Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768864

RESUMEN

Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.


Asunto(s)
Ácido Abscísico/farmacología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Phytophthora/clasificación , Piper nigrum/metabolismo , Piper nigrum/parasitología , Salicilatos/metabolismo , Metaboloma , Metabolómica , Enfermedades de las Plantas/parasitología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Análisis de Componente Principal
2.
Genes (Basel) ; 12(7)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208836

RESUMEN

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Phytophthora/fisiología , Piper nigrum/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/inmunología , Genoma de Planta , Filogenia , Piper nigrum/crecimiento & desarrollo , Piper nigrum/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/parasitología , Proteínas de Plantas/genética , Transcriptoma
3.
Sci Rep ; 7: 41052, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145468

RESUMEN

Small RNAs derived from ribosomal RNAs (srRNAs) are rarely explored in the high-throughput data of plant systems. Here, we analyzed srRNAs from the deep-sequenced small RNA libraries of Piper nigrum, a unique magnoliid plant. The 5' end of the putative long form of 5.8S rRNA (5.8SLrRNA) was identified as the site for biogenesis of highly abundant srRNAs that are unique among the Piperaceae family of plants. A subsequent comparative analysis of the ninety-seven sRNAomes of diverse plants successfully uncovered the abundant existence and precise cleavage of unique rRF signature small RNAs upstream of a novel 5' consensus sequence of the 5.8S rRNA. The major cleavage process mapped identically among the different tissues of the same plant. The differential expression and cleavage of 5'5.8S srRNAs in Phytophthora capsici infected P. nigrum tissues indicated the critical biological functions of these srRNAs during stress response. The non-canonical short hairpin precursor structure, the association with Argonaute proteins, and the potential targets of 5'5.8S srRNAs reinforced their regulatory role in the RNAi pathway in plants. In addition, this novel lineage specific small RNAs may have tremendous biological potential in the taxonomic profiling of plants.


Asunto(s)
Piper nigrum/genética , ARN de Planta/metabolismo , ARN Ribosómico 5.8S/genética , ARN Nuclear Pequeño/metabolismo , Proteínas Argonautas/genética , Secuencia de Bases , Biblioteca de Genes , Conformación de Ácido Nucleico , Phytophthora/patogenicidad , Piper nigrum/metabolismo , Piper nigrum/parasitología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Plantas/genética , Plantas/metabolismo , División del ARN , Interferencia de ARN , ARN de Planta/genética , ARN Ribosómico 5.8S/química , ARN Nuclear Pequeño/genética , Alineación de Secuencia
4.
BMC Genomics ; 17(1): 822, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769171

RESUMEN

BACKGROUND: Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv. Reyin-1) black pepper species. RESULTS: 116,432 unigenes were acquired from six libraries (three replicates of resistant and susceptible black pepper samples), which were integrated by applying BLAST similarity searches and noted by adopting Kyoto Encyclopaedia of Genes and Gene Ontology (GO) genome orthology identifiers. The reference transcriptome was mapped using two sets of digital gene expression data. Using GO enrichment analysis for the differentially expressed genes, the majority of the genes associated with the phenylpropanoid biosynthesis pathway were identified in P. flaviflorum. In addition, the expression of genes revealed that after susceptible and resistant species were inoculated with P. capsici, the majority of genes incorporated in the phenylpropanoid metabolism pathway were up-regulated in both species. Among various treatments and organs, all the genes were up-regulated to a relatively high degree in resistant species. Phenylalanine ammonia lyase and peroxidase enzyme activity increased in susceptible and resistant species after inoculation with P. capsici, and the resistant species increased faster. The resistant plants retain their vascular structure in lignin revealed by histochemical analysis. CONCLUSIONS: Our data provide critical information regarding target genes and a technological basis for future studies of black pepper genetic improvements, including transgenic breeding.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos , Phytophthora , Piper nigrum/fisiología , Piper nigrum/parasitología , Propanoles/metabolismo , Transcriptoma , Vías Biosintéticas , Biología Computacional/métodos , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA