclear magnetic resonance analysis. To mass-produce 4-EM, DEM hydrolysis reaction was performed using an enzyme reactor system that could automatically control the temperature and pH. Effects of temperature and pH on the reaction process were investigated. As a result, 50°C and pH 4.0 were confirmed as optimal reaction conditions, meaning that M37 was specifically an acid lipase. When the substrate concentration was increased to 6% corresponding to 0.32 M, the reaction yield reached almost 100%. When the substrate concentration was further increased to 12%, the reaction yield was 81%. This enzyme reactor system and position-specific M37 lipase can be used to mass-produce 4-EM, which is required to synthesize ArF photoresist.


Asunto(s)
Lipasa , Malatos , Concentración de Iones de Hidrógeno , Hidrólisis , Lipasa/metabolismo , Photobacterium/metabolismo , Especificidad por Sustrato , Temperatura
4.
Toxins (Basel) ; 14(2)2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202146

RESUMEN

Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative bacterium that infects a large number of marine fish species in Europe, Asia, and America, both in aquacultures and in the natural environment. Among the affected hosts are economically important cultured fish, such as sea bream (Sparus aurata), sea bass (Dicentrarchus labrax), yellowtail (Seriola quinqueradiata), and cobia (Rachycentron canadum). The best characterized virulence factor of Phdp is the Apoptosis-Inducing Protein of 56 kDa (AIP56), a secreted AB-type toxin that has been shown to induce apoptosis of sea bass phagocytes during infection. AIP56 has an A subunit that displays metalloprotease activity against NF-kB p65 and a B subunit that mediates binding and internalization of the A subunit in susceptible cells. Despite the fact that the aip56 gene is highly prevalent in Phdp isolates from different fish species, the toxicity of AIP56 has only been studied in sea bass. In the present study, the toxicity of AIP56 for sea bream was evaluated. Ex vivo assays showed that sea bream phagocytes are resistant to AIP56 cytotoxicity and that resistance was associated with an inefficient internalization of the toxin by those cells. Accordingly, in vivo intoxication assays revealed that sea bream is much more resistant to AIP56-induced lethality than sea bass. These findings, showing that the effect of AIP56 is different in sea bass and sea bream, set the basis for future studies to characterize the effects of AIP56 and to fully elucidate its virulence role in different Phdp susceptible hosts.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/toxicidad , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Photobacterium , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Lubina , Riñón Cefálico/patología , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Hígado/patología , Photobacterium/genética , Photobacterium/metabolismo , Dorada , Bazo/patología , Factor de Transcripción ReIA/metabolismo
5.
Food Microbiol ; 99: 103679, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34119089

RESUMEN

Photobacterium spp. occur frequently in marine environments but have been recently also found as common spoilers on chilled meats. The environmental conditions in these ecological niches differ especially regarding salinity and ambient pressure. Linking the occurrence of photobacteria in different niches may elucidate its ecology and bring insights for the food industry. We investigated tolerance of Photobacterium (P.) phosphoreum and P. carnosum strains to high hydrostatic pressure and salinity and aligned our observations with presence of relevant genes. The strains were isolated from packaged meats and salmon (or the sea) to identify adaptations to marine and terrestrial habitats. Growth of all P. carnosum strains was reduced by 40 MPa hydrostatic pressure and >3% sodium chloride, suggesting loss of traits associated with marine habitats. In contrast, P. phosphoreum strains were only slightly affected, suggesting general adaptation to marine habitats. In accordance, these strains had gene clusters associated with marine niches, e.g. flagellar and lux-operons, being incomplete in P. carnosum. Occurrence of P. carnosum strains on packaged salmon and P. phosphoreum strains on meats therefore likely results from cross-contamination in meat and fish processing. Still, these strains showed intermediate traits regarding pressure- and halotolerance, suggesting developing adaptation to their respective environment.


Asunto(s)
Carne/microbiología , Photobacterium/metabolismo , Salmón/microbiología , Cloruro de Sodio/metabolismo , Animales , Bovinos , Pollos , Microbiología de Alimentos , Presión Hidrostática , Photobacterium/química , Photobacterium/crecimiento & desarrollo , Photobacterium/aislamiento & purificación , Agua de Mar/microbiología , Cloruro de Sodio/análisis
6.
Microbiologyopen ; 10(2): e1182, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33970538

RESUMEN

Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that can be manufactured sustainably and represent a promising green alternative to petrochemical-based plastics. Here, we describe the complete genome of a new marine PHA-producing bacterium-Photobacterium ganghwense (strain C2.2), which we have isolated from the Black Sea seashore. This new isolate is psychrotolerant and accumulates PHA when glycerol is provided as the main carbon source. Transmission electron microscopy, specific staining with Nile Red visualized via epifluorescence microscopy and gas chromatography analysis confirmed the accumulation of PHA. This is the only PHA-producing Photobacterium for which we now have a complete genome sequence, allowing us to investigate the pathways for PHA production and other secondary metabolite synthesis pathways. The de novo assembly genome, obtained using open-source tools, comprises two chromosomes (3.5, 2 Mbp) and a megaplasmid (202 kbp). We identify the entire PHA synthesis gene cluster that encodes a class I PHA synthase, a phasin, a 3-ketothiolase, and an acetoacetyl-CoA reductase. No conventional PHA depolymerase was identified in strain C2.2, but a putative lipase with extracellular amorphous PHA depolymerase activity was annotated, suggesting that C2.2 is unable to degrade intracellular PHA. A complete pathway for the conversion of glycerol to acetyl-CoA was annotated, in accordance with its ability to convert glycerol to PHA. Several secondary metabolite biosynthetic gene clusters and a low number of genes involved in antibiotic resistance and virulence were also identified, indicating the strain's suitability for biotechnological applications.


Asunto(s)
Vías Biosintéticas/genética , Genoma Bacteriano , Photobacterium/genética , Photobacterium/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/genética , Acetilcoenzima A/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Aciltransferasas/genética , Oxidorreductasas de Alcohol/genética , Organismos Acuáticos/genética , Farmacorresistencia Bacteriana/genética , Glicerol/metabolismo , Photobacterium/clasificación , Lectinas de Plantas/genética , Plásmidos , Microbiología del Suelo , Virulencia/genética , Secuenciación Completa del Genoma
7.
Appl Environ Microbiol ; 87(12): e0003521, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33837011

RESUMEN

The biosynthesis and incorporation of polyunsaturated fatty acids into phospholipid membranes are unique features of certain marine Gammaproteobacteria inhabiting high-pressure and/or low-temperature environments. In these bacteria, monounsaturated and saturated fatty acids are produced via the classical dissociated type II fatty acid synthase mechanism, while omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) are produced by a hybrid polyketide/fatty acid synthase-encoded by the pfa genes-also referred to as the secondary lipid synthase mechanism. In this work, phenotypes associated with partial or complete loss of monounsaturated biosynthesis are shown to be compensated for by severalfold increased production of polyunsaturated fatty acids in the model marine bacterium Photobacterium profundum SS9. One route to suppression of these phenotypes could be achieved by transposition of insertion sequences within or upstream of the fabD coding sequence, which encodes malonyl coenzyme A (malonyl-CoA) acyl carrier protein transacylase. Genetic experiments in this strain indicated that fabD is not an essential gene, yet mutations in fabD and pfaA are synthetically lethal. Based on these results, we speculated that the malonyl-CoA transacylase domain within PfaA compensates for loss of FabD activity. Heterologous expression of either pfaABCD from P. profundum SS9 or pfaABCDE from Shewanella pealeana in Escherichia coli complemented the loss of the chromosomal copy of fabD in vivo. The co-occurrence of independent, yet compensatory, fatty acid biosynthetic pathways in selected marine bacteria may provide genetic redundancy to optimize fitness under extreme conditions. IMPORTANCE A defining trait among many cultured piezophilic and/or psychrophilic marine Gammaproteobacteria is the incorporation of both monounsaturated and polyunsaturated fatty acids into membrane phospholipids. The biosynthesis of these different classes of fatty acid molecules is linked to two genetically distinct co-occurring pathways that utilize the same pool of intracellular precursors. Using a genetic approach, new insights into the interactions between these two biosynthetic pathways have been gained. Specifically, core fatty acid biosynthesis genes previously thought to be essential were found to be nonessential in strains harboring both pathways due to functional overlap between the two pathways. These results provide new routes to genetically optimize long-chain omega-3 polyunsaturated fatty acid biosynthesis in bacteria and reveal a possible ecological role for maintaining multiple pathways for lipid synthesis in a single bacterium.


Asunto(s)
Acido Graso Sintasa Tipo II/genética , Ácidos Grasos/biosíntesis , Photobacterium/genética , Escherichia coli/genética , Acido Graso Sintasa Tipo II/metabolismo , Mutación , Photobacterium/metabolismo
8.
mSphere ; 6(1)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536321

RESUMEN

Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( PhotobacteriumNlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ-d-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG.IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.


Asunto(s)
Bacterias/metabolismo , Endopeptidasas/metabolismo , Peptidoglicano/metabolismo , Photobacterium/enzimología , Photobacterium/metabolismo , Animales , Pared Celular/química , Pared Celular/metabolismo , Endopeptidasas/análisis , Endopeptidasas/química , Endopeptidasas/genética , Peces/microbiología , Photobacterium/genética
9.
Genes (Basel) ; 11(11)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105683

RESUMEN

The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr-). Previous studies have reported sucrose-utilizing isolates (Scr+), but the genetic basis of this variable phenotype remains uncharacterized. Here, we carried out the genome sequencing of five Scr+ and two Scr- Pdd isolates and conducted a comparative genomics analysis with sixteen additional Pdd genomes sequenced in previous studies. We identified two different versions of a four-gene cluster (scr cluster) exclusive of Scr+ isolates encoding a PTS system sucrose-specific IIBC component (scrA), a fructokinase (scrK), a sucrose-6-phosphate hydrolase (scrB), and a sucrose operon repressor (scrR). A scrA deletion mutant did not ferment sucrose and was impaired for growth with sucrose as carbon source. Comparative genomics analyses suggested that scr clusters were acquired by horizontal transfer by different lineages of Pdd and were inserted into a recombination hot-spot in the Pdd genome. The incongruence of phylogenies based on housekeeping genes and on scr genes revealed that phylogenetically diverse gene clusters for sucrose utilization have undergone extensive horizontal transfer among species of Vibrio and Photobacterium.


Asunto(s)
Familia de Multigenes/genética , Photobacterium/genética , Photobacterium/metabolismo , Sacarosa/metabolismo , Fructoquinasas/genética , Transferencia de Gen Horizontal/genética , Genes Bacterianos/genética , Genes Esenciales/genética , Genoma Bacteriano/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Photobacterium/aislamiento & purificación , beta-Fructofuranosidasa/genética
10.
Int J Food Microbiol ; 334: 108815, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-32966918

RESUMEN

Histamine or scombrotoxin fish poisoning is caused by ingestion of bacterially produced histamine in fish. Histamine-producing bacteria generally contain the histidine decarboxylase gene (hdc). However, some strains of Photobacterium phosphoreum are known to produce significant levels of histamine, although the hdc gene in these strains has not been recognized. The objective of this study was to investigate a previously unidentified mechanism of histamine production by P. phosphoreum. We identified a protein with histidine decarboxylase (HDC) activity comparable to activity of the pyridoxal-5-phosphate (PLP) dependent HDC from P. kishitanii and M. morganii. The newly identified protein (HDC2) in P. phosphoreum and P. kishitanii strains, was approximately 2× longer than the HDC protein from other Gram-negative bacteria and had 12% similarity to previously identified HDCs. In addition, the hdc2 gene cluster in P. phosphoreum was identical to the hdc gene cluster in P. kishitanii. HDC2 had optimal activity at 20-35 °C, at pH 4, and was not affected by 0-8% NaCl concentrations. Compared to the hdc gene from P. kishitanii, expression of the hdc2 gene was constitutive and not affected by pH or excess histidine. This newly identified protein explains possible mechanisms of histamine production in P. phosphoreum. Characterization of this protein will help in designing control measures to prevent or reduce histamine production in fish.


Asunto(s)
Proteínas Bacterianas/metabolismo , Histidina Descarboxilasa/metabolismo , Photobacterium/enzimología , Animales , Proteínas Bacterianas/genética , Peces/metabolismo , Peces/microbiología , Enfermedades Transmitidas por los Alimentos/microbiología , Histamina/biosíntesis , Histidina Descarboxilasa/genética , Concentración de Iones de Hidrógeno , Familia de Multigenes , Photobacterium/genética , Photobacterium/metabolismo , Fosfato de Piridoxal/metabolismo , Temperatura
11.
Chemistry ; 26(50): 11614-11624, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32596832

RESUMEN

Defined sialoglycoconjugates are important molecular probes for studying the role of sialylated glycans in biological systems. We show that the α2,3-sialyltransferase from Photobacterium phosphoreum JT-ISH-467 (2,3SiaTpph ) tolerates a very broad substrate scope for modifications in the sialic acid part, including bulky amide variation, C5/C9 substitution, and C5 stereoinversion. To reduce the enzyme's hydrolytic activity, which erodes the product yield, an extensive structure-guided mutagenesis study identified three variants that show up to five times higher catalytic efficiency for sialyltransfer, up to ten times lower efficiency for substrate hydrolysis, and drastically reduced product hydrolysis. Variant 2,3SiaTpph (A151D) displayed the best performance overall in the synthesis of the GM3 trisaccharide (α2,3-Neu5Ac-Lac) from lactose in a one-pot, two-enzyme cascade. Our study demonstrates that several complementary solutions can be found to suppress the common problem of undesired hydrolysis activity of microbial GT80 sialyltransferases. The new enzymes are powerful catalysts for the synthesis of a wide variety of complex natural and new-to-nature sialoconjugates for biological studies.


Asunto(s)
Photobacterium , Sialiltransferasas , Hidrólisis , Ácido N-Acetilneuramínico , Photobacterium/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Especificidad por Sustrato
12.
J Food Prot ; 83(4): 621-627, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32221566

RESUMEN

ABSTRACT: The effects of high hydrostatic pressure (HHP) treatments on histamine-forming bacteria (HFB) Morganella morganii and Photobacterium phosphoreum in phosphate buffer and tuna meat slurry were investigated using viability counting and scanning electron microscopy. The first-order model fits the destruction kinetics of high pressure on M. morganii and P. phosphoreum during the pressure hold period. The D-values of M. morganii (200 to 600 MPa) and P. phosphoreum (100 to 400 MPa) in phosphate buffer ranged from 16.4 to 0.08 min and 26.4 to 0.19 min, respectively, whereas those in tuna meat slurry ranged from 51.0 to 0.09 min and 71.6 to 0.19 min, respectively. M. morganii had higher D-values than P. phosphoreum at the same pressure, indicating it was more resistant to HHP treatment. HFB had a higher D-value in tuna meat slurry compared with that in phosphate buffer, indicating that the HFB were more resistant to pressure in tuna meat slurry. The Zp values (pressure range that results in a 10-fold change in D-value) of M. morganii and P. phosphoreum were 162 and 140 MPa in phosphate buffer and 153 and 105 MPa in tuna meat slurry, respectively. Damage to the cell wall and cell membrane by HHP treatments can be observed by scanning electron microscopy. To our knowledge, this is the first report to demonstrate that HHP can be applied to inactivate the HFB M. morganii and P. phosphoreum by inducing morphological changes in the cells.


Asunto(s)
Manipulación de Alimentos/métodos , Conservación de Alimentos/métodos , Morganella morganii , Photobacterium , Animales , Histamina , Morganella morganii/crecimiento & desarrollo , Morganella morganii/metabolismo , Photobacterium/crecimiento & desarrollo , Photobacterium/metabolismo , Presión
13.
Microbiol Res ; 233: 126410, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31945517

RESUMEN

Photobacterium species are widely distributed in the marine environment. The overall metabolism of this genus remains largely unknown. In order to improve our knowledge on this bacterium, the relationship between the genome and phenome of the Photobacterium isolate was analyzed. The cream colored, Gram-negative, rod-shaped and motile bacterial strain, J15, was isolated from marine water of Tanjung Pelepas, Johor, Malaysia. The 5,684,538 bp genome of strain J15 comprised 3 contigs (2 chromosomes and 1 plasmid) with G + C content of 46.39 % and contained 4924 protein-coding genes including 180 tRNAs and 40 rRNAs. The phenotypic microarray (PM) as analyzed using BIOLOG showed the utilization of; i) 93 of the 190 carbon sources tested, where 61 compounds were used efficiently; ii) 41 of the 95 nitrogen sources tested, where 22 compounds were used efficiently; and iii) 3 of the 94 phosphorous and sulphur sources tested. Furthermore, high tolerance to osmotic stress, basic pH and toxic compounds as well as resistance to antibiotics of strain J15 were determined by BIOLOG PM. The ANI and kSNP analyses revealed that strain J15 to be the same species with Photobacterium marinum AK15 with ANI value of 96.93 % and bootstrapping value of 100 in kSNP. Based on the ANI and kSNP analyses, strain J15 was identified as P. marinum J15.


Asunto(s)
Organismos Acuáticos/clasificación , Genoma Bacteriano , Photobacterium/clasificación , Filogenia , Agua de Mar/microbiología , Organismos Acuáticos/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Genómica , Malasia , Fenómica , Photobacterium/metabolismo , Análisis de Secuencia de ADN
14.
Curr Microbiol ; 77(3): 460-467, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31897663

RESUMEN

Histamine food poisoning is a major safety concern related to seafood consumption worldwide. Morganella psychrotolerans is a novel psychrotolerant histamine-producer. In this study, the histamine production behaviors of M. psychrotolerans and two other major histamine-producers, mesophilic Morganella morganii and psychrotrophic Photobacterium phosphoreum, were compared in seafood products, and histamine accumulation by M. psychrotolerans was characterized at various pH and temperature levels in culture broth. The growth of M. psychrotolerans and P. phosphoreum increased similarly at 4 °C in canned tuna, but M. psychrotolerans produced much higher levels of histamine than P. phosphoreum. Histamine accumulation by M. psychrotolerans was induced at lower environmental pH condition at 4 and 20 °C. The optimal temperature and pH for producing histamine by crude histidine decarboxylase of M. psychrotolerans were 30 °C and pH 7, respectively. The activity of the crude HDC extracted from M. psychrotolerans cells at 10 °C retained 45% of the activity at 30 °C. Histidine decarboxylase gene expression of M. psychrotolerans was induced by low pH conditions. These results suggest that M. psychrotolerans are also a very important histamine-producer leading to histamine poisoning associated with seafood below the refrigeration temperature.


Asunto(s)
Histamina/biosíntesis , Morganella/metabolismo , Alimentos Marinos/análisis , Alimentos Marinos/microbiología , Temperatura , Atún/microbiología , Animales , Seguridad de Productos para el Consumidor , Medios de Cultivo/química , Enfermedades Transmitidas por los Alimentos/microbiología , Histidina Descarboxilasa/genética , Concentración de Iones de Hidrógeno , Morganella/genética , Morganella morganii/metabolismo , Photobacterium/metabolismo
15.
J Appl Microbiol ; 129(1): 37-50, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31505106

RESUMEN

AIMS: Several virulence factors of three new Photobacterium species: Photobacterium toruni, Photobacterium malacitanum and Photobacterium andalusiense associated with diseases of cultured redbanded seabream (Pagrus auriga) were studied. The exoenzymatic activities, adherence and cytotoxic capabilities, and iron-uptake mechanisms were determined both in bacterial extracellular products (ECP) and whole bacterial cells. The histopathology damages provoked on redbanded seabream by the ECP was also studied. METHODS AND RESULTS: The highest exoenzymatic activities of the ECP were alkaline- and acid-phosphatase, phosphohydrolase and lipase. The ECP were strongly lethal for fish at 4-96 h post-inoculation (p.i). Histological changes were evident at 96 hpi of ECP, affecting head kidney, splenic parenchyma and heart. Cytotoxicity assays, on three fish lines and one human cell line, were conducted using whole bacterial cells and their ECP. The new species tested were cytotoxic only for fish cell lines using whole bacterial cells. Bacterial adherence showed an adherence index moderate on CHSE-214 cell line. All strains showed variable haemolytic activity, and were able to grow under iron-limiting conditions, although the CAS reactivitiy was very low. However, all strains produced high amounts of extracelullar citrate that could be used as iron carrier, and use haem as iron source, except the P. toruni strains because a deletion in the genomic region encoding this ability in all Vibrionaceae members. CONCLUSIONS: The toxic activity of the bacterial ECPs was thermolabile, and not associated with their thermoresistant lipopolysaccharide content. The virulence of the strains tested could not be related to the haemolytic activity. Iron uptake could be based on the use of endogenous citrate as iron carrier and P. toruni lacks the ability to use haem as iron source. SIGNIFICANCE AND IMPACT OF THE STUDY: The study analyses for the first time the virulence properties of three new species of Photobacterium pathogenic for fish.


Asunto(s)
Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Photobacterium/patogenicidad , Dorada/microbiología , Animales , Acuicultura , Línea Celular , Enfermedades de los Peces/patología , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Photobacterium/crecimiento & desarrollo , Photobacterium/metabolismo , Photobacterium/fisiología , Virulencia , Factores de Virulencia/metabolismo
16.
Cell Microbiol ; 22(1): e13109, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454143

RESUMEN

Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Toxinas Bacterianas/metabolismo , Citosol/metabolismo , Disulfuros , Oxidación-Reducción , Photobacterium/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Endocitosis , Peces/microbiología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Photobacterium/patogenicidad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Factores de Virulencia/metabolismo
17.
Sci Rep ; 9(1): 18946, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831775

RESUMEN

The mucosal surfaces of fish harbour microbial communities that can act as the first-line of defense against pathogens. Infectious diseases are one of the main constraints to aquaculture growth leading to huge economic losses. Despite their negative impacts on microbial diversity and overall fish health, antibiotics are still the method of choice to treat many such diseases. Here, we use 16 rRNA V4 metataxonomics to study over a 6 week period the dynamics of the gill and skin microbiomes of farmed seabass before, during and after a natural disease outbreak and subsequent antibiotic treatment with oxytetracycline. Photobacterium damselae was identified as the most probable causative agent of disease. Both infection and antibiotic treatment caused significant, although asymmetrical, changes in the microbiome composition of the gills and skin. The most dramatic changes in microbial taxonomic abundance occurred between healthy and diseased fish. Disease led to a decrease in the bacterial core diversity in the skin, whereas in the gills there was both an increase and a shift in core diversity. Oxytetracycline caused a decrease in core diversity in the gill and an increase in the skin. Severe loss of core diversity in fish mucosae demonstrates the disruptive impact of disease and antibiotic treatment on the microbial communities of healthy fish.


Asunto(s)
Antibacterianos/farmacología , Lubina/microbiología , Brotes de Enfermedades , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Microbiota/efectos de los fármacos , Oxitetraciclina/farmacología , Photobacterium/metabolismo , Animales , Acuicultura , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Branquias/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/veterinaria , Piel/microbiología
18.
Sci Rep ; 9(1): 16011, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690733

RESUMEN

Acyl carrier proteins (ACPs) are essential to the production of fatty acids. In some species of marine bacteria, ACPs are arranged into tandem repeats joined by peptide linkers, an arrangement that results in high fatty acid yields. By contrast, Escherichia coli, a relatively low producer of fatty acids, uses a single-domain ACP. In this work, we have engineered the native E. coli ACP into tandem di- and tri-domain constructs joined by a naturally occurring peptide linker from the PUFA synthase of Photobacterium profundum. The size of these tandem fused ACPs was determined by size exclusion chromatography to be higher (21 kDa, 36 kDa and 141 kDa) than expected based on the amino acid sequence (12 kDa, 24 kDa and 37 kDa, respectively) suggesting the formation of a flexible extended conformation. Structural studies using small-angle X-ray scattering (SAXS), confirmed this conformational flexibility. The thermal stability for the di- and tri-domain constructs was similar to that of the unfused ACP, indicating a lack of interaction between domains. Lastly, E. coli cultures harboring tandem ACPs produced up to 1.6 times more fatty acids than wild-type ACP, demonstrating the viability of ACP fusion as a method to enhance fatty acid yield in bacteria.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Photobacterium/metabolismo , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/metabolismo , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Temperatura , Difracción de Rayos X
19.
Toxins (Basel) ; 11(7)2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315179

RESUMEN

Phobalysin P (PhlyP, for photobacterial lysin encoded on a plasmid) is a recently described small ß-pore forming toxin of Photobacterium damselae subsp. damselae (Pdd). This organism, belonging to the family of Vibrionaceae, is an emerging pathogen of fish and various marine animals, which occasionally causes life-threatening soft tissue infections and septicemia in humans. By using genetically modified Pdd strains, PhlyP was found to be an important virulence factor. More recently, in vitro studies with purified PhlyP elucidated some basic consequences of pore formation. Being the first bacterial small ß-pore forming toxin shown to trigger calcium-influx dependent membrane repair, PhlyP has advanced to a revealing model toxin to study this important cellular function. Further, results from co-culture experiments employing various Pdd strains and epithelial cells together with data on other bacterial toxins indicate that limited membrane damage may generally enhance the association of bacteria with target cells. Thereby, remodeling of plasma membrane and cytoskeleton during membrane repair could be involved. In addition, a chemotaxis-dependent attack-and track mechanism influenced by environmental factors like salinity may contribute to PhlyP-dependent association of Pdd with cells. Obviously, a synoptic approach is required to capture the regulatory links governing the interaction of Pdd with target cells. The characterization of Pdd's secretome may hold additional clues because it may lead to the identification of proteases activating PhlyP's pro-form. Current findings on PhlyP support the notion that pore forming toxins are not just killer proteins but serve bacteria to fulfill more subtle functions, like accessing their host.


Asunto(s)
Proteínas Bacterianas , Proteínas Hemolisinas , Photobacterium , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Adhesión Celular/efectos de los fármacos , Membrana Celular , Quimiotaxis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Humanos , Fenotipo , Photobacterium/genética , Photobacterium/metabolismo
20.
Sci Rep ; 9(1): 9019, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227743

RESUMEN

AIP56 (apoptosis inducing protein of 56 kDa) is a key virulence factor secreted by virulent strains of Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes septicemic infections in several warm water marine fish species. AIP56 is systemically disseminated during infection and induces massive apoptosis of host macrophages and neutrophils, playing a decisive role in the disease outcome. AIP56 is a single-chain AB-type toxin, being composed by a metalloprotease A domain located at the N-terminal region connected to a C-terminal B domain, required for internalization of the toxin into susceptible cells. After binding to a still unidentified surface receptor, AIP56 is internalised through clathrin-mediated endocytosis, reaches early endosomes and translocates into the cytosol through a mechanism requiring endosomal acidification and involving low pH-induced unfolding of the toxin. At the cytosol, the catalytic domain of AIP56 cleaves NF-κB p65, leading to the apoptotic death of the intoxicated cells. It has been reported that host cytosolic factors, including host cell chaperones such as heat shock protein 90 (Hsp90) and peptidyl-prolyl cis/trans isomerases (PPIases), namely cyclophilin A/D (Cyp) and FK506-binding proteins (FKBP) are involved in the uptake of several bacterial AB toxins with ADP-ribosylating activity, but are dispensable for the uptake of other AB toxins with different enzymatic activities, such as Bacillus anthracis lethal toxin (a metalloprotease) or the large glycosylating toxins A and B of Clostridium difficile. Based on these findings, it has been proposed that the requirement for Hsp90/PPIases is a common and specific characteristic of ADP-ribosylating toxins. In the present work, we demonstrate that Hsp90 and the PPIases cyclophilin A/D are required for efficient intoxication by the metalloprotease toxin AIP56. We further show that those host cell factors interact with AIP56 in vitro and that the interactions increase when AIP56 is unfolded. The interaction with Hsp90 was also demonstrated in intact cells, at 30 min post-treatment with AIP56, suggesting that it occurs during or shortly after translocation of the toxin from endosomes into the cytosol. Based on these findings, we propose that the participation of Hsp90 and Cyp in bacterial toxin entry may be more disseminated than initially expected, and may include toxins with different catalytic activities.


Asunto(s)
Toxinas Bacterianas/metabolismo , Ciclofilina A/metabolismo , Infecciones por Bacterias Gramnegativas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Metaloproteasas/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Photobacterium/metabolismo , Animales , Células Cultivadas , Endocitosis , Endosomas/metabolismo , Endosomas/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones Endogámicos C57BL , Photobacterium/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...