Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Virus Res ; 320: 198903, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037849

RESUMEN

Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.


Asunto(s)
Chlorella , Phycodnaviridae , Virus , Animales , Chlorella/metabolismo , Eucariontes , Canales Iónicos/metabolismo , Mamíferos/metabolismo , Phycodnaviridae/genética , Phycodnaviridae/metabolismo , Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas Viroporinas , Virus/metabolismo
2.
Viruses ; 12(6)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585987

RESUMEN

Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels.


Asunto(s)
Chlorella/virología , Genoma Viral/genética , Phycodnaviridae/genética , Canales de Potasio/genética , Proteínas Virales/genética , Secuencia de Aminoácidos/genética , Secuencia de Bases , ADN Viral/genética , Variación Genética/genética , Phycodnaviridae/metabolismo , Dominios Proteicos/genética , Análisis de Secuencia de ADN
3.
Nat Commun ; 10(1): 4939, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666521

RESUMEN

Recently, two groups of rhodopsin genes were identified in large double-stranded DNA viruses. The structure and function of viral rhodopsins are unknown. We present functional characterization and high-resolution structure of an Organic Lake Phycodnavirus rhodopsin II (OLPVRII) of group 2. It forms a pentamer, with a symmetrical, bottle-like central channel with the narrow vestibule in the cytoplasmic part covered by a ring of 5 arginines, whereas 5 phenylalanines form a hydrophobic barrier in its exit. The proton donor E42 is placed in the helix B. The structure is unique among the known rhodopsins. Structural and functional data and molecular dynamics suggest that OLPVRII might be a light-gated pentameric ion channel analogous to pentameric ligand-gated ion channels, however, future patch clamp experiments should prove this directly. The data shed light on a fundamentally distinct branch of rhodopsins and may contribute to the understanding of virus-host interactions in ecologically important marine protists.


Asunto(s)
Phycodnaviridae/metabolismo , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/ultraestructura , Bacteriorodopsinas , Cristalografía por Rayos X , Halobacterium salinarum , Activación del Canal Iónico , Canales Iónicos , Luz , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Rodopsinas Microbianas/fisiología
4.
Environ Microbiol ; 21(6): 2182-2197, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31001863

RESUMEN

Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.


Asunto(s)
Glicoesfingolípidos/biosíntesis , Phycodnaviridae/metabolismo , Ecología , Haptophyta/virología , Modelos Teóricos , Phycodnaviridae/enzimología , Phycodnaviridae/genética , Phycodnaviridae/patogenicidad , Serina C-Palmitoiltransferasa , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia , Replicación Viral
5.
Mar Drugs ; 16(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30563009

RESUMEN

Microalgae are well known as primary producers in the hydrosphere. As sources of natural products, microalgae are attracting major attention due to the potential of their practical applications as valuable food constituents, raw material for biofuels, drug candidates, and components of drug delivery systems. This paper presents a short review of a low-molecular-weight steroid and sphingolipid glycoconjugates, with an analysis of the literature on their structures, functions, and bioactivities. The discussed data on sterols and the corresponding glycoconjugates not only demonstrate their structural diversity and properties, but also allow for a better understanding of steroid biogenesis in some echinoderms, mollusks, and other invertebrates which receive these substances from food and possibly from their microalgal symbionts. In another part of this review, the structures and biological functions of sphingolipid glycoconjugates are discussed. Their role in limiting microalgal blooms as a result of viral infections is emphasized.


Asunto(s)
Factores Biológicos/metabolismo , Glicoconjugados/metabolismo , Microalgas/metabolismo , Phycodnaviridae/metabolismo , Biodiversidad , Factores Biológicos/química , Vías Biosintéticas/fisiología , Eutrofización/fisiología , Glicoconjugados/química , Interacciones Huésped-Patógeno/fisiología , Microalgas/química , Microalgas/virología , Estructura Molecular , Phycodnaviridae/patogenicidad , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/química , Esfingolípidos/metabolismo , Esteroles/química , Esteroles/metabolismo , Proteínas Virales/metabolismo
6.
Nat Microbiol ; 2(11): 1485-1492, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28924189

RESUMEN

Communication between microorganisms in the marine environment has immense ecological impact by mediating trophic-level interactions and thus determining community structure 1 . Extracellular vesicles (EVs) are produced by bacteria 2,3 , archaea 4 , protists 5 and metazoans, and can mediate pathogenicity 6 or act as vectors for intercellular communication. However, little is known about the involvement of EVs in microbial interactions in the marine environment 7 . Here we investigated the signalling role of EVs produced during interactions between the cosmopolitan alga Emiliania huxleyi and its specific virus (EhV, Phycodnaviridae) 8 , which leads to the demise of these large-scale oceanic blooms 9,10 . We found that EVs are highly produced during viral infection or when bystander cells are exposed to infochemicals derived from infected cells. These vesicles have a unique lipid composition that differs from that of viruses and their infected host cells, and their cargo is composed of specific small RNAs that are predicted to target sphingolipid metabolism and cell-cycle pathways. EVs can be internalized by E. huxleyi cells, which consequently leads to a faster viral infection dynamic. EVs can also prolong EhV half-life in the extracellular milieu. We propose that EVs are exploited by viruses to sustain efficient infectivity and propagation across E. huxleyi blooms. As these algal blooms have an immense impact on the cycling of carbon and other nutrients 11,12 , this mode of cell-cell communication may influence the fate of the blooms and, consequently, the composition and flow of nutrients in marine microbial food webs.


Asunto(s)
Vesículas Extracelulares/metabolismo , Haptophyta/virología , Interacciones Microbianas , Phycodnaviridae/metabolismo , Carbono/metabolismo , Ciclo Celular/fisiología , Eutrofización/fisiología , Vesículas Extracelulares/química , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Océanos y Mares , Phycodnaviridae/patogenicidad , Transducción de Señal , Esfingolípidos/metabolismo , Virosis
7.
Cell Calcium ; 58(1): 114-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25449299

RESUMEN

The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain.


Asunto(s)
Membrana Celular/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Proteínas Virales/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Phycodnaviridae/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Proteínas Virales/química , Proteínas Virales/genética
8.
J Virol ; 88(23): 13798-810, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25253343

RESUMEN

UNLABELLED: The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. IMPORTANCE: Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their replication. As reported in the manuscript, the large chloroviruses encode several components involved in the SCF ubiquitin ligase complex including a viral Skp1 homolog. Studies on how chloroviruses manipulate their host algal ubiquitination system will provide insights toward viral protein mimicry, substrate recognition, and key interactive domains controlling selective protein degradation. These findings may also further understanding of the evolution of other large DNA viruses, like poxviruses, that are reported to share the same monophyly lineage as chloroviruses.


Asunto(s)
Repetición de Anquirina , Imitación Molecular , Phycodnaviridae/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Virales/metabolismo , Modelos Moleculares , Phycodnaviridae/química , Filogenia , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Proteínas Virales/genética
9.
PLoS One ; 9(3): e90989, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24608750

RESUMEN

Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of the genus Chlorovirus (family Phycodnaviridae) that infects the unicellular, eukaryotic green alga Chlorella variabilis NC64A. The 331-kb PBCV-1 genome contains 416 major open reading frames. A mRNA-seq approach was used to analyze PBCV-1 transcriptomes at 6 progressive times during the first hour of infection. The alignment of 17 million reads to the PBCV-1 genome allowed the construction of single-base transcriptome maps. Significant transcription was detected for a subset of 50 viral genes as soon as 7 min after infection. By 20 min post infection (p.i.), transcripts were detected for most PBCV-1 genes and transcript levels continued to increase globally up to 60 min p.i., at which time 41% or the poly (A+)-containing RNAs in the infected cells mapped to the PBCV-1 genome. For some viral genes, the number of transcripts in the latter time points (20 to 60 min p.i.) was much higher than that of the most highly expressed host genes. RNA-seq data revealed putative polyadenylation signal sequences in PBCV-1 genes that were identical to the polyadenylation signal AAUAAA of green algae. Several transcripts have an RNA fragment excised. However, the frequency of excision and the resulting putative shortened protein products suggest that most of these excision events have no functional role but are probably the result of the activity of misled splicesomes.


Asunto(s)
Regulación Viral de la Expresión Génica , Genoma Viral , Phycodnaviridae/genética , ARN Mensajero/genética , ARN Viral/genética , Proteínas Virales/genética , Chlorella/genética , Chlorella/metabolismo , Chlorella/virología , Mapeo Cromosómico , Dosificación de Gen , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Phycodnaviridae/metabolismo , Poliadenilación , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Factores de Tiempo , Transcriptoma , Proteínas Virales/metabolismo , Replicación Viral
10.
J Gen Virol ; 94(Pt 11): 2549-2556, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23918407

RESUMEN

Most chloroviruses encode small K(+) channels, which are functional in electrophysiological assays. The experimental finding that initial steps in viral infection exhibit the same sensitivity to channel inhibitors as the viral K(+) channels has led to the hypothesis that the channels are structural proteins located in the internal membrane of the virus particles. This hypothesis was questioned recently because proteomic studies failed to detect the channel protein in virions of the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1). Here, we used a mAb raised against the functional K(+) channel from chlorovirus MA-1D to search for the viral K(+) channel in the virus particle. The results showed that the antibody was specific and bound to the tetrameric channel on the extracellular side. The antibody reacted in a virus-specific manner with protein extracts from chloroviruses that encoded channels similar to that from MA-1D. There was no cross-reactivity with chloroviruses that encoded more diverse channels or with a chlorovirus that lacked a K(+) channel gene. Together with electron microscopic imaging, which revealed labelling of individual virus particles with the channel antibody, these results establish that the viral particles contain an active K(+) channel, presumably located in the lipid membrane that surrounds the DNA in the mature virions.


Asunto(s)
Phycodnaviridae/metabolismo , Canales de Potasio/metabolismo , Proteínas Estructurales Virales/metabolismo , Virión/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/inmunología , Células COS , Chlorocebus aethiops , Ratones , Microscopía Electrónica , Datos de Secuencia Molecular , Paramecium/virología , Phycodnaviridae/genética , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/inmunología , Proteómica , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología , Virión/genética , Virión/ultraestructura
11.
Environ Microbiol Rep ; 5(3): 475-82, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754728

RESUMEN

The Gulf of Aqaba, extending north to the Red Sea, is an oligotrophic basin with typical open ocean gyre characteristics. Here we report on the existence of diverse microbial rhodopsins in the Gulf of Aqaba, based on 454-pyrosequencing-generated metagenome and metatranscriptome data sets, obtained from the microbial fraction smaller than 1.6 µm. Bacterial SAR11, SAR86 and archaeal proteorhodopsins as well as viral-like rhodopsins were detected on the DNA level. On the RNA level, only SAR11 and SAR86 proteorhodopsin transcripts were detected. Our results add to the growing evidence that microbial rhodopsins are a diverse, abundant and widespread protein family.


Asunto(s)
Archaea/genética , Proteínas Arqueales/genética , Bacterias/genética , Proteínas Bacterianas/genética , Phycodnaviridae/genética , Rodopsina/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Archaea/metabolismo , Proteínas Arqueales/clasificación , Proteínas Arqueales/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Océano Índico , Metagenoma , Consorcios Microbianos , Datos de Secuencia Molecular , Phycodnaviridae/metabolismo , ARN Mensajero/clasificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rodopsina/clasificación , Rodopsina/metabolismo , Alineación de Secuencia , Proteínas Virales/clasificación , Proteínas Virales/metabolismo
12.
Biol Direct ; 7: 34, 2012 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23036091

RESUMEN

Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in infected protists.


Asunto(s)
Phycodnaviridae/genética , Rodopsina/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Transferencia de Gen Horizontal , Haptophyta/genética , Haptophyta/metabolismo , Haptophyta/virología , Datos de Secuencia Molecular , Phycodnaviridae/química , Phycodnaviridae/metabolismo , Filogenia , Rodopsina/química , Rodopsinas Microbianas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Proteínas Virales/química
13.
Mar Genomics ; 4(1): 1-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21429459

RESUMEN

The identification of inteins in viral genomes is becoming increasingly common. Inteins are selfish DNA elements found within coding regions of host proteins. Following translation, they catalyse their own excision and the formation of a peptide bond between the flanking protein regions. Many inteins also display homing endonuclease function. Here, the newly identified coccolithovirus intein is described and is predicted to have both self-splicing and homing endonuclease activity. The biochemical mechanism of its protein splicing activity is hypothesised, and the prevalence of the intein among natural coccolithovirus isolates is tested.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Inteínas/genética , Phycodnaviridae/genética , Phycodnaviridae/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Endonucleasas/metabolismo , Datos de Secuencia Molecular , Empalme de Proteína , Proteínas Virales/genética
14.
Biochim Biophys Acta ; 1808(2): 580-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20417613

RESUMEN

Some algal viruses contain genes that encode proteins with the hallmarks of K(+) channels. One feature of these proteins is that they are less than 100 amino acids in size, which make them truly minimal for a K(+) channel protein. That is, they consist of only the pore module present in more complex K(+) channels. The combination of miniature size and the functional robustness of the viral K(+) channels make them ideal model systems for studying how K(+) channels work. Here we summarize recent structure/function correlates from these channels, which provide insight into functional properties such as gating, pharmacology and sorting in cells.


Asunto(s)
Canales de Potasio/química , Canales de Potasio/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Activación del Canal Iónico , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Phycodnaviridae/química , Phycodnaviridae/genética , Phycodnaviridae/metabolismo , Canales de Potasio/genética , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Proteínas Virales/genética
15.
Trends Plant Sci ; 15(12): 651-5, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20934366

RESUMEN

Emiliania huxleyi is the host for the coccolithovirus (EhV), which is responsible for the demise of large oceanic blooms formed by this alga. The EhV-86 virus genome sequence has identified several genes apparently involved in sphingolipid metabolism. Recently, an unusual glucosylceramide from E. huxleyi infected with EhV-86 was isolated, implicating sphingolipids in the lysis of this alga. However, the EhV-86-encoded genes contain only a subset of the activities required to generate the novel sphingolipid, implying that its synthesis is the result of coordinated interactions between algal- and viral-encoded biosynthetic enzymes. Here, we discuss the likely role for EhV-86 open reading frames (ORFs) in the synthesis of novel sphingolipids and also consider the concept of the trans-dominant manipulation of lipid metabolism.


Asunto(s)
Glucosilceramidas/biosíntesis , Haptophyta/virología , Phycodnaviridae/química , Phycodnaviridae/metabolismo , Haptophyta/citología , Proteínas Virales/metabolismo
16.
J Virol ; 84(17): 8829-38, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20538863

RESUMEN

Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three enzymes responsible for the synthesis of the sugar L-rhamnose: two UDP-D-glucose 4,6-dehydratases (UGDs) encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-D-glucose epimerase/reductase (UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER are expressed as late genes, which is consistent with their role in posttranslational modification of capsid proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan structures essential for virus replication and infection.


Asunto(s)
Mimiviridae/metabolismo , Phycodnaviridae/metabolismo , Ramnosa/biosíntesis , Proteínas Virales/metabolismo , Acanthamoeba castellanii/virología , Vías Biosintéticas , Chlorella/virología , Transferencia de Gen Horizontal , Mimiviridae/clasificación , Mimiviridae/enzimología , Mimiviridae/genética , Datos de Secuencia Molecular , Phycodnaviridae/clasificación , Phycodnaviridae/enzimología , Phycodnaviridae/genética , Filogenia , Proteínas Virales/genética
17.
J Virol ; 82(24): 12181-90, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18842725

RESUMEN

Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.


Asunto(s)
Membrana Celular/metabolismo , Chlorella/metabolismo , Phycodnaviridae/metabolismo , Adenina/metabolismo , Transporte Biológico Activo , Pared Celular/metabolismo , Chlorella/efectos de los fármacos , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Nistatina/farmacología , Putrescina/metabolismo , ARN de Algas/metabolismo , Azida Sódica/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Soluciones
18.
J Biol Chem ; 283(1): 184-193, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-17974560

RESUMEN

GDP-D-mannose 4,6-dehydratase (GMD) is a key enzyme involved in the synthesis of 6-deoxyhexoses in prokaryotes and eukaryotes. Paramecium bursaria chlorella virus-1 (PBCV-1) encodes a functional GMD, which is unique among characterized GMDs because it also has a strong stereospecific NADPH-dependent reductase activity leading to GDP-D-rhamnose formation (Tonetti, M., Zanardi, D., Gurnon, J., Fruscione, F., Armirotti, A., Damonte, G., Sturla, L., De Flora, A., and Van Etten, J.L. (2003) J. Biol. Chem. 278, 21559-21565). In the present study we characterized a recombinant GMD encoded by another chlorella virus, Acanthocystis turfacea chlorella virus 1 (ATCV-1), demonstrating that it has the expected dehydratase activity. However, it also displayed significant differences when compared with PBCV-1 GMD. In particular, ATCV-1 GMD lacks the reductase activity present in the PBCV-1 enzyme. Using recombinant PBCV-1 and ATCV-1 GMDs, we determined that the enzymatically active proteins contain tightly bound NADPH and that NADPH is essential for maintaining the oligomerization status as well as for the stabilization and function of both enzymes. Phylogenetic analysis indicates that PBCV-1 GMD is the most evolutionary diverged of the GMDs. We conclude that this high degree of divergence was the result of the selection pressures that led to the acquisition of new reductase activity to synthesize GDP-D-rhamnose while maintaining the dehydratase activity in order to continue to synthesize GDP-L-fucose.


Asunto(s)
Chlorella/virología , Hidroliasas/metabolismo , NADP/metabolismo , Phycodnaviridae/metabolismo , Proteínas Virales/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Guanosina Difosfato Fucosa/química , Guanosina Difosfato Fucosa/metabolismo , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/metabolismo , Hidroliasas/química , Hidroliasas/clasificación , Estructura Molecular , Filogenia , Espectrometría de Fluorescencia/métodos , Proteínas Virales/química , Proteínas Virales/clasificación
19.
Int J Comput Biol Drug Des ; 1(3): 235-53, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-20054991

RESUMEN

Machine learning methods are often used to predict Protein-Protein Interactions (PPI). It is common to develop methods using known PPI from well-characterised reference organisms, drawing from that organism data for inferring a predictive model and evaluating the model. We present evidence that this practice does not give a meaningful indication of the model's performance on genetically distinct organisms. We conclude that this practice cannot be applied to proteins inferred from the genetic sequence of a novel organism for which no PPI data is available, and that there is need for evaluating such methods on organisms distinct from their training organisms.


Asunto(s)
Inteligencia Artificial , Mapeo de Interacción de Proteínas/estadística & datos numéricos , Proteómica/estadística & datos numéricos , Algoritmos , Arabidopsis/genética , Arabidopsis/metabolismo , Biología Computacional , Simulación por Computador , Bases de Datos de Proteínas , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Phycodnaviridae/genética , Phycodnaviridae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
Environ Microbiol ; 9(11): 2720-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17922756

RESUMEN

Viruses infecting marine phytoplankton drive phytoplankton diversity, terminate blooms and shuttle genetic material. Assessments of the scale of viral impacts on trophic networks are, however, speculative. We investigated fluxes of DNA between host and virus during infection of the prasinophyte alga Micromonas pusilla by phycodnavirus MpV SP1. Under a light-dark regimen, viral genomes accumulated to a transient peak within 24 h, at the expense of both host DNA synthesis and nuclear DNA. Viral genome abundance then declined soon after host lysis. This release of a phosphate-rich nucleotide pool during viral infection of phytoplankton should be considered in trophic models. Lysis required light and was stalled in darkness, meanwhile viral genome replication proceeded slowly in the dark. Viral exploitation of this host is therefore only partially light-dependent and infected phytoplankton are poised to lyse at dawn or if mixed to the photic zone. The chloroplast genome remained intact until lysis, indicating that either this DNA pool is inaccessible or the virus spares the chloroplast for its energy and reductant generation. The photochemical turnover of residual Photosystem II complexes accelerated during lysis, indicating that events in late infection heighten demands on the remaining host photosynthetic systems, consistent with the light dependency of lysis.


Asunto(s)
Eucariontes/virología , Interacciones Huésped-Parásitos , Phycodnaviridae/genética , Phycodnaviridae/metabolismo , Virosis , Oscuridad , Eucariontes/genética , Luz , Fotoperiodo , Fotosíntesis , Phycodnaviridae/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA