Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Molecules ; 29(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39274856

RESUMEN

High-quality Piper laetispicum (Piper laetispicum C. DC) is the key to the development of foods, natural medicines, and cosmetics. Its crude fat, ash, piperine, protein, and aroma compounds were determined in this experiment. Principal component (PCA) and hierarchical cluster analyses (HCA) were used to evaluate the aroma compounds at different developmental stages. The main aroma compounds identified using steam distillation combined with GC-MS were sabinene (34.83-76.14%), α-copaene (5.11-19.51%), linalool (2.42-15.70%), trans-caryophyllene (2.37-6.57%), α-pinene (1.51-4.31%), and germacrene D (1.30-4.10%). The aroma metabolites at different developmental stages were analysed using non-targeted metabolomes, and linalool was found to be the most abundant. Based on the experimental results, there were more nutrient compounds in young Piper laetispicum than in the last three developmental stages. The aromatic metabolites contributed the most to PC1. There were also more different metabolites of aroma between the young and expanding stages. Therefore, regarding quality, young fruits have great potential.


Asunto(s)
Frutas , Piper , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Piper/química , Piper/crecimiento & desarrollo , Piper/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Análisis de Componente Principal , Odorantes/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-39178608

RESUMEN

Piper colubrinum Link. is an underexplored crop regarding its metabolites and therapeutic attributes. Current study aimed to identify the possible volatile and non-volatile metabolites of P. colubrinum fruit and studied its metabolite diversity with medicinally valued Piper species viz. P. nigrum L., P. longum L. and P. chaba Hunter. The volatile constituents of P. colubrinum essential oil by GC-MS revealed the presence of sesquiterpenes as the major contribution. The sesquiterpenes α-muurolol (12.5 %) and ß-caryophyllene (11.3 %) were the predominant volatile components. Few aliphatic compounds like n-heptadecane and trace amounts of monoterpenes (α- and ß-pinene and α-terpineol) were also identified from this crop. The fatty acid profiling by GC-MS revealed mainly oleic acid (41.3 %) followed by palmitic and linoleic acids. HPLC analysis demonstrated that the major pungent alkaloid piperine was found to be trace (0.04 %) in P. colubrinum. The LC-QTOF-MS/MS profiling of the chloroform extract of the P. colubrinum revealed the presence of non-volatile constituents including phenolic and alkaloid compounds. Ferulic acid, rosmarinic acid, salicylic acid, kaempferol-5-glucoside, 5-methoxysalicylic acid, apigenin-7-galactoside, kaempferide-3-glucoside, luteolin, kaempferol, apigenin and scutellarein-4'-methyl ether were the phenolic compounds whereas piperlonguminine was the alkaloid compound identified. Finally, the biochemical parameters of this crop were compared with that of P. nigrum, P. longum and P. chaba and average linkage cluster dendrogram revealed that P. colubrinum was biochemically distinct from other three Piper species.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Piper , Cromatografía de Gases y Espectrometría de Masas/métodos , Piper/química , Piper/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Aceites Volátiles/análisis , Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Metaboloma
3.
Biotechnol Appl Biochem ; 71(3): 670-680, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444172

RESUMEN

Piper longum L. (long pepper) is an economically and industrially important medicinal plant. However, the characterization of its volatiles has only been analyzed by gas chromatography-mass spectrometry (GC-MS). In the present study, precise characterization of P. longum fruit volatiles has been performed for the first time through advanced two-dimensional gas chromatography-time-of-flight spectrometry (GC×GC-TOFMS). A total of 146 constituents accounting for 93.79% were identified, of which 30 were reported for the first time. All these constituents were classified into alcohols (4.5%), alkanes (8.9%), alkenes (6.71%), esters (6.15%), ketones (0.58%), monoterpene hydrocarbons (1.64%), oxygenated monoterpenes (2.24%), sesquiterpene hydrocarbons (49.61%), oxygenated sesquiterpenes (13.03%), phenylpropanoid (0.23%), and diterpenes (0.2%). Among all the classes, sesquiterpene hydrocarbons were abundant, with germacrene-D (2.87% ± 0.01%) as the major one, followed by 8-heptadecene (2.69% ± 0.03%), ß-caryophyllene (2.43% ± 0.03%), n-heptadecane (2.4% ± 0.04%), n-pentadecane (2.11% ± 0.05%), and so forth. Further, 20 constituents were observed to be coeluted and separated precisely in the two-dimensional column. The investigation provides an extensive metabolite profiling of P. longum fruit volatiles, which could be helpful to improve its therapeutic potential.


Asunto(s)
Frutas , Cromatografía de Gases y Espectrometría de Masas , Piper , Piper/química , Piper/metabolismo , Frutas/química , Frutas/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química
4.
Mol Nutr Food Res ; 68(6): e2300583, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38389156

RESUMEN

SCOPE: Piper excelsum (kawakawa) has a history of therapeutic use by Maori in Aotearoa New Zealand. It is currently widely consumed as a beverage and included as an ingredient in "functional" food product. Leaves contain compounds that are also found in a wide range of other spices, foods, and medicinal plants. This study investigates the human metabolism and excretion of kawakawa leaf chemicals. METHODS AND RESULTS: Six healthy male volunteers in one study (Bioavailability of Kawakawa Tea metabolites in human volunteers [BOKA-T]) and 30 volunteers (15 male and 15 female) in a second study (Impact of acute Kawakawa Tea ingestion on postprandial glucose metabolism in healthy human volunteers [TOAST]) consume a hot water infusion of dried kawakawa leaves (kawakawa tea [KT]). Untargeted Liquid Chromatography-Tandem Mass spectrometry (LC-MS/MS) analyses of urine samples from BOKA-T identified 26 urinary metabolites that are significantly associated with KT consumption, confirmed by the analysis of samples from the independent TOAST study. Seven of the 26 metabolites are also detected in plasma. Thirteen of the 26 urinary compounds are provisionally identified as metabolites of specific compounds in KT, eight metabolites are identified as being derived from specific compounds in KT but without resolution of chemical structure, and five are of unknown origin. CONCLUSIONS: Several kawakawa compounds that are also widely found in other plants are bioavailable and are modified by phase 1 and 2 metabolism.


Asunto(s)
Fitoquímicos , Piper , Humanos , Cromatografía Liquida , Piper/metabolismo , Hojas de la Planta , Espectrometría de Masas en Tándem , Fitoquímicos/metabolismo
5.
J Ethnopharmacol ; 308: 116293, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36806346

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Piper wallichii (family: Piperaceae), a folk herbal medicine with anti-inflammatory and anti-thrombotic properties, has been traditionally used to treat rheumatic arthralgia, lumbocrural pain, gastrointestinal flatulence, and other intestinal diseases in China, Thailand, and India. However, there is no scientific report on the efficacy and potential mechanisms of Piper wallichii for ulcerative colitis (UC). AIM OF THE STUDY: The study aims to investigate the therapeutic effect and possible molecular mechanisms of the ethanol extract of Piper wallichii (EEPW) on DSS-induced UC in BALB/c mice. MATERIALS AND METHODS: The main components in EEPW were characterized by UPLC-QE-Orbitrap-MS. Subsequently, the anti-inflammatory effect of EEPW in vitro was preliminarily evaluated in RAW264.7 cells stimulated with LPS. UC model mice were triggered by free access to 4% DSS aqueous solution for 12 consecutive days, and simultaneously, EEPW (25, 50, and 100 mg/kg) and tofacitinib (positive control, 30 mg/kg) were orally administrated, respectively. The therapeutic efficacy of EEPW on UC was assessed by body weight, DAI, colon length, and pathological morphology. Besides, we investigated the effects of EEPW on intestinal barrier function, inflammatory factors, and immune systems of UC mice through immunohistochemistry (IHC), flow cytometry, and other techniques. Moreover, the expression of related proteins in the TLR4/NF-κB/COX-2 pathway was analyzed by Western blot. RESULTS: A total of 14 components were identified in the positive and negative modes, including isofutoquinol A (11), hancinone C (12), and futoquinol (14) which characterized by references. In the RAW264.7 cells experiments, the extract significantly suppressed the levels of TNF-α and IL-6. More importantly, EEPW distinctly improved the symptoms of DSS-induced UC mice as reflected by a significant recovery from body weight, colon length, pathological injuries of the colon, and so on. Further research found that EEPW remarkably restored the levels of occludin, promoted proliferation, and inhibited apoptosis in colon to maintain the integrity of intestinal barrier. In addition, the down-regulation of TNF-α and IL-1ß in colon, Th1 and Th17 cells in spleen, as well as the up-regulation of IL-10 in colon and Th2 cells in spleen were distinctly observed in EEPW-treated groups. Furthermore, the protein expression of TLR4, p-IκB-α, p-p65, and COX-2 were significantly inhibited by EEPW. CONCLUSIONS: This study confirmed for the first time that EEPW effectively ameliorated DSS-induced UC in mice, which might be related to improving intestinal barrier function, maintaining the levels of inflammatory factors, and regulating the immune system. In addition, we found that the anti-inflammatory effect of EEPW on UC mice was involved in the TLR4/NF-κB/COX-2 signaling pathway. In conclusion, Piper wallichii can be used as a candidate for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Piper , Ratones , Animales , Colitis Ulcerosa/tratamiento farmacológico , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Ciclooxigenasa 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Piper/metabolismo , Transducción de Señal , Colon , Antiinflamatorios/farmacología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
6.
Nutrients ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807865

RESUMEN

The aim of the present study was to examine the effect of green tea extract containing Piper retrofractum fruit (GTP) on dextran-sulfate-sodium (DSS)-induced colitis, the regulatory mechanisms of microRNA (miR)-21, and the nuclear factor-κB (NF-κB) pathway. Different doses of GTP (50, 100, and 200 mg/kg) were administered orally once daily for 14 days, followed by GTP with 3% DSS for 7 days. Compared with the DSS-treated control, GTP administration alleviated clinical symptoms, including the disease activity index (DAI), colon shortening, and the degree of histological damage. Moreover, GTP suppressed miR-21 expression and NF-κB activity in colon tissue of DSS-induced colitis mice. The mRNA levels of inflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin-1ß (IL-1ß), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were downregulated by GTP. Colonic nitric oxide (NO) and prostaglandin E2 (PGE2) production, and myeloperoxidase (MPO) activity were also lowered by GTP. Taken together, our results revealed that GTP inhibits DSS-induced colonic inflammation by suppressing miR-21 expression and NF-κB activity, suggesting that it may be used as a potential functional material for improving colitis.


Asunto(s)
Colitis , MicroARNs , Piper , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Frutas/metabolismo , Guanosina Trifosfato/uso terapéutico , Ratones , MicroARNs/genética , FN-kappa B/metabolismo , Piper/metabolismo , Té/efectos adversos
7.
Nutrients ; 14(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458200

RESUMEN

Background: Piper excelsum (kawakawa) is an endemic shrub of Aotearoa, New Zealand, of cultural and medicinal importance to Maori. Its fruits and leaves are often consumed. These tissues contain several compounds that have been shown to be biologically active and which may underpin its putative health-promoting effects. The current study investigates whether kawakawa tea can modulate postprandial glucose metabolism. Methods: We report a pilot three-arm randomized crossover study to assess the bioavailability of kawakawa tea (BOKA-T) in six male participants with each arm having an acute intervention of kawakawa tea (4 g/250 mL water; 1 g/250 mL water; water) and a follow-up two-arm randomized crossover study to assess the impact of acute kawakawa tea ingestion on postprandial glucose metabolism in healthy human volunteers (TOAST) (4 g/250 mL water; and water; n = 30 (15 male and 15 female)). Participants consumed 250 mL of kawakawa tea or water control within each study prior to consuming a high-glycemic breakfast. Pre- and postprandial plasma glucose and insulin concentrations were measured, and the Matsuda index was calculated to measure insulin sensitivity. Results: In the BOKA-T study, lower plasma glucose (p < 0.01) and insulin (p < 0.01) concentrations at 60 min were observed after consumption of a high-dose kawakawa tea in comparison to low-dose or water. In the TOAST study, only plasma insulin (p = 0.01) was lower at 60 min in the high-dose kawakawa group compared to the control group. Both studies showed a trend towards higher insulin sensitivity in the high-dose kawakawa group compared to water only. Conclusions: Consuming kawakawa tea may modulate postprandial glucose metabolism. Further investigations with a longer-term intervention study are warranted.


Asunto(s)
Resistencia a la Insulina , Piper , Glucemia/metabolismo , Estudios Cruzados , Femenino , Humanos , Insulina , Masculino , Piper/metabolismo , Periodo Posprandial , , Agua
8.
Molecules ; 27(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208941

RESUMEN

The Piper species are a recognized botanical source of a broad structural diversity of lignans and its derivatives. For the first time, Piper tectoniifolium Kunth is presented as a promising natural source of the bioactive (-)-grandisin. Phytochemical analyses of extracts from its leaves, branches and inflorescences showed the presence of the target compound in large amounts, with leaf extracts found to contain up to 52.78% in its composition. A new HPLC-DAD-UV method was developed and validated to be selective for the identification of (-)-grandisin being sensitive, linear, precise, exact, robust and with a recovery above 90%. The absolute configuration of the molecule was determined by X-ray diffraction. Despite the identification of several enantiomers in plant extracts, the major isolated substance was characterized to be the (-)-grandisin enantiomer. In vascular reactivity tests, it was shown that the grandisin purified from botanical extracts presented an endothelium-dependent vasorelaxant effect with an IC50 of 9.8 ± 1.22 µM and around 80% relaxation at 30 µM. These results suggest that P. tectoniifolium has the potential to serve as a renewable source of grandisin on a large scale and the potential to serve as template for development of new drugs for vascular diseases with emphasis on disorders related to endothelial disfunction.


Asunto(s)
Furanos/química , Lignanos/química , Piper/química , Extractos Vegetales/química , Furanos/metabolismo , Lignanos/metabolismo , Piper/metabolismo
9.
F1000Res ; 11: 1115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37151610

RESUMEN

Mycoses or fungal infections are a general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review is to describe the antifungal mechanism action from Piper crocatum and its phytochemical profiling against lanosterol 14a demethylase CYP51. The methods used to search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram as a clinical information retrieval method. From 1.150.000 results searched by database, there is 73 final results article to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol, especially lanosterol 14a demethylase (CYP51) inhibition, which is one of the main target sites for antifungal activity because it functions to maintain the integrity and function of cell membranes in Candida. P. crocatum has an antifungal activity through its phytochemical profiling against fungal by inhibiting the lanosterol 14a demethylase, make damaging cell membranes, fungal growth inhibition, and fungal cell lysis.


Asunto(s)
Antifúngicos , Piper , Humanos , Antifúngicos/farmacología , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/metabolismo , Lanosterol/química , Piper/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fitoquímicos/farmacología
10.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071493

RESUMEN

In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1-3), one dihydrochalcone (4) and a mixture of sterols (5-7). Seven derivatives (8-14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure-activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced.


Asunto(s)
Antifúngicos/farmacología , Cacao/metabolismo , Piper/metabolismo , Agaricales/metabolismo , Ácido Benzoico/química , Chalconas/química , Cromatografía , Fusarium/metabolismo , Concentración 50 Inhibidora , Iones , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fitoquímicos , Phytophthora/metabolismo , Relación Estructura-Actividad
11.
Arch Microbiol ; 203(7): 4727-4736, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34052872

RESUMEN

Infectious diseases caused by multidrug-resistant microorganisms has increased in the last years. Piper species have been reported as a natural source of phytochemicals that can help in combating fungal and bacterial infections. This study had as objectives characterize the chemical composition of the essential oil from Piper caldense (EOPC), evaluate its potential antimicrobial activity, and investigate the synergistic effect with Norfloxacin against multidrug-resistant S. aureus overproducing efflux pumps, as well as, verify the EOPC ability to inhibit the Candida albicans filamentation. EOPC was extracted by hydrodistillation, and the chemical constituents were identified by gas chromatography, allowing the identification of 24 compounds (91.9%) classified as hydrocarbon sesquiterpenes (49.6%) and oxygenated sesquiterpenes (39.5%). Antimicrobial tests were performed using a 96-well plate microdilution method against C. albicans ATCC 10231, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 standard strains, as well as against multidrug-resistant strains S. aureus SA1199B (overexpressing norA gene), S. aureus K2068 (overexpressing mepA gene) and S. aureus K4100 (overexpressing qacC gene). The oil showed activity against C. albicans ATCC 10231 (≥ 512 µg/mL) and was able to inhibit hyphae formation, an important mechanism of virulence of C. albicans. On the other hand, EOPC was inactive against all bacterial strains tested (≤ 1,024 µg mL). However, when combined with Norfloxacin at subinhibitory concentration EOPC reduced the Norfloxacin and Ethidium bromide MIC values against S. aureus strains SA1199B, K2068 and K4100. These results indicate that EOPC is a source of phytochemicals acting as NorA, MepA and QacC inhibitors.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus Resistente a Meticilina , Norfloxacino , Aceites Volátiles , Piper , Staphylococcus aureus , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Norfloxacino/química , Norfloxacino/farmacología , Aceites Volátiles/farmacología , Piper/química , Piper/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
12.
Molecules ; 26(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802144

RESUMEN

Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Capsicum/metabolismo , Pimenta/metabolismo , Piper/metabolismo , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Capsaicina/química , Capsaicina/farmacología , Capsicum/química , Capsicum/efectos de los fármacos , Humanos , Pimenta/química , Pimenta/efectos de los fármacos , Piper/química , Piper/efectos de los fármacos , Verduras/química
13.
Z Naturforsch C J Biosci ; 76(5-6): 229-241, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33660490

RESUMEN

Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 µg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 µg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.


Asunto(s)
Antiprotozoarios/química , Piper/química , Extractos Vegetales/química , Animales , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Hexanos/química , Leishmania/efectos de los fármacos , Leishmania/crecimiento & desarrollo , Estadios del Ciclo de Vida/efectos de los fármacos , Extracción Líquido-Líquido , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Cloruro de Metileno/química , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Fagocitosis/efectos de los fármacos , Piper/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Hojas de la Planta/metabolismo
14.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32818574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Asunto(s)
Antiprotozoarios/metabolismo , Etnofarmacología/métodos , Medicina Tradicional/métodos , Metabolómica/métodos , Piper/metabolismo , Extractos Vegetales/metabolismo , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/metabolismo , Antimaláricos/uso terapéutico , Antiprotozoarios/aislamiento & purificación , Antiprotozoarios/uso terapéutico , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/metabolismo , Mesocricetus , Ratones , Perú/etnología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Células RAW 264.7 , Encuestas y Cuestionarios
15.
Food Chem ; 298: 125067, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31260989

RESUMEN

An ultra-high performance supercritical fluid chromatography-photodiode array detection-mass spectrometry (UHPSFC-MS) method for quality control of Piper longum L. has been developed and optimized. Hexane/isopropanol (70/30, v/v) was determined as the final injection solvent and methanol as the organic modifier. A design-of-experimental (DoE) approach was used to optimize column temperature, back-pressure and the gradient slope simultaneously using Trefoil CEL1 column. The back-pressure, temperature, flow rate were set at 130 bar, 32.5 °C and 1.0 mL/min, respectively. Positive electrospray ionization was used in the single ion monitoring mode. The 12 analytes were analyzed within 8 min using the optimized conditions. The linearities of the standard calibrations were satisfactory with coefficients of determination (R2) > 0.995. The recovery measured varied from 96.34% to 105.00% with relative standard deviation (RSD) ≤ 4.68%. The method was sensitive, reliable and effective, and successfully applied to simultaneous determination of 12 compounds in 28 batches of P. longum.


Asunto(s)
Alcaloides/química , Cromatografía con Fluido Supercrítico/métodos , Piper/química , Alcaloides/aislamiento & purificación , Benzodioxoles/química , Benzodioxoles/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Cromatografía con Fluido Supercrítico/normas , Frutas/química , Frutas/metabolismo , Límite de Detección , Espectrometría de Masas , Metanol/química , Piper/metabolismo , Piperidinas/química , Piperidinas/aislamiento & purificación , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/aislamiento & purificación , Análisis de Componente Principal , Control de Calidad , Solventes/química , Temperatura
16.
Biotech Histochem ; 94(7): 498-513, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31064227

RESUMEN

Essential oils are a promising alternative to insecticides. We investigated the LD50 of oils extracted from Piper corcovadensis, P. marginatum, and P. arboreum after 48 h topical contact with Spodoptera frugiperda larvae using morphometry, histochemistry and immunohistochemistry of the midgut and fat body. Chromatography revealed that E-caryophyllene was the principal compound common to the Piper species. The essential oils of P. corcovadensis, P. marginatum and P. arboreum caused deleterious changes in the midgut of S. frugiperda larvae. P. corcovadensis oil produced the lowest LD50 and significant histopathological alterations including elongation of the columnar cells, formation of cytoplasmic protrusions, reduction in carbohydrate, increased apoptotic index and decreased cell proliferation. P. arboreum oil caused histopathological alterations similar to P. corcovadensis, but caused the highest rate of cell proliferation and increased regenerative cells, which indicated rapid regeneration of the epithelium. Our findings demonstrated the insecticidal potential of P. corcovadensis for control of S. frugiperda owing to the significant damage it inflicted on S. frugiperda midgut.


Asunto(s)
Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/patología , Aceites Volátiles/farmacología , Piper/metabolismo , Animales , Sistema Digestivo/metabolismo , Sistema Digestivo/patología , Cuerpo Adiposo/metabolismo , Insecticidas/metabolismo , Insecticidas/farmacología , Larva/efectos de los fármacos , Aceites Volátiles/química , Piper/química , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología , Spodoptera
17.
Magn Reson Chem ; 57(12): 994-1070, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30779382

RESUMEN

Alkamides are the major and characteristic chemical compounds of the plants belonging to the Piper genus. These compounds are responsible for the flavor of pepper spices and for its broad use in cuisine across many regions of the world. Humans are in contact every day with these substances, which additionally show a broad variety of pharmacological activities, making them an important research target. A large amount of NMR data for these natural products is dispersed throughout literature. Its organization will help those research groups interested in their identification and structural elucidation. This review summarizes the 1 H and 13 C NMR data of 268 Piper amides in a systematic and orderly way, with a discussion on their biological activities, biosynthetic aspects, and NMR analysis of typical and relevant aspects of this information.


Asunto(s)
Amidas/análisis , Piper/química , Amidas/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , Estructura Molecular , Piper/metabolismo , Espectroscopía de Protones por Resonancia Magnética
18.
Braz. j. biol ; 78(1): 117-124, Feb. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-888838

RESUMEN

Abstract Piper tuberculatum (Piperaceae) is a species that accumulates especially amides as secondary metabolites and several biological activities was previously reported. In this article, we report a proteomic study of P. tuberculatum. Bidimensional electrophoresis (2D SDS-PAGE) and mass spectrometry (ESI-Q-TOF) were used in this study. Over a hundred spots and various peptides were identified in this species and the putative functions of these peptides related to defense mechanism as biotic and abiotic stress were assigned. The information presented extend the range of molecular information of P. tuberculatum.


Resumo Piper tuberculatum (Piperaceae) é uma espécie que acumula especialmente amidas como metabólitos secundários e diversas atividades biológicas dessa espécie foram relatadas anteriormente. No presente artigo, relatamos um estudo proteômico dessa espécie. Eletroforese bidimensional (2D SDS-PAGE) e espectrometria de massas (ESI-Q-TOF) foram utilizadas nesse estudos. Mais de cem spots e vários peptídeos foram identificados nesta espécie e as funções putativas desses peptídeos relacionadas a mecanismo de defesa como estresse biótico e abiótico foram atribuídos. As informações apresentadas ampliam a gama de informações moleculares dessa espécie.


Asunto(s)
Proteínas de Plantas/análisis , Proteoma/análisis , Piper/química , Proteínas de Plantas/fisiología , Proteínas de Plantas/química , Electroforesis en Gel Bidimensional , Proteoma/fisiología , Proteoma/química , Espectrometría de Masa por Ionización de Electrospray , Piper/fisiología , Piper/metabolismo , Proteómica
19.
Curr Med Chem ; 25(37): 4918-4928, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28545378

RESUMEN

Recently many studies showed anticancer activities of piperine, a pungent alkaloid found in black pepper and some other Piper species. We attempted to summarize acquired data that support anticancer potential of this natural agent. Piperine has been reported to possess effective chemopreventive activity. It has been studied to affect via several mechanisms of action, in brief enhancing antioxidant system, increasing level and activity of detoxifying enzymes and suppressing stem cell self-renewal. Moreover, piperine has been found to inhibit proliferation and survival of various cancerous cell lines via modulating cell cycle progression and exhibiting anti-apoptotic activity, respectively. This compound has been shown to modify activity of various enzymes and transcription factors to inhibit invasion, metastasis and angiogenesis. Interestingly, piperine has exhibited antimutagenic activity and also inhibited activity and expression of multidrug resistance transporters such as P-gp and MRP-1. Besides, about all reviewed studies have reported selective cytotoxic activity of piperine on cancerous cells in compared with normal cells. Altogether, the studies completely underline promising candidacy of piperine for further development. The collected preclinical data we provided in this article can be useful in the design of future researches especially clinical trials with piperine.


Asunto(s)
Alcaloides/uso terapéutico , Anticarcinógenos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Benzodioxoles/uso terapéutico , Piperidinas/uso terapéutico , Alcamidas Poliinsaturadas/uso terapéutico , Alcaloides/biosíntesis , Alcaloides/metabolismo , Alcaloides/farmacología , Animales , Anticarcinógenos/farmacocinética , Antimutagênicos/farmacología , Antineoplásicos Fitogénicos/farmacocinética , Antioxidantes/farmacología , Benzodioxoles/metabolismo , Benzodioxoles/farmacología , Disponibilidad Biológica , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Inactivación Metabólica/efectos de los fármacos , Invasividad Neoplásica/prevención & control , Metástasis de la Neoplasia/prevención & control , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/prevención & control , Neovascularización Patológica/prevención & control , Piper/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Alcamidas Poliinsaturadas/farmacología , Células Madre/citología , Células Madre/efectos de los fármacos
20.
Braz J Biol ; 78(1): 117-124, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28699966

RESUMEN

Piper tuberculatum (Piperaceae) is a species that accumulates especially amides as secondary metabolites and several biological activities was previously reported. In this article, we report a proteomic study of P. tuberculatum. Bidimensional electrophoresis (2D SDS-PAGE) and mass spectrometry (ESI-Q-TOF) were used in this study. Over a hundred spots and various peptides were identified in this species and the putative functions of these peptides related to defense mechanism as biotic and abiotic stress were assigned. The information presented extend the range of molecular information of P. tuberculatum.


Asunto(s)
Piper/química , Proteínas de Plantas/análisis , Proteoma/análisis , Electroforesis en Gel Bidimensional , Piper/metabolismo , Piper/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Proteoma/química , Proteoma/fisiología , Proteómica , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA