Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
1.
J Morphol ; 285(5): e21703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720627

RESUMEN

Complex morphological structures, such as skulls or limbs, are often composed of multiple morphological components (e.g., bones, sets of bones) that may evolve in a covaried manner with one another. Previous research has reached differing conclusions on the number of semi-independent units, or modules, that exist in the evolution of structures and on the strength of the covariation, or integration, between these hypothesized modules. We focus on the avian skull as an example of a complex morphological structure for which highly variable conclusions have been reached in the numerous studies analyzing support for a range of simple to complex modularity hypotheses. We hypothesized that past discrepancies may stem from both the differing densities of data used to analyze support for modularity hypotheses and the differing taxonomic levels of study. To test these hypotheses, we applied a comparative method to 3D geometric morphometric data collected from the skulls of a diverse order of birds (the Charadriiformes) to test support for 11 distinct hypotheses of modular skull evolution. Across all Charadriiformes, our analyses suggested that charadriiform skull evolution has been characterized by the semi-independent, but still correlated, evolution of the beak from the rest of the skull. When we adjusted the density of our morphometric data, this result held, but the strength of the signal varied substantially. Additionally, when we analyzed subgroups within the order in isolation, we found support for distinct hypotheses between subgroups. Taken together, these results suggest that differences in the methodology of past work (i.e., statistical method and data density) as well as clade-specific dynamics may be the reasons past studies have reached varying conclusions.


Asunto(s)
Pico , Evolución Biológica , Cráneo , Animales , Pico/anatomía & histología , Cráneo/anatomía & histología , Aves/anatomía & histología , Charadriiformes/anatomía & histología , Filogenia
2.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726757

RESUMEN

Differences in the physical and behavioral attributes of prey are likely to impose disparate demands of force and speed on the jaws of a predator. Because of biomechanical trade-offs between force and speed, this presents an interesting conundrum for predators of diverse prey types. Loggerhead shrikes (Lanius ludovicianus) are medium-sized (∼50 g) passeriform birds that dispatch and feed on a variety of arthropod and vertebrate prey, primarily using their beaks. We used high-speed video of shrikes biting a force transducer in lateral view to obtain corresponding measurements of bite force, upper and lower bill linear and angular displacements, and velocities. Our results show that upper bill depression (about the craniofacial hinge) is more highly correlated with bite force, whereas lower bill elevation is more highly correlated with jaw-closing velocity. These results suggest that the upper and lower jaws might play different roles for generating force and speed (respectively) in these and perhaps other birds as well. We hypothesize that a division of labor between the jaws may allow shrikes to capitalize on elements of force and speed without compromising performance. As expected on theoretical grounds, bite force trades-off against jaw-closing velocity during the act of biting, although peak bite force and jaw-closing velocity across individual shrikes show no clear signs of a force-velocity trade-off. As a result, shrikes appear to bite with jaw-closing velocities and forces that maximize biting power, which may be selectively advantageous for predators of diverse prey that require both jaw-closing force and speed.


Asunto(s)
Fuerza de la Mordida , Maxilares , Animales , Fenómenos Biomecánicos , Maxilares/fisiología , Passeriformes/fisiología , Conducta Predatoria/fisiología , Pico/fisiología , Grabación en Video
3.
J Morphol ; 285(4): e21691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555512

RESUMEN

The feeding organ of cephalopod species, the beak, can be used to reveal important ecological information. In this study, geometric morphometric approaches were employed to investigate the phylogenetic relevance and classification effect of beak lateral profile shape. The two-dimensional beak morphologies of 1164 pairs of 24 species from 13 genera and five families were constructed, and their evolutionary relationships and taxonomic status were confirmed using geometric morphometrics and molecular biology approaches. We also assessed the phylogenetic signals of beak shape. The analysis results show shape variation in the beak mainly in the rostrum, hood, and lateral wall. The overall shape parameters (all PCs) of the upper and lower beak are more useful for species identification. The shapes of the upper and lower beak show a strong phylogenetic signal, and the phenogram based on the beak shape basically reflected the families' taxonomic positions. We also hypothesized that the shape variation in the beaks of cephalopods may be ascribed to genetic and environmental differences. In summary, beaks are a reliable material for the classification of cephalopod species. Geometric morphometric approaches are a powerful tool to reveal the identification, phylogenetic relevance and phenotypic diversity of beak shape in cephalopods.


Asunto(s)
Cefalópodos , Humanos , Animales , Filogenia , Pico/anatomía & histología , Evolución Biológica
4.
Ugeskr Laeger ; 186(8)2024 02 19.
Artículo en Danés | MEDLINE | ID: mdl-38445338

RESUMEN

Beak fractures represent a rare subtype of calcaneal fractures with potential risk of soft tissue complications due to compromised local perfusion. Early diagnosis and timely intervention are crucial to prevent necrosis, infection, and soft tissue defects. This case report describes a 71-year-old male with a beak fracture and delayed intervention with reoccurring soft tissue defects. Given the rarity of the condition, atypical presentation and need for urgent intervention, this emphasizes the importance of awareness of beak fractures of the calcaneus.


Asunto(s)
Traumatismos del Tobillo , Calcáneo , Fracturas Óseas , Traumatismos de la Rodilla , Animales , Masculino , Humanos , Anciano , Calcáneo/diagnóstico por imagen , Calcáneo/cirugía , Pico , Extremidad Inferior
5.
Anat Histol Embryol ; 53(2): e13027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439649

RESUMEN

This study aimed to evaluate the beaks of three species of birds using radiography and computed tomography (CT). The mean lengths of maxillary and mandibular rostra on radiographs were highest for toco toucan, followed by buff-necked ibis, and least for red-legged seriema birds. The height and width of maxillary and mandibular rostra measured on CT had mean values highest for toco toucans, followed by red-legged seriema, and least for buff-necked ibis. Except for the proximal region of the maxillary rostrum, the HU values were positive for other regions of the maxillary and mandibular rostra in the buff-necked ibis and red-legged seriema and negative in all for the toco toucan.


Asunto(s)
Pico , Tomografía Computarizada por Rayos X , Animales , Tomografía Computarizada por Rayos X/veterinaria , Aves , Mandíbula
6.
Br Poult Sci ; 65(2): 105-110, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38334033

RESUMEN

1. Using chicken models to avoid unnecessary harm, this study examined the relationship between naturally-occurring maxillary (top) beak shapes and their ability to cause pecking damage.2. A selection of 24 Lohmann Brown laying hens from a total population of 100 were sorted into two groups based on their maxillary beak shape, where 12 were classified as having sharp beaks (SB) and 12 as having blunt beaks (BB).3. All hens were recorded six times in a test pen which contained a chicken model (foam block covered with feathered chicken skin) and a video camera. During each test session, the number of feathers removed from the model, the change in skin and block weight (proxies for tissue damage) and the percentage of successful pecks (resulting in feather and/or tissue removal) were recorded.4. SB hens removed more feathers from the model and had a greater change in skin weight than BB hens. The mean number of pecks made at the model did not differ between the beak shape groups; however, SB hens had a greater percentage of successful pecks, resulting in feather and/or tissue removal, compared to BB hens.5. In conclusion, SB hens were more capable of removing feathers and causing damage. Birds performed more successful pecks resulting in feather and/or tissue removal as they gained experience pecking at the model.


Asunto(s)
Pico , Pollos , Animales , Femenino , Conducta Animal , Crianza de Animales Domésticos/métodos , Plumas
7.
Behav Processes ; 217: 105007, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368968

RESUMEN

Musical and rhythmical abilities are poorly documented in non-human animals. Most of the existing studies focused on synchronisation performances to external rhythms. In humans, studies demonstrated that rhythmical processing (e. g. rhythm discrimination or synchronisation to external rhythm) is dependent of an individual measure: the individual tempo. It is assessed by asking participants to produce an endogenous isochronous rhythm (known as spontaneous motor tempo) without any specific instructions nor temporal cue. In non-human animal literature, studies describing spontaneous and endogenous production of motor tempo without any temporal clue are rare. This exploratory study aims to describe and compare the spontaneous motor tempo of cockatiels and jungle crows. Data were collected on spontaneous beak drumming behaviours of birds housed in laboratory. Inter beak strokes intervals were calculated from sound tracks of videos. The analyses revealed that inter beak strokes intervals are non-randomly distributed intervals and are isochronous. Recorded spontaneous motor tempos are significantly different among some cockatiels. Since we could only conduct statistical analysis with one corvid, we cannot conclude about this species. Our results suggest that cockatiels and jungle crows have individual tempos, thus encouraging further investigations.


Asunto(s)
Cacatúas , Cuervos , Animales , Cuervos/fisiología , Cacatúas/fisiología , Conducta Animal/fisiología , Pico/fisiología , Masculino , Femenino
8.
Sci Rep ; 14(1): 140, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167426

RESUMEN

European starlings are one of the most abundant and problematic avian invaders in the world. From their native range across Eurasia and North Africa, they have been introduced to every continent except Antarctica. In 160 years, starlings have expanded into different environments throughout the world, making them a powerful model for understanding rapid evolutionary change and adaptive plasticity. Here, we investigate their spatiotemporal morphological variation in North America and the native range. Our dataset includes 1217 specimens; a combination of historical museum skins and modern birds. Beak length in the native range has remained unchanged during the past 206 years, but we find beak length in North American birds is now 8% longer than birds from the native range. We discuss potential drivers of this pattern including dietary adaptation or climatic pressures. Additionally, body size in North American starlings is smaller than those from the native range, which suggests a role for selection or founder effect. Taken together, our results indicate rapid recent evolutionary change in starling morphology coincident with invasion into novel environments.


Asunto(s)
Estorninos , Animales , Pico , Adaptación Fisiológica , América del Norte , África del Norte
9.
Proc Biol Sci ; 291(2015): 20232480, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38262606

RESUMEN

Morphology is integral to body temperature regulation. Recent advances in understanding of thermal physiology suggest a role of the avian bill in thermoregulation. To explore the adaptive significance of bill size for thermoregulation we characterized relationships between bill size and climate extremes. Most previous studies focused on climate means, ignoring frequencies of extremes, and do not reflect thermoregulatory costs experienced over shorter time scales. Using 79 species (9847 museum specimens), we explore how bill size variation is associated with temperature extremes in a large and diverse radiation of Australasian birds, Meliphagides, testing a series of predictions. Overall, across the continent, bill size variation was associated with both climate extremes and means and was most strongly associated with winter temperatures; associations at the level of climate zones differed from continent-wide associations and were complex, yet consistent with physiology and a thermoregulatory role for avian bills. Responses to high summer temperatures were nonlinear suggesting they may be difficult to detect in large-scale continental analyses using previous methodologies. We provide strong evidence that climate extremes have contributed to the evolution of bill morphology in relation to thermoregulation and show the importance of including extremes to understand fine-scale trait variation across space.


Asunto(s)
Pico , Calor , Animales , Temperatura , Australia , Clima
11.
Poult Sci ; 103(2): 103266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38039827

RESUMEN

Beak color in ducks is a primary characteristic of local breeds and genetic resources. Among them, black beaks, a rare packaging trait of high-quality duck products, have attracted much attention. In this study, Runzhou White Created ducks (black beak) and white-feathered Putian black ducks (yellow beak) were used to construct the F2 generation resource population to study the changing discipline of beak color combined with the beak color statistics of gray-beaked ducklings of Runzhou White Created ducks. Subsequently, transcriptome sequencing was performed to identify genetic markers related to beak color. To explore the rules of beak color change and its regulatory network, trends, and trend analysis and weighted gene co-expression network analysis(WGCNA)were performed. The screening results were verified by real-time quantitative polymerase chain reaction. A large difference was observed between the beak colors of birds from the F1 generation at 0 and 42 d of age. The F2 generation results show that nearly half of the black-beaked ducklings become green-beaked; the proportion of black spots for gray- and patterned-beaked ducklings increases with age, with most becoming green-beaked. Moreover, the beak color darkened from the first day, and the gray color value decreased significantly from the second day. Transcriptome sequencing indicated that TYR was differentially expressed between black and yellow beaks at 4 to 6 wk of age, and trend and WGCNA analyses showed that EDNRB signaling pathway genes and MITF were highly expressed in the first week, and TYR, TYRP1, and DCT were highly expressed at 4 to 6 wk of age. Therefore, there is melanin synthesis and deposition after hatching for gray- and patterned-beaked ducklings, while the yellow pigment might be deposited in the epidermis of beaks for black-beaked ducklings. The EDNRB signaling pathway is probably involved in early melanosome maturation and melanin formation in duck beaks, and genes such as TYR can maintain the black-beak phenotype.


Asunto(s)
Patos , Transcriptoma , Animales , Patos/genética , Pico , Pollos/genética , Melaninas/genética
12.
Biol Lett ; 19(11): 20230373, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37990562

RESUMEN

Endotherms use their appendages-such as legs, tails, ears and bills-for thermoregulation by controlling blood flow to near-surface blood vessels, conserving heat when it is cold, and dissipating heat in hot conditions. Larger appendages allow greater heat dissipation, and appendage sizes vary latitudinally according to Allen's rule. However, little is known about the relative importance of different appendages for thermoregulation. We investigate physiological control of heat loss via bird bills and legs using infrared thermography of wild birds. Our results demonstrate that birds are less able to regulate heat loss via their bills than their legs. In cold conditions, birds lower their leg surface temperature to below that of their plumage surface, retaining heat at their core. In warm conditions, birds increase their leg surface temperature to above that of their plumage surface, expelling heat. By contrast, bill surface temperature remains approximately 2°C warmer than the plumage surface, indicating consistent heat loss under almost all conditions. Poorer physiological control of heat loss via bird bills likely entails stronger selection for shorter bills in cold climates. This could explain why bird bills show stronger latitudinal size clines than bird legs, with implications for predicting shape-shifting responses to climate change.


Asunto(s)
Pico , Somatotipos , Animales , Pico/fisiología , Aves/fisiología , Regulación de la Temperatura Corporal/fisiología , Temperatura
13.
Sci Adv ; 9(43): eadg1641, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878701

RESUMEN

Widely documented, megaevolutionary jumps in phenotypic diversity continue to perplex researchers because it remains unclear whether these marked changes can emerge from microevolutionary processes. Here, we tackle this question using new approaches for modeling multivariate traits to evaluate the magnitude and distribution of elaboration and innovation in the evolution of bird beaks. We find that elaboration, evolution along the major axis of phenotypic change, is common at both macro- and megaevolutionary scales, whereas innovation, evolution away from the major axis of phenotypic change, is more prominent at megaevolutionary scales. The major axis of phenotypic change among species beak shapes at megaevolutionary scales is an emergent property of innovation across clades. Our analyses suggest that the reorientation of phenotypes via innovation is a ubiquitous route for divergence that can arise through gradual change alone, opening up further avenues for evolution to explore.


Asunto(s)
Evolución Biológica , Aves , Animales , Pico , Fenotipo , Filogenia
14.
Proc Biol Sci ; 290(2007): 20230420, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752837

RESUMEN

Adaptive avian radiations associated with the diversification of bird beaks into a multitude of forms enabling different functions are exemplified by Darwin's finches and Hawaiian honeycreepers. To elucidate the nature of these radiations, we quantified beak shape and skull shape using a variety of geometric measures that allowed us to collapse the variability of beak shape into a minimal set of geometric parameters. Furthermore, we find that just two measures of beak shape-the ratio of the width to length and the normalized sharpening rate (increase in the transverse beak curvature near the tip relative to that at the base of the beak)-are strongly correlated with diet. Finally, by considering how transverse sections to the beak centreline evolve with distance from the tip, we show that a simple geometry-driven growth law termed 'modified mean curvature flow' captures the beak shapes of Darwin's finches and Hawaiian honeycreepers. A surprising consequence of the simple growth law is that beak shapes that are not allowed based on the developmental programme of the beak are also not observed in nature, suggesting a link between evolutionary morphology and development in terms of growth-driven developmental constraints.


Asunto(s)
Pico , Pinzones , Animales , Morfogénesis , Evolución Biológica , Cabeza
15.
Science ; 381(6665): eadf6218, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769091

RESUMEN

A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.


Asunto(s)
Adaptación Biológica , Pico , Pinzones , Introgresión Genética , Especiación Genética , Selección Genética , Animales , Pico/anatomía & histología , Ecuador , Pinzones/anatomía & histología , Pinzones/genética , Frecuencia de los Genes , Metagenómica , Sitios Genéticos
16.
Bioinspir Biomim ; 18(6)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37714182

RESUMEN

In nature, woodpeckers peck trees with no reported brain injury. A highly functional system comprising a hyoid bone, smooth skull, straight pointed beak with varying lengths of upper and lower beak bones, and rhamphotheca is one of the adaptations that enable efficient pecking. Soil penetration is an energy-intensive procedure used in civil infrastructure applications and is often followed by pushing, impact driving, and digging. This study uses discrete element modeling to evaluate the effect of woodpecker beak mimetic intruder tip design with wedge offsets on lift and drag forces during horizontal penetration into granular piles. The findings show that the wedge offsets of the intruder have a negligible effect on drag forces. By contrast, lift forces can be manipulated by adjusting the top and bottom offsets of the intruder, which can be used to guide the intruder upward, downwards, or horizontally. Furthermore, as the width of the intruder increased, the lift and drag forces also increased.


Asunto(s)
Pico , Biomimética , Animales , Cabeza , Hueso Hioides , Cráneo
17.
J Morphol ; 284(10): e21638, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37708511

RESUMEN

The neck is a critical portion of the avian spine, one that works in tandem with the beak to act as a surrogate forelimb and allows birds to manipulate their surroundings despite the lack of a grasping capable hand. Birds display an incredible amount of diversity in neck morphology across multiple anatomical scales-from varying cervical counts down to intricate adaptations of individual vertebrae. Despite this morphofunctional disparity, little is known about the drivers of this enormous variation, nor how neck evolution has shaped avian macroevolution. To promote interest in this system, I review the development, function and evolution of the avian cervical spine. The musculoskeletal anatomy, basic kinematics and development of the avian neck are all documented, but focus primarily upon commercially available taxa. In addition, recent work has quantified the drivers of extant morphological variation across the avian neck, as well as patterns of integration between the neck and other skeletal elements. However, the evolutionary history of the avian cervical spine, and its contribution to the diversification and success of modern birds is currently unknown. Future work should aim to broaden our understanding of the cervical anatomy, development and kinematics to include a more diverse selection of extant birds, while also considering the macroevolutionary drivers and consequences of this important section of the avian spine.


Asunto(s)
Vértebras Cervicales , Miembro Anterior , Animales , Cuello , Pico , Aves
18.
Evolution ; 77(12): 2533-2546, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37671423

RESUMEN

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.


Asunto(s)
Pinzones , Passeriformes , Animales , Pinzones/genética , Selección Genética , Fenotipo , Ecuador , Pico
19.
J Vet Med Sci ; 85(11): 1190-1194, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37704451

RESUMEN

To our knowledge, ours is the first case of applying a 3D-printed prosthetic beak to an Oriental stork (Ciconia boyciana). A stork in captivity underwent several surgeries for beak fractures, but the lower-mandible fractures failed to be repaired. Therefore, we applied a patient-specific beak prosthesis of titanium alloy and nylon. Because the prosthetic beak could not be maintained due to mandible and soft-tissue inflammation, the stork was euthanized. Still, we confirmed typical behavior and feeding for ~3 months after surgery. This report highlights some of the challenges we encountered and identifies process improvements required for a more successful surgery.


Asunto(s)
Pico , Aves , Animales , Pico/cirugía , Impresión Tridimensional
20.
Nature ; 620(7974): 589-594, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587301

RESUMEN

Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.


Asunto(s)
Dinosaurios , Filogenia , Reptiles , Animales , Pico/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Reptiles/anatomía & histología , Reptiles/clasificación , Cráneo/anatomía & histología , Fósiles , Esqueleto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...