Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
1.
Microbiology (Reading) ; 170(3)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38568202

RESUMEN

Understanding the evolution of antibiotic resistance is important for combating drug-resistant bacteria. In this work, we investigated the adaptive response of Pseudomonas aeruginosa to ciprofloxacin. Ciprofloxacin-susceptible P. aeruginosa ATCC 9027, CIP-E1 (P. aeruginosa ATCC 9027 exposed to ciprofloxacin for 14 days) and CIP-E2 (CIP-E1 cultured in antibiotic-free broth for 10 days) were compared. Phenotypic responses including cell morphology, antibiotic susceptibility, and production of pyoverdine, pyocyanin and rhamnolipid were assessed. Proteomic responses were evaluated using comparative iTRAQ labelling LC-MS/MS to identify differentially expressed proteins (DEPs). Expression of associated genes coding for notable DEPs and their related regulatory genes were checked using quantitative reverse transcriptase PCR. CIP-E1 displayed a heterogeneous morphology, featuring both filamentous cells and cells with reduced length and width. By contrast, although filaments were not present, CIP-E2 still exhibited size reduction. Considering the MIC values, ciprofloxacin-exposed strains developed resistance to fluoroquinolone antibiotics but maintained susceptibility to other antibiotic classes, except for carbapenems. Pyoverdine and pyocyanin production showed insignificant decreases, whereas there was a significant decrease in rhamnolipid production. A total of 1039 proteins were identified, of which approximately 25 % were DEPs. In general, there were more downregulated proteins than upregulated proteins. Noted changes included decreased OprD and PilP, and increased MexEF-OprN, MvaT and Vfr, as well as proteins of ribosome machinery and metabolism clusters. Gene expression analysis confirmed the proteomic data and indicated the downregulation of rpoB and rpoS. In summary, the response to CIP involved approximately a quarter of the proteome, primarily associated with ribosome machinery and metabolic processes. Potential targets for bacterial interference encompassed outer membrane proteins and global regulators, such as MvaT.


Asunto(s)
Ciprofloxacina , Infecciones por Pseudomonas , Humanos , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/genética , Cromatografía Liquida , Proteómica , Piocianina , Espectrometría de Masas en Tándem , Antibacterianos/farmacología
2.
World J Microbiol Biotechnol ; 40(6): 184, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683406

RESUMEN

The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Percepción de Quorum , Rutina , Staphylococcus aureus , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Rutina/farmacología , Rutina/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Percepción de Quorum/efectos de los fármacos , Nanopartículas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nanopartículas del Metal/química , Hemólisis/efectos de los fármacos , Virulencia/efectos de los fármacos , Tamaño de la Partícula , Piocianina/metabolismo
3.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587815

RESUMEN

AIMS: Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control. METHODS AND RESULTS: The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm. CONCLUSION: This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.


Asunto(s)
Acetatos , Antibacterianos , Biopelículas , Cefoperazona , Ciclopropanos , Pseudomonas aeruginosa , Quinolinas , Percepción de Quorum , Sulfuros , Pseudomonas aeruginosa/efectos de los fármacos , Biopelículas/efectos de los fármacos , Sulfuros/farmacología , Percepción de Quorum/efectos de los fármacos , Antibacterianos/farmacología , Acetatos/farmacología , Quinolinas/farmacología , Ciclopropanos/farmacología , Cefoperazona/farmacología , Pruebas de Sensibilidad Microbiana , Piocianina/metabolismo , Ciprofloxacina/farmacología , Quinolonas/farmacología
4.
Appl Microbiol Biotechnol ; 108(1): 271, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517512

RESUMEN

Various virulence determinants in Pseudomonas aeruginosa are regulated by the quorum sensing (QS) network producing and releasing signalling molecules. Two of these virulence determinants are the pyocyanin and pyoverdine, which interfere with multiple cellular functions during infection. The application of QS-inhibiting agents, such as cyclodextrins (CDs), appears to be a promising approach. Further to method development, this research tested in large-volume test systems the effect of α- and ß-CD (ACD, BCD) at 1, 5, and 10 mM concentrations on the production of pyocyanin in the P. aeruginosa model system. The concentration and time-dependent quorum quenching effect of native CDs and their derivatives on pyoverdine production was tested in a small-volume high-throughput system. In the large-volume system, both ACD and BCD significantly inhibited pyocyanin production, but ACD to a greater extent. 10 mM ACD resulted in 58% inhibition, while BCD only ~40%. Similarly, ACD was more effective in the inhibition of pyoverdine production; nevertheless, the results of RMANOVA demonstrated the significant efficiency of both ACD and BCD, as well as their derivatives. Both the contact time and the cyclodextrin treatments significantly influenced pyoverdine production. In this case, the inhibitory effect of ACD after 48 h at 12.5 mM was 57%, while the inhibitory effect of BCD and its derivatives was lower than 40%. The high-level significant inhibition of both pyocyanin and pyoverdine production by ACD was detectable. Consequently, the potential value of CDs as QS inhibitors and the antivirulence strategy should be considered. KEYPOINTS: • Applicability of a simplified method for quantification of pyocyanin production was demonstrated. • The cyclodextrins significantly affected the pyocyanin and pyoverdine production. • The native ACD exhibited the highest attenuation in pyoverdine production.


Asunto(s)
Oligopéptidos , Infecciones por Pseudomonas , Percepción de Quorum , Humanos , Pseudomonas aeruginosa , Virulencia , Piocianina , Factores de Virulencia , Antibacterianos/farmacología , Biopelículas
5.
mSystems ; 9(4): e0116523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38530056

RESUMEN

To establish infections in human hosts, Pseudomonas aeruginosa must overcome innate immune-generated oxidative stress, such as the hypochlorous acid (HOCl) produced by neutrophils. We set out to find specific biomarkers of oxidative stress through the development of a protocol for the metabolic profiling of P. aeruginosa cultures grown in the presence of different oxidants using a novel ionization technique for mass spectrometry, laser desorption rapid evaporative ionization mass spectrometry (LD-REIMS). We demonstrated the ability of LD-REIMS to classify samples as untreated or treated with a specific oxidant with 100% accuracy and identified a panel of 54 metabolites with significantly altered concentrations after exposure to one or more of the oxidants. Key metabolic changes were conserved in P. aeruginosa clinical strains isolated from patients with cystic fibrosis lung infections. These data demonstrated that HOCl stress impacted the Pseudomonas quinolone signal (PQS) quorum sensing system. Ten 2-alkyl-4-quinolones (AHQs) associated with the PQS system were significantly lower in concentration in HOCl-stressed P. aeruginosa cultures, including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), the most active signal molecule of the PQS system. The PQS system regulates the production of virulence factors, including pyocyanin and elastase, and their levels were markedly affected by HOCl stress. No pyocyanin was detectable and elastase concentrations were reduced by more than 75% in cultures grown with sub-lethal concentrations of HOCl, suggesting that this neutrophil-derived oxidant may disrupt the ability of P. aeruginosa to establish infections through interference with production of PQS-associated virulence factors. IMPORTANCE: This work demonstrates that a high-throughput ambient ionization mass spectrometry method can be used successfully to study a bacterial stress response. Its application to the opportunistic pathogen Pseudomonas aeruginosa led to the identification of specific oxidative stress biomarkers, and demonstrated that hypochlorous acid, an oxidant specifically produced by human neutrophils during infection, affects quorum sensing and reduces production of the virulence factors pyocyanin and elastase. No pyocyanin was detectable and elastase levels were reduced by more than 75% in bacteria grown in the presence of hypochlorous acid. This approach has the potential to be widely applicable to the characterization of the stress responses of bacteria.


Asunto(s)
Quinolonas , Percepción de Quorum , Humanos , Pseudomonas aeruginosa , Ácido Hipocloroso/metabolismo , Piocianina/metabolismo , Quinolonas/análisis , Factores de Virulencia/metabolismo , Espectrometría de Masas , Oxidantes/metabolismo , Elastasa Pancreática/metabolismo , Biomarcadores/metabolismo , Rayos Láser
6.
Anal Sci ; 40(5): 891-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38472735

RESUMEN

Combating Pseudomonas aeruginosa infection is challenging. It secretes pyocyanin (PCN) pigment that contributes to its virulence. Neutralizing PCN via reaction with thiol-containing compounds may represent a potential therapeutic option. This study investigates the neutralization reaction between PCN and N-acetyl cysteine (NAC) for bacterial inhibition and explores its mechanism of action. The neutralization adduct (PCN-NAC) was synthesized by reacting the purified PCN and NAC. The adduct was analyzed and its structure was elucidated. LC-MS/MS method was developed for the determination of PCN-NAC in P. aeruginosa cultures post-treatment with NAC (0-5 mg/mL). The corresponding anti-bacterial potential was estimated and compared to nanoparticles (NPs) alone and under stress conditions. In silico studies were performed to support explaining the mechanism of action. Results revealed that PCN-NAC was exclusively detected in NAC-treated cultures in a concentration-dependent manner. PCN-NAC concentration (230-915 µg/mL) was directly proportional to the reduction in the bacterial viable count (28.3% ± 7.1-87.5% ± 5.9) and outperformed all tested NPs, where chitosan NPs induced 56.9% ± 7.9 inhibition, followed by zinc NPs (49.4% ± 0.9) and gold NPs (17.8% ± 7.5) even post-exposure to different stress conditions. A concomitant reduction in PCN concentration was detected. In silico studies revealed possible interactions between key bacterial proteins and PCN-NAC rather than the NAC itself. These results pose NAC as a potential choice for the management of P. aeruginosa infection, where it neutralizes PCN via the formation of PCN-NAC adduct.


Asunto(s)
Acetilcisteína , Pseudomonas aeruginosa , Piocianina , Espectrometría de Masas en Tándem , Factores de Virulencia , Pseudomonas aeruginosa/efectos de los fármacos , Piocianina/metabolismo , Piocianina/antagonistas & inhibidores , Piocianina/análisis , Piocianina/química , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/metabolismo , Acetilcisteína/química , Acetilcisteína/farmacología , Cromatografía Liquida , Antibacterianos/farmacología , Antibacterianos/química , Cromatografía Líquida con Espectrometría de Masas
7.
Folia Med (Plovdiv) ; 66(1): 88-96, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38426470

RESUMEN

AIM: Due to the importance of exotoxin A and pyocyanin in the pathogenicity of this bacterium, we decided to evaluate the prevalence of genes encoding these virulence factors in clinical isolates of P.aeruginosa.


Asunto(s)
Infecciones por Pseudomonas , Piocianina , Humanos , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Exotoxinas/genética , Factores de Virulencia/genética , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/microbiología
8.
Antimicrob Agents Chemother ; 68(5): e0011824, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526048

RESUMEN

Quorum sensing is a type of cell-cell communication that modulates various biological activities of bacteria. Previous studies indicate that quorum sensing contributes to the evolution of bacterial resistance to antibiotics, but the underlying mechanisms are not fully understood. In this study, we grew Pseudomonas aeruginosa in the presence of sub-lethal concentrations of ciprofloxacin, resulting in a large increase in ciprofloxacin minimal inhibitory concentration. We discovered that quorum sensing-mediated phenazine biosynthesis was significantly enhanced in the resistant isolates, where the quinolone circuit was the predominant contributor to this phenomenon. We found that production of pyocyanin changed carbon flux and showed that the effect can be partially inhibited by the addition of pyruvate to cultures. This study illustrates the role of quorum sensing-mediated phenotypic resistance and suggests a strategy for its prevention.


Asunto(s)
Antibacterianos , Ciprofloxacina , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Fenazinas , Pseudomonas aeruginosa , Piocianina , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Ciprofloxacina/farmacología , Percepción de Quorum/efectos de los fármacos , Fenazinas/farmacología , Fenazinas/metabolismo , Antibacterianos/farmacología , Piocianina/biosíntesis , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Quinolonas/farmacología
9.
World J Microbiol Biotechnol ; 40(3): 90, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341389

RESUMEN

Pyocyanin is a bioactive pigment produced by Pseudomonas aeruginosa. It is an important virulence factor that plays a critical role in P. aeruginosa infections as a redox-active secondary metabolite and a quorum sensing (QS) signaling molecule. Pyocyanin production from chorismic acid requires the involvement of two homologous operons, phz1 and phz2, which are activated by QS regulatory proteins. Pyocyanin inhibits the proliferation of bacterial, fungal, and mammalian cells by inducing oxidative stress due to which it acts as a potent antibacterial, antifungal, and anticancer agent. Its potential role as a neuroprotectant needs further exploration. However, pyocyanin exacerbates the damaging effects of nosocomial infections caused by P. aeruginosa in immunocompromised individuals. Further, cystic fibrosis (CF) patients are highly susceptible to persistent P. aeruginosa infections in the respiratory system. The bacterial cells form colonies and three interconnected QS networks-pqs, las, and rhl-get activated, thus stimulating the cells to produce pyocyanin which exacerbates pulmonary complications. As an opportunistic pathogen, P. aeruginosa produces pyocyanin to impede the recovery of injuries like burn wounds through its anti-proliferative activity. Moreover, pyocyanin plays a vital role in compounding P. aeruginosa infections by promoting biofilm formation. This review begins with a brief description of the characteristics of pyocyanin, its activity, and the different aspects of its production including its biosynthesis, the role of QS, and the effect of environmental factors. It then goes on to explore the potential applications of pyocyanin as a biotherapeutic molecule while also highlighting the biomedical challenges and limitations that it presents.


Asunto(s)
Infecciones por Pseudomonas , Piocianina , Animales , Humanos , Biopelículas , Pseudomonas aeruginosa , Proteínas Bacterianas/metabolismo , Percepción de Quorum , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Infecciones por Pseudomonas/microbiología , Mamíferos/metabolismo
10.
Arch Microbiol ; 206(3): 91, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38316691

RESUMEN

Inhibition of quorum sensing is considered to be an effective strategy of control and treatment of a wide range of acute and persistent infections. Pseudomonas aeruginosa is an opportunistic bacterium with a high adaptation potential that contributes to healthcare-associated infections. In the present study, the effects of the synthesized hybrid structures bearing sterically hindered phenolic and heterocyclic moieties in a single scaffold on the production of virulence factors by P. aeruginosa were determined. It has been shown that the obtained compounds significantly reduce both pyocyanin and alginate production and stimulate the biosynthesis of siderophores in vitro, which may be attributed to their iron-chelating properties. The results of docking-based inverse high-throughput virtual screening indicate that transcription regulator LasR and Cu-transporter OPRC could be potential molecular targets for these compounds. Investigation of the impact small molecules exert on the molecular mechanisms of the production of bacterial virulence factors may pave the way for the design and development of novel antibacterial agents.


Asunto(s)
Pseudomonas aeruginosa , Factores de Virulencia , Transactivadores/farmacología , Percepción de Quorum , Piocianina , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas
11.
Diagn Microbiol Infect Dis ; 109(1): 116212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387214

RESUMEN

Pseudomonas aeruginosa, one of the most notorious organisms, causes fatal diseases like-, meningitis, pneumonia as well as worsens the prognosis of cystic fibrosis patients. It is also multi-drug resistant and resists a wide range of antibiotics. Attempts have been made to reduce its virulence/pathogenic potential using a number of organic compounds. For this purpose, the Quorum sensing (QS) system of P. aeruginosa was targeted, which regulates its virulence. Pseudomonas Quinolone System (PQS), one of the four quorum sensing systems, producing pyocyanin pigment was chosen. 2-heptyl-3-hydroxy-4-quinolone (HHQ) is a ligand which binds to PQS protein is responsible for pyocyanin pigment production. Attempts were made to find a compound analogous to HHQ which could bind to PQS active site and inhibit the pigment formation. In-silico analysis was performed to estimate possible interactions and to find/predict the possible PQS inhibitors.


Asunto(s)
Infecciones por Pseudomonas , Quinolonas , Humanos , Percepción de Quorum/fisiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Piocianina/metabolismo , Quinolonas/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Proteínas Bacterianas/metabolismo
12.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340793

RESUMEN

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa , Transcripción Genética , Sistemas de Secreción Tipo VI , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Inmunoprecipitación , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepción de Quorum , Sistemas de Mensajero Secundario , Técnicas del Sistema de Dos Híbridos , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
13.
PeerJ ; 12: e16826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313021

RESUMEN

This study aimed to investigate the potential of patuletin, a rare natural flavonoid, as a virulence and LasR inhibitor against Pseudomonas aeruginosa. Various computational studies were utilized to explore the binding of Patuletin and LasR at a molecular level. Molecular docking revealed that Patuletin strongly interacted with the active pocket of LasR, with a high binding affinity value of -20.96 kcal/mol. Further molecular dynamics simulations, molecular mechanics generalized Born surface area (MM/GBSA), protein-ligand interaction profile (PLIP), and essential dynamics analyses confirmed the stability of the patuletin-LasR complex, and no significant structural changes were observed in the LasR protein upon binding. Key amino acids involved in binding were identified, along with a free energy value of -26.9 kcal/mol. In vitro assays were performed to assess patuletin's effects on P. aeruginosa. At a sub-inhibitory concentration (1/4 MIC), patuletin significantly reduced biofilm formation by 48% and 42%, decreased pyocyanin production by 24% and 14%, and decreased proteolytic activities by 42% and 20% in P. aeruginosa isolate ATCC 27853 (PA27853) and P. aeruginosa clinical isolate (PA1), respectively. In summary, this study demonstrated that patuletin effectively inhibited LasR activity in silico and attenuated virulence factors in vitro, including biofilm formation, pyocyanin production, and proteolytic activity. These findings suggest that patuletin holds promise as a potential therapeutic agent in combination with antibiotics to combat antibiotic-tolerant P. aeruginosa infections.


Asunto(s)
Biopelículas , Cromonas , Flavonas , Virulencia , Pseudomonas aeruginosa , Percepción de Quorum , Simulación del Acoplamiento Molecular , Piocianina/metabolismo , Flavonas/farmacología
14.
Antimicrob Agents Chemother ; 68(2): e0100123, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38231535

RESUMEN

Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.


Asunto(s)
Infecciones por Pseudomonas , Infecciones Estafilocócicas , Humanos , Niño , Staphylococcus aureus , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacología , Proteínas Bacterianas/metabolismo , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Pruebas de Sensibilidad Microbiana
15.
J Bacteriol ; 206(1): e0027623, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38169296

RESUMEN

Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.


Asunto(s)
Biopelículas , Piocianina , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Percepción de Quorum , Factores de Virulencia/metabolismo , Bacterias/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología
16.
mBio ; 15(2): e0127823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38259061

RESUMEN

Cross-feeding of metabolites between subpopulations can affect cell phenotypes and population-level behaviors. In chronic Pseudomonas aeruginosa lung infections, subpopulations with loss-of-function (LOF) mutations in the lasR gene are common. LasR, a transcription factor often described for its role in virulence factor expression, also impacts metabolism, which, in turn, affects interactions between LasR+ and LasR- genotypes. Prior transcriptomic analyses suggested that citrate, a metabolite secreted by many cell types, induces virulence factor production when both genotypes are together. An unbiased analysis of the intracellular metabolome revealed broad differences including higher levels of citrate in lasR LOF mutants. Citrate consumption by LasR- strains required the CbrAB two-component system, which relieves carbon catabolite repression and is elevated in lasR LOF mutants. Within mixed communities, the citrate-responsive two-component system TctED and its gene targets OpdH (porin) and TctABC (citrate transporter) that are predicted to be under catabolite repression control were induced and required for enhanced RhlR/I-dependent signaling, pyocyanin production, and fitness of LasR- strains. Citrate uptake by LasR- strains markedly increased pyocyanin production in co-culture with Staphylococcus aureus, which also secretes citrate and frequently co-infects with P. aeruginosa. This citrate-induced restoration of virulence factor production by LasR- strains in communities with diverse species or genotypes may offer an explanation for the contrast observed between the markedly deficient virulence factor production of LasR- strains in monocultures and their association with the most severe forms of cystic fibrosis lung infections. These studies highlight the impact of secreted metabolites in mixed microbial communities.IMPORTANCECross-feeding of metabolites can change community composition, structure, and function. Here, we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes in chronic Pseudomonas aeruginosa lung infections. We illustrate an example of how clonally derived diversity in a microbial communication system enables intra- and inter-species cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa and Staphylococcus aureus, was differentially consumed between genotypes. Since these two pathogens frequently co-occur in the most severe cystic fibrosis lung infections, the cross-feeding-induced virulence factor expression and fitness described here between diverse genotypes exemplify how co-occurrence can facilitate the development of worse disease outcomes.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Percepción de Quorum/genética , Fibrosis Quística/complicaciones , Piocianina , Ácido Cítrico/metabolismo , Factores de Virulencia/metabolismo , Citratos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
17.
Mol Microbiol ; 121(2): 291-303, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169053

RESUMEN

Pseudomonas aeruginosa is an important opportunistic pathogen. Several of its virulence-related processes, including the synthesis of pyocyanin (PYO) and biofilm formation, are controlled by quorum sensing (QS). It has been shown that the alternative sigma factor RpoS regulates QS through the reduction of lasR and rhlR transcription (encoding QS regulators). However, paradoxically, the absence of RpoS increases PYO production and biofilm development (that are RhlR dependent) by unknown mechanisms. Here, we show that RpoS represses pqsE transcription, which impacts the stability and activity of RhlR. In the absence of RpoS, rhlR transcript levels are reduced but not the RhlR protein concentration, presumably by its stabilization by PqsE, whose expression is increased. We also report that PYO synthesis and the expression of pqsE and phzA1B1C1D1E1F1G1 operon exhibit the same pattern at different RpoS concentrations, suggesting that the RpoS-dependent PYO production is due to its ability to modify PqsE concentration, which in turn modulates the activation of the phzA1 promoter by RhlR. Finally, we demonstrate that RpoS favors the expression of Vfr, which activates the transcription of lasR and rhlR. Our study contributes to the understanding of how RpoS modulates the QS response in P. aeruginosa, exerting both negative and positive regulation.


Asunto(s)
Percepción de Quorum , Factor sigma , Percepción de Quorum/genética , Factor sigma/genética , Factor sigma/metabolismo , Pseudomonas aeruginosa/metabolismo , Biopelículas , Piocianina , Operón , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
18.
Biosensors (Basel) ; 14(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38248425

RESUMEN

In response to the urgent requirement for rapid, precise, and cost-effective detection in intensive care units (ICUs) for ventilated patients, as well as the need to overcome the limitations of traditional detection methods, researchers have turned their attention towards advancing novel technologies. Among these, biosensors have emerged as a reliable platform for achieving accurate and early diagnoses. In this study, we explore the possibility of using Pyocyanin analysis for early detection of pathogens in ventilator-associated pneumonia (VAP) and lower respiratory tract infections in ventilated patients. To achieve this, we developed an electrochemical sensor utilizing a graphene oxide-copper oxide-doped MgO (GO - Cu - Mgo) (GCM) catalyst for Pyocyanin detection. Pyocyanin is a virulence factor in the phenazine group that is produced by Pseudomonas aeruginosa strains, leading to infections such as pneumonia, urinary tract infections, and cystic fibrosis. We additionally investigated the use of DNA aptamers for detecting Pyocyanin as a biomarker of Pseudomonas aeruginosa, a common causative agent of VAP. The results of this study indicated that electrochemical detection of Pyocyanin using a GCM catalyst shows promising potential for various applications, including clinical diagnostics and drug discovery.


Asunto(s)
Grafito , Neumonía Asociada al Ventilador , Piocianina , Humanos , Cobre , Óxido de Magnesio
19.
Mikrochim Acta ; 190(11): 441, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845505

RESUMEN

Detecting sputum pyocyanin (PYO) with a competitive immunoassay is a promising approach for diagnosing Pseudomonas aeruginosa respiratory infections. However, it is not possible to perform a negative control to evaluate matrix-effects in competitive immunoassays, and the highly complex sputum matrix often interferes with target detection. Here, we show that these issues are alleviated by performing competitive immunoassays with a paper biosensor. The biosensing platform consists of a paper reservoir, which contains antibody-coated gold nanoparticles, and a substrate containing a competing recognition element, which is a piece of paper modified with an albumin-antigen conjugate. Detection of PYO with a limit of detection of 4.7·10-3 µM and a dynamic range between 4.7·10-1 µM and 47.6 µM is accomplished by adding the sample to the substrate with the competing element and pressing the reservoir against it for 5 min. When tested with patient samples, the biosensor was able to qualitatively differentiate spiked from non-spiked samples, whereas ELISA did not show a clear cut-off between them. Furthermore, the relative standard deviation was lower when determining sputum with the paper-based biosensor. These features, along with a mild liquefaction step that circumvents the use of harsh chemicals or instruments, make our biosensor a good candidate for diagnosing Pseudomonas infections at the bedside through the detection of sputum PYO.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Infecciones por Pseudomonas , Humanos , Piocianina/análisis , Esputo/química , Oro , Infecciones por Pseudomonas/diagnóstico , Inmunoensayo
20.
Arch Microbiol ; 205(11): 355, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833514

RESUMEN

Plant-beneficial fluorescent Pseudomonas species with concurrent P-solubilizing and biocontrol traits could have improved rhizospheric survival and efficacy; this rare ability being subject to diverse environmental and endogenous regulations. This study correlates growth patterns, time-course analysis of selected metabolites, non-targeted metabolomics of exometabolites and selected gene expression analysis to elucidate P-limitation-induced physiological shifts enabling co-production of metabolites implied in P-solubilization and biocontrol by P. aeruginosa P4 (P4). P-limited culture supernatants showed enhanced production of selected biocontrol metabolites such as pyocyanin, pyoverdine and pyochelin and IAA while maintaining biomass yield despite reduced growth rate and glucose consumption. Non-targeted exometabolomics further indicated that P-limitation positively impacted pentose phosphate pathway as well as pyruvate, C5-branched dibasic acid and amino acid metabolism. Its correlation with unusually reduced aroC expression and growth phase-dependent changes in the expression of key biosynthetic genes pchA, pchE, pchG, pvdQ and phzM implied a probable regulation of biosynthesis of chorismate-derived secondary metabolites, not neglecting the possibility of multiple factors influencing the gene expression profiles. Similar increase in biocontrol metabolite production was also observed in Artificial Root Exudates (ARE)-grown P4 cultures. While such metabolic flexibility could impart physiological advantage in sustaining P-starvation stress, it manifests as unique coexistence of P-solubilizing and biocontrol abilities.


Asunto(s)
Pseudomonas aeruginosa , Pseudomonas , Pseudomonas aeruginosa/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Perfilación de la Expresión Génica , Piocianina/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...