Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.774
Filtrar
1.
Arch Microbiol ; 206(6): 279, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805051

RESUMEN

Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.


Asunto(s)
Etanol , Fermentación , Pichia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/aislamiento & purificación , Pichia/metabolismo , Pichia/aislamiento & purificación , Pichia/genética , Pichia/clasificación , Etanol/metabolismo , Concentración de Iones de Hidrógeno , Café/microbiología , Coffea/microbiología , Temperatura , Semillas/microbiología , Sulfuro de Hidrógeno/metabolismo
2.
World J Microbiol Biotechnol ; 40(7): 223, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819502

RESUMEN

The ß-fructofuranosidase enzyme from Aspergillus niger has been extensively used to commercially produce fructooligosaccharides from sucrose. In this study, the native and an engineered version of the ß-fructofuranosidase enzyme were expressed in Pichia pastoris under control of the glyceraldehyde-3-phosphate dehydrogenase promoter, and production was evaluated in bioreactors using either dissolved oxygen (DO-stat) or constant feed fed-batch feeding strategies. The DO-stat cultivations produced lower biomass concentrations but this resulted in higher volumetric activity for both strains. The native enzyme produced the highest volumetric enzyme activity for both feeding strategies (20.8% and 13.5% higher than that achieved by the engineered enzyme, for DO-stat and constant feed, respectively). However, the constant feed cultivations produced higher biomass concentrations and higher volumetric productivity for both the native as well as engineered enzymes due to shorter process time requirements (59 h for constant feed and 155 h for DO-stat feed). Despite the DO-stat feeding strategy achieving a higher maximum enzyme activity, the constant feed strategy would be preferred for production of the ß-fructofuranosidase enzyme using glycerol due to the many industrial advantages related to its enhanced volumetric enzyme productivity.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos , Glicerol , beta-Fructofuranosidasa , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Reactores Biológicos/microbiología , Glicerol/metabolismo , Fermentación , Aspergillus niger/genética , Aspergillus niger/enzimología , Saccharomycetales/genética , Saccharomycetales/enzimología , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Medios de Cultivo/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oligosacáridos
3.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702017

RESUMEN

Peroxisomes are ubiquitous cell organelles involved in various metabolic pathways. In order to properly function, several cofactors, substrates and products of peroxisomal enzymes need to pass the organellar membrane. So far only a few transporter proteins have been identified. We analysed peroxisomal membrane fractions purified from the yeast Hansenula polymorpha by untargeted label-free quantitation mass spectrometry. As expected, several known peroxisome-associated proteins were enriched in the peroxisomal membrane fraction. In addition, several other proteins were enriched, including mitochondrial transport proteins. Localization studies revealed that one of them, the mitochondrial phosphate carrier Mir1, has a dual localization on mitochondria and peroxisomes. To better understand the molecular mechanisms of dual sorting, we localized Mir1 in cells lacking Pex3 or Pex19, two peroxins that play a role in targeting of peroxisomal membrane proteins. In these cells Mir1 only localized to mitochondria, indicating that Pex3 and Pex19 are required to sort Mir1 to peroxisomes. Analysis of the localization of truncated versions of Mir1 in wild-type H. polymorpha cells revealed that most of them localized to mitochondria, but only one, consisting of the transmembrane domains 3-6, was peroxisomal. Peroxisomal localization of this construct was lost in a MIR1 deletion strain, indicating that full-length Mir1 was required for the localization of the truncated protein to peroxisomes. Our data suggest that only full-length Mir1 sorts to peroxisomes, while Mir1 contains multiple regions with mitochondrial sorting information. Data are available via ProteomeXchange with identifier PXD050324.


Asunto(s)
Proteínas Fúngicas , Mitocondrias , Peroxisomas , Pichia , Peroxisomas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Pichia/metabolismo , Pichia/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Peroxinas/metabolismo , Peroxinas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Transporte de Proteínas
4.
Biotechnol J ; 19(5): e2400098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38797728

RESUMEN

Human carboxypeptidase B1 (hCPB1) is vital for recombinant insulin production, holding substantial value in the pharmaceutical industry. Current challenges include limited hCPB1 enzyme activity. In this study, recombinant hCPB1 efficient expression in Pichia pastoris was achieved. To enhance hCPB1 secretion, we conducted signal peptides screening and deleted the Vps10 sortilin domain, reducing vacuolar mis-sorting. Overexpression of Sec4p increased the fusion of secretory vesicles with the plasma membrane and improved hCPB1 secretion by 20%. Rational protein engineering generated twenty-two single-mutation mutants and identified the A178L mutation resulted in a 30% increase in hCPB1 specific activity. However, all combinational mutations that increased specific activities decreased protein expression levels. Therefore, computer-aided global protein design with PROSS was employed for the aim of improving specific activities and preserving good protein expression. Among the six designed mutants, hCPB1-P6 showed a remarkable 114% increase in the catalytic rate constant (kcat), a 137% decrease in the Michaelis constant (Km), and a 490% increase in catalytic efficiency. Most mutations occurred on the surface of hCPB1-P6, with eight sites mutated to proline. In a 5 L fermenter, hCPB1-P6 was produced by the secretion-enhanced P. pastoris chassis to 199.6 ± 20 mg L-1 with a specific activity of 96 ± 0.32 U mg-1, resulting in a total enzyme activity of 19137 ± 1131 U L-1, demonstrating significant potential for industrial applications.


Asunto(s)
Carboxipeptidasa B , Membrana Celular , Aparato de Golgi , Ingeniería de Proteínas , Proteínas Recombinantes , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ingeniería de Proteínas/métodos , Carboxipeptidasa B/genética , Carboxipeptidasa B/metabolismo , Membrana Celular/metabolismo , Membrana Celular/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/enzimología , Saccharomycetales/genética , Saccharomycetales/enzimología , Mutación , Pichia/genética , Pichia/metabolismo , Señales de Clasificación de Proteína/genética , Transporte de Proteínas
5.
Sensors (Basel) ; 24(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793872

RESUMEN

This paper proposes a novel soft sensor modeling approach, MIC-TCA-INGO-LSSVM, to address the decline in performance of soft sensor models during the fermentation process of Pichia pastoris, caused by changes in working conditions. Initially, the transfer component analysis (TCA) method is utilized to minimize the differences in data distribution across various working conditions. Subsequently, a least squares support vector machine (LSSVM) model is constructed using the dataset adapted by TCA, and strategies for improving the northern goshawk optimization (INGO) algorithm are proposed to optimize the parameters of the LSSVM model. Finally, to further enhance the model's generalization ability and prediction accuracy, considering the transfer of knowledge from multiple-source working conditions, a sub-model weighted ensemble scheme is proposed based on the maximum information coefficient (MIC) algorithm. The proposed soft sensor model is employed to predict cell and product concentrations during the fermentation process of Pichia pastoris. Simulation results indicate that the RMSE of the INGO-LSSVM model in predicting cell and product concentrations is reduced by 47.3% and 42.1%, respectively, compared to the NGO-LSSVM model. Additionally, TCA significantly enhances the model's adaptability when working conditions change. Moreover, the soft sensor model based on TCA and the MIC-weighted ensemble method achieves a reduction of 41.6% and 31.3% in the RMSE for predicting cell and product concentrations, respectively, compared to the single-source condition transfer model TCA-INGO-LSSVM. These results demonstrate the high reliability and predictive performance of the proposed soft sensor method under varying working conditions.


Asunto(s)
Algoritmos , Fermentación , Máquina de Vectores de Soporte , Análisis de los Mínimos Cuadrados , Pichia/metabolismo , Saccharomycetales
6.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713543

RESUMEN

The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.


Asunto(s)
Dípteros , Hemolinfa , Larva , Animales , Larva/crecimiento & desarrollo , Larva/metabolismo , Dípteros/metabolismo , Dípteros/crecimiento & desarrollo , Hemolinfa/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Dieta , Saccharomycetales/metabolismo , Alimentación Animal/análisis , Candida/metabolismo , Candida/crecimiento & desarrollo
7.
Food Chem ; 449: 139213, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631134

RESUMEN

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Asunto(s)
Fermentación , Aromatizantes , Odorantes , Pyrus , Saccharomyces cerevisiae , Sorbitol , Gusto , Vino , Vino/análisis , Vino/microbiología , Pyrus/química , Pyrus/microbiología , Pyrus/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Aromatizantes/metabolismo , Aromatizantes/química , Sorbitol/metabolismo , Sorbitol/análisis , Odorantes/análisis , Etanol/metabolismo , Etanol/análisis , Pichia/metabolismo , Metschnikowia/metabolismo , Frutas/química , Frutas/microbiología , Frutas/metabolismo
8.
Microb Cell Fact ; 23(1): 116, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643119

RESUMEN

BACKGROUND: Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS: In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS: For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.


Asunto(s)
Pichia , Saccharomycetales , Pichia/metabolismo , Carbono/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Recombinantes , Plásmidos/genética
9.
Int J Food Microbiol ; 417: 110692, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38640817

RESUMEN

Previous investigations proved the potential of Saccharomyces cerevisiae MBELGA62 and Pichia kudriavzevii MBELGA61 as suitable biocontrolling agents against Aspergillus sp. through the production of soluble and volatile bioactive antifungal compounds. The present study delves into those finding by means of the identification of the volatile compounds produced by brewer's strains that demonstrated fungistatic and fungicidal effects against Aspergillus flavus and A. parasiticus when cultured in brewer's wort agar plates. Traditional brewer's yeasts such as S. cerevisiae MBELGA62 and Saccharomyces pastorianus SAFS235 synthetize volatiles that fully inhibited mycelial development for up to 9 days at 30 °C. The non-conventional brewer's strains P. kudriavzevii MBELGA61 and Meyerozyma guilliermondii MUS122 increased the lag phase by >100% and significantly reduced the fungal growth rate by 27.5-43.0% and 15.4-31.4%, respectively. In this context, 2-phenylethanol, 2-phenylethyl acetate and benzyl alcohol were identified as the main antifungal agents involved in Aspergillus sp.'s inhibition.


Asunto(s)
Antifúngicos , Aspergillus , Fermentación , Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Aspergillus/efectos de los fármacos , Aspergillus/metabolismo , Aspergillus/crecimiento & desarrollo , Antifúngicos/farmacología , Compuestos Orgánicos Volátiles/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Pichia/metabolismo , Pichia/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/metabolismo
10.
Microb Cell Fact ; 23(1): 99, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566096

RESUMEN

BACKGROUND: The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS: We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS: Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.


Asunto(s)
6-Fitasa , Saccharomycetales , Pichia/metabolismo , Metanol/metabolismo , 6-Fitasa/genética , 6-Fitasa/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/metabolismo
11.
Toxins (Basel) ; 16(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668602

RESUMEN

Patulin contamination has become a bottleneck problem in the safe production of fruit products, although biodegradation technology shows potential application value in patulin control. In the present study, the patulin biodegradation mechanism in a probiotic yeast, Pichia guilliermondii S15-8, was investigated. Firstly, the short-chain dehydrogenase PgSDR encoded by gene A5D9S1 was identified as a patulin degradation enzyme, through RNA sequencing and verification by qRT-PCR. Subsequently, the exogenous expression system of the degradation protein PgSDR-A5D9S1 in E. coli was successfully constructed and demonstrated a more significant patulin tolerance and degradation ability. Furthermore, the structure of PgSDR-A5D9S1 and its active binding sites with patulin were predicted via molecular docking analysis. In addition, the heat-excited protein HSF1 was predicted as the transcription factor regulating the patulin degradation protein PgSDR-A5D9S1, which may provide clues for the further analysis of the molecular regulation mechanism of patulin degradation. This study provides a theoretical basis and technical support for the industrial application of biodegradable functional strains.


Asunto(s)
Biodegradación Ambiental , Patulina , Pichia , Patulina/metabolismo , Pichia/metabolismo , Pichia/genética , Simulación del Acoplamiento Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
12.
J Microbiol Biotechnol ; 34(5): 1119-1125, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38563103

RESUMEN

Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70°C. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60°C. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80°C heat treatment without significant loss of or with increased activity.


Asunto(s)
6-Fitasa , Estabilidad de Enzimas , Calor , 6-Fitasa/genética , 6-Fitasa/metabolismo , 6-Fitasa/química , Concentración de Iones de Hidrógeno , Mutación , Pichia/genética , Pichia/metabolismo , Temperatura , Alimentación Animal/análisis , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
13.
Biol Open ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682287

RESUMEN

Pex23 family proteins localize to the endoplasmic reticulum and play a role in peroxisome and lipid body formation. The yeast Hansenula polymorpha contains four members: Pex23, Pex24, Pex29 and Pex32. We previously showed that loss of Pex24 or Pex32 results in severe peroxisomal defects, caused by reduced peroxisome-endoplasmic reticulum contact sites. We now analyzed the effect of the absence of all four Pex23 family proteins on other cell organelles. Vacuoles were normal in all four deletion strains. The number of lipid droplets was reduced in pex23 and pex29, but not in pex24 and pex32 cells, indicating that peroxisome and lipid droplet formation require different Pex23 family proteins in H. polymorpha. In pex23 and pex29 cells mitochondria were fragmented and clustered accompanied by reduced levels of the fusion protein Fzo1. Deletion of DNM1 suppressed the morphological phenotype of pex23 and pex29 cells, suggesting that mitochondrial fusion is affected. pex23 and pex29 cells showed retarded growth and reduced mitochondrial activities. The growth defect was partially suppressed by DNM1 deletion as well as by an artificial mitochondrion-endoplasmic reticulum tether. Hence, the absence of Pex23 family proteins may influence mitochondrion-endoplasmic reticulum contact sites.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Peroxinas , Peroxisomas , Pichia , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Pichia/metabolismo , Pichia/genética , Peroxinas/metabolismo , Peroxinas/genética , Peroxisomas/metabolismo , Eliminación de Gen , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Vacuolas/metabolismo , Fenotipo
14.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 908-920, 2024 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-38545986

RESUMEN

The utilization of industrial microorganisms for the conversion of lignocellulose into high value-added chemicals is an essential pathway towards achieving carbon neutrality and promoting sustainable bioeconomy. However, the pretreated lignocellulase hydrolysate often contains various sugars, salts, phenols/aldehydes and other substances, which requires microorganisms to possess strong tolerance for direct fermentation. This study aims to investigate the tolerance of Candida krusei to substrate, salt, and high temperature shock, in order to validate its potential for utilizing the enzymatic hydrolysate of Pennisetum giganteum in seawater for fermentation. The experimental results showed that the adaptively domesticated C. krusei exhibited tolerance to glucose at a concentration of 200 g/L and became a hypertonic strain. When seawater was used instead of freshwater without sterilization, the yield of glycerol in fermentation was 109% higher than that in freshwater with sterilization. Moreover, the combined thermal shock at 32 hours of fermentation and addition of 10 Na2SO3 at 48 hours resulted in a yield of glycerol to glucose 0.37 g/g, which was 225% higher than the control group. By fermenting the enzymatic hydrolysate of P. giganteum pretreated in seawater, the total conversion rate of glucose into glycerol and ethanol reached 0.45 g/g. This study indicates that hypertonic C. krusei exhibits remarkable adaptability to substrate, salt, and temperature. It not only can directly utilize complex lignocellulosic hydrolysates, but also exhibits strong tolerance to them. Therefore, it provides a potential candidate strain for the production of bio-based chemicals using lignocellulosic processes.


Asunto(s)
Glicerol , Pichia , Pichia/metabolismo , Fermentación , Glucosa/metabolismo , Xilosa/metabolismo
15.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 834-846, 2024 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-38545981

RESUMEN

The signal peptide is a key factor that affects the efficiency of protein secretion in Pichia pastoris. Currently, the most used signal peptide is the α-mating factor (MFα) pre-pro leader from Saccharomyces cerevisiae. This exogenous signal peptide has been successfully utilized to express and secret many heterologous proteins. However, MFα is not suitable for the secretory expression of all heterologous proteins. Many typical signal peptides are present in the secretory proteins of P. pastoris, which provides more options besides MFα. Therefore, it is necessary to analyze and identify more efficient endogenous signal peptides that can guide the secretion of heterologous proteins in P. pastoris. In this study, we employed bioinformatics tools such as SignalP, TMHMM, Phobius, WoLF PSORT, and NetGPI to predict endogenous signal peptides from the entire proteome of P. pastoris GS115 (ATCC 20864). Moreover, we analyzed the distribution, length, amino acid composition, and conservation of these signal peptides. Additionally, we screened 69 secreted proteins and their signal peptides, and through secretome validation, we identified 10 endogenous signal peptides that have potential to be used for exogenous protein expression. The endogenous signal peptides obtained in this study may serve as new valuable tools for the expression and secretion of heterologous proteins in P. pastoris.


Asunto(s)
Señales de Clasificación de Proteína , Proteoma , Saccharomycetales , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos , Proteoma/genética , Pichia/genética , Pichia/metabolismo , Saccharomyces cerevisiae , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Arch Microbiol ; 206(4): 174, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38493436

RESUMEN

The present study focuses on investigating 60 strains of yeast isolated from the natural fermentation broth of Vitis labruscana Baily × Vitis vinifera L. These strains underwent screening using lysine culture medium and esculin culture medium, resulting in the identification of 27 local non-Saccharomyces yeast strains exhibiting high ß-glucosidase production. Subsequent analysis of their fermentation characteristics led to the selection of four superior strains (Z-6, Z-11, Z-25, and Z-58) with excellent ß-glucosidase production and fermentation performance. Notably, these selected strains displayed a dark coloration on esculin medium and exhibited robust gas production during Duchenne tubules' fermentation test. Furthermore, all four non-Saccharomyces yeast strains demonstrated normal growth under specific conditions including SO2 mass concentration ranging from 0.1 to 0.3 g/L, temperature between 25 and 30 °C, glucose mass concentration ranging from 200 to 400 g/L, and ethanol concentration at approximately 4%. Molecular biology identification confirmed that all selected strains belonged to Pichia kudriavzevii species which holds great potential for wine production.


Asunto(s)
Vitis , Vino , Saccharomyces cerevisiae/metabolismo , Fermentación , beta-Glucosidasa/metabolismo , Esculina/análisis , Levaduras/metabolismo , Vino/análisis , Pichia/metabolismo
17.
Methods Mol Biol ; 2760: 157-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468088

RESUMEN

Pichia pastoris is known for its excellent protein expression ability. As an industrial methyl nutritional yeast, it can effectively utilize methanol as the sole carbon source, serving as a potential platform for C1 biotransformation. Unfortunately, the lack of synthetic biology tools in P. pastoris limits its broad applications, particularly when multigene pathways should be manipulated. Here, the CRISPR/Cas9 system is established to efficiently integrate multiple heterologous genes to construct P. pastoris cell factories. In this protocol, with the 2,3-butanediol (BDO) biosynthetic pathway as a representative example, the procedures to construct P. pastoris cell factories are detailed using the established CRISPR-based multiplex genome integration toolkit, including donor plasmid construction, competent cell preparation and transformation, and transformant verification. The application of the CRISPR toolkit is demonstrated by the construction of engineered P. pastoris for converting methanol to BDO. This lays the foundation for the construction of P. pastoris cell factories harboring multi-gene biosynthetic pathways for the production of high-value compounds.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomycetales , Sistemas CRISPR-Cas/genética , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/metabolismo , Butileno Glicoles/metabolismo
18.
Microb Cell Fact ; 23(1): 43, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331812

RESUMEN

BACKGROUND: Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (µ). Understanding the factors limiting productivity at extremely low µ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS: By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS: In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.


Asunto(s)
Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/metabolismo , Perfilación de la Expresión Génica , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Lípidos
19.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339093

RESUMEN

Lactoferrin (LF) stands as one of the extensively investigated iron-binding glycoproteins within milk, exhibiting diverse biological functionalities. The global demand for LF has experienced consistent growth. Biotechnological strategies aimed at enhancing LF productivity through microbial expression systems offer substantial cost-effective advantages and exhibit fewer constraints compared to traditional animal bioreactor technologies. This study devised a novel recombinant plasmid, wherein the AOX1 promoter was replaced with a glucose-inducible G1 promoter (PG1) to govern the expression of recombinant porcine LF (rpLF) in Pichia pastoris GS115. High-copy-number PG1-rpLF yeast clones were meticulously selected, and subsequent induction with 0.05 g/L glucose demonstrated robust secretion of rpLF. Scaling up production transpired in a 5 L fermenter, yielding an estimated rpLF productivity of approximately 2.8 g/L by the conclusion of glycerol-fed fermentation. A three-step purification process involving tangential-flow ultrafiltration yielded approximately 6.55 g of rpLF crude (approximately 85% purity). Notably, exceptional purity of rpLF was achieved through sequential heparin and size-exclusion column purification. Comparatively, the present glucose-inducible system outperformed our previous methanol-induced system, which yielded a level of 87 mg/L of extracellular rpLF secretion. Furthermore, yeast-produced rpLF demonstrated affinity for ferric ions (Fe3+) and exhibited growth inhibition against various pathogenic microbes (E. coli, S. aureus, and C. albicans) and human cancer cells (A549, MDA-MB-231, and Hep3B), similar to commercial bovine LF (bLF). Intriguingly, the hydrolysate of rpLF (rpLFH) manifested heightened antimicrobial and anticancer effects compared to its intact form. In conclusion, this study presents an efficient glucose-inducible yeast expression system for large-scale production and purification of active rpLF protein with the potential for veterinary or medical applications.


Asunto(s)
Antiinfecciosos , Lactoferrina , Proteínas Recombinantes , Animales , Bovinos , Humanos , Antiinfecciosos/farmacología , Escherichia coli/metabolismo , Fermentación , Glucosa/metabolismo , Lactoferrina/biosíntesis , Lactoferrina/genética , Lactoferrina/farmacología , Pichia/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomycetales , Staphylococcus aureus/efectos de los fármacos , Porcinos
20.
Microb Biotechnol ; 17(2): e14411, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376073

RESUMEN

The yeast Komagataella phaffii (Pichia pastoris) is currently considered a versatile and highly efficient host for recombinant protein production (RPP). Interestingly, the regulated application of specific stress factors as part of bioprocess engineering strategies has proven potential for increasing the production of recombinant products. This study aims to evaluate the impact of controlled oxygen-limiting conditions on the performance of K. phaffii bioprocesses for RPP in combination with the specific growth rate (µ) in fed-batch cultivations. In this work, Candida rugosa lipase 1 (Crl1) production, regulated by the constitutive GAP promoter, growing at different nominal µ (0.030, 0.065, 0.100 and 0.120 h-1 ) under both normoxic and hypoxic conditions in carbon-limiting fed-batch cultures is analysed. Hypoxic fermentations were controlled at a target respiratory quotient (RQ) of 1.4, with excellent performance, using an innovative automated control based on the stirring rate as the manipulated variable developed during this study. The results conclude that oxygen limitation positively affects bioprocess efficiency under all growing conditions compared. The shift from respiratory to respiro-fermentative metabolism increases bioprocess productivity by up to twofold for the specific growth rates evaluated. Moreover, the specific product generation rate (qp ) increases linearly with µ, regardless of oxygen availability. Furthermore, this hypoxic boosting effect was also observed in the production of Candida antarctica lipase B (CalB) and pro-Rhizopus oryzae lipase (proRol), thus proving the synergic effect of kinetic and physiological stress control. Finally, the Crl1 production scale-up was conducted successfully, confirming the strategy's scalability and the robustness of the results obtained at the bench-scale level.


Asunto(s)
Lipasa , Pichia , Saccharomycetales , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Lipasa/genética , Lipasa/metabolismo , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...