Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Org Chem ; 87(20): 13427-13438, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36075104

RESUMEN

Three new single-crystal structures were isolated for picolinic acid (2), the trifluoroacetate salt of picolinic acid (1), and pyridoxal hydrochloride (3). These compounds displayed unconventional crystallographic features that must be considered when structural refinements are carried out. Thus, the generated Fourier differences map obtained with the diffraction data collected at 100 K was crucial to visualize electron densities, which were balanced by either one hydrogen atom or a hydrogen atom with an occupancy factor of 1/2 located between either two carboxylate moieties, two phenolic oxygen atoms, or two pyridinic nitrogen atoms. Moreover, NMR studies were conducted to analyze the bulk chemical composition of single crystals of 2-pyridinecarboxylic acid obtained from the gem-diol/hemiacetal forms and the polymerization products after the treatment of 2-pyridinecarboxaldehyde with TFA:H2O (1) or a diluted Cu(NO3)2 solution (2). The quantitative yield of the pyridoxal hydrochloride crystalline material (3) obtained from a diluted CuCl2 solution was exhaustively characterized by solid-state NMR methods. These methods allowed the resolution of the signals corresponding to the protons of the hydroxyl moiety of the intramolecular hemiacetal group and the phenolic hydrogen. Theoretical calculations using DFT methods were done to complement the atomic location of the hydrogen atoms obtained from the X-ray analysis.


Asunto(s)
Hidrógeno , Piridoxal , Cristalografía por Rayos X , Piridoxal/química , Enlace de Hidrógeno , Estructura Molecular , Protones , Ácido Trifluoroacético , Oxígeno , Nitrógeno
2.
J Inorg Biochem ; 233: 111854, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35636301

RESUMEN

Helical complexes composed of organic ligand strands and metallic centers, called helicates, present interactions with biomacromolecules, such as deoxyribonucleic acid, as one of their main biological applications in bioinorganic chemistry. Despite the potential antineoplastic and antibacterial results of the interactions between helicates and biomacromolecules, there is still a gap of research in the literature, primarily in terms of solubility in aqueous media. In this study, we present the synthesis, structural analysis, and interaction with biomacromolecules of two water-soluble cobalt(II) double-stranded helicates: [CoII2L22][CoII(NCS)4]∙9H2O (C1) and [CoII2L42]Cl2∙11H2O (C2). These complexes are obtained from iminic ligands (L2 and L4) derived from pyridoxal, a vitamin B6 aldehyde derivative. Through spectroscopic assays, these helical complexes were shown to have weak and moderate binding capacities with calf-thymus deoxyribonucleic acid and human serum albumin, respectively. The theoretical assays suggest that C1 and C2 interact with the minor groove of deoxyribonucleic acid and have different main binding sites with human serum albumin. Furthermore, Van der Waals and hydrogen bonds were shown to be the main intermolecular forces for these C1-C2:biomacromolecules interactions.


Asunto(s)
Cobalto , Piridoxal , Cobalto/química , ADN/química , Humanos , Ligandos , Albúmina Sérica Humana , Agua/química
3.
J Inorg Biochem ; 215: 111307, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33341589

RESUMEN

This article deals with the synthesis of Schiff-based bis-azomethine-based ligands derived from pyridoxal and aliphatic dihydrazides and the synthesis of nickel(II) complexes C1-C4. The synthesized complexes had their structures elucidated by monocrystal X-ray diffraction and were characterized by vibrational and absorption spectroscopy. The synthesized ligands have characteristics that allow the formation of self-assembly processes, thus, the flexibility or rigidity of the coordination of organic molecules added to the orbitals of the NiII cation leads to the formation of helical complexes with double helix and a dinucler nickel(II) complex. Moreover, compounds was their interactions with CT-DNA and HSA absorption and emission analysis and molecular docking calculations.


Asunto(s)
Complejos de Coordinación/química , Níquel/química , Piridoxal/química , Adipatos/química , Compuestos Azo/química , Cristalografía por Rayos X/métodos , ADN/química , Humanos , Hidrazinas/química , Ligandos , Simulación del Acoplamiento Molecular/métodos , Estructura Molecular , Bases de Schiff/química , Albúmina Sérica Humana/química , Solubilidad , Succinatos/química , Tiosemicarbazonas/química , Agua/química , Difracción de Rayos X/métodos
4.
Am J Clin Nutr ; 112(3): 669-682, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32649760

RESUMEN

BACKGROUND: Maternal supplementation during lactation could increase milk B-vitamin concentrations, but little is known about the kinetics of milk vitamin responses. OBJECTIVES: We compared acute effects of maternal lipid-based nutrient supplement (LNS) consumption (n = 22 nutrients, 175%-212% of the RDA intake for the nutrients examined), as a single dose or at spaced intervals during 8 h, on milk concentrations and infant intake from milk of B-vitamins. METHODS: This randomized crossover trial in Quetzaltenango, Guatemala included 26 mother-infant dyads 4-6 mo postpartum who were randomly assigned to receive 3 treatments in a random order: bolus 30-g dose of LNS (Bolus); 3 × 10-g doses of LNS (Divided); and no LNS (Control), with control meals. Mothers attended three 8-h visits during which infant milk consumption was measured and milk samples were collected at every feed. Infant intake was assessed as $\mathop \sum \nolimits_{i\ = \ 1}^n ( {{\rm{milk\ volum}}{{\rm{e}}_{{\rm{feed\ }}n}} \times \ {\rm{nutrient\ concentratio}}{{\rm{n}}_{{\rm{feed}}\ n}}} )$ over 8 h. RESULTS: Maternal supplementation with the Bolus or Divided dose increased least-squares mean (95% CI) milk and infant intakes of riboflavin [milk: Bolus: 154.4 (138.2, 172.5) µg · min-1 · mL-1; Control: 84.5 (75.8, 94.3) µg · min-1 · mL-1; infant: Bolus: 64.5 (56.1, 74.3) µg; Control: 34.5 (30.0, 39.6) µg], thiamin [milk: Bolus: 10.9 (10.1, 11.7) µg · min-1 · mL-1; Control: 7.7 (7.2, 8.3) µg · min-1 · mL-1; infant: Bolus: 5.1 (4.4, 6.0) µg; Control: 3.4 (2.9, 4.0) µg], and pyridoxal [milk: Bolus: 90.5 (82.8, 98.9) µg · min-1 · mL-1; Control: 60.8 (55.8, 66.3) µg · min-1 · mL-1; infant: Bolus: 39.4 (33.5, 46.4) µg; Control: 25.0 (21.4, 29.2) µg] (all P < 0.001). Only the Bolus dose increased cobalamin in milk [Bolus: 0.054 (0.047, 0.061) µg · min-1 · mL-1; Control: 0.041 (0.035, 0.048) µg · min-1 · mL-1, P = 0.039] and infant cobalamin intake [Bolus: 0.023 (0.020, 0.027) µg; Control: 0.015 (0.013, 0.018) µg, P = 0.001] compared with Control. Niacin was unaffected. CONCLUSIONS: Maternal supplementation with LNS as a Bolus or Divided dose was similarly effective at increasing milk riboflavin, thiamin, and pyridoxal and infant intakes, whereas only the Bolus dose increased cobalamin. Niacin was unaffected in 8 h. This trial was registered at clinicaltrials.gov as NCT02464111.


Asunto(s)
Lactancia Materna , Lactancia , Micronutrientes/administración & dosificación , Micronutrientes/sangre , Vitaminas/administración & dosificación , Vitaminas/sangre , Adulto , Área Bajo la Curva , Estudios Cruzados , Suplementos Dietéticos , Femenino , Guatemala , Humanos , Lactante , Micronutrientes/química , Leche Humana/química , Niacina/administración & dosificación , Niacina/sangre , Niacina/farmacocinética , Piridoxal/administración & dosificación , Piridoxal/sangre , Piridoxal/farmacocinética , Riboflavina/administración & dosificación , Riboflavina/sangre , Riboflavina/farmacocinética , Tiamina/administración & dosificación , Tiamina/sangre , Tiamina/farmacocinética , Vitamina B 12/administración & dosificación , Vitamina B 12/sangre , Vitamina B 12/farmacocinética , Vitaminas/farmacocinética , Adulto Joven
5.
J Inorg Biochem ; 204: 110950, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31835108

RESUMEN

This work presents the synthesis, characterization of copper(II) complexes (C1-C6) and the potential of these compounds to mimic the catalytic activity of the enzyme superoxide dismutase (SOD). The copper(II)complexes were obtained by reaction between the aldol condensation between substituted aromatic hydrazides and aromatic aldehydes (salicylic aldehyde and pyridoxal hydrochloride), forming two new ligands (L1 to L6), resulting in new dimeric dicopper (II) complexes (C1 and C2), new three monomeric CuII derivatives (C3, C4 and C6) and a polymeric complex (C5). The CuII complexes were fully characterized by X-ray diffraction, spectroscopic and electrochemical analysis. Subsequently, CuII derivatives were evaluated for their antioxidant activities, using the NBT (Nitro blue tetrazolium chloride) photoreduction methodology. After evaluating the antioxidant activity in vitro, it was observed that the best inhibition rates of the superoxide ion are associated to the C4 and C5 complexes. Computational analysis via molecular docking and quantum chemical calculation (Fukui map) offered a molecular level explanation on the biological activity of CuII complexes. Additionally, cytotoxicity of C1-C6 was tested in the first time in vivo in nematodes Caenorhabditis elegans, corroborating with the results identified for C4 and C5.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Complejos de Coordinación/farmacología , Cobre/química , Piridoxal/química , Superóxido Dismutasa/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Complejos de Coordinación/química , Ligandos , Simulación del Acoplamiento Molecular , Superóxidos/metabolismo
6.
Neuropharmacology ; 128: 474-481, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28802645

RESUMEN

The purinergic system consists of two large receptor families - P2X and P2Y. Both are activated by adenosine triphosphate (ATP), although presenting different functions. These receptors are present in several brain regions, including those involved in emotion and stress-related behaviors. Hence, they seem to participate in fear- and anxiety-related responses. However, few studies have investigated the purinergic system in threatening situations, as observed in contextual fear conditioning (CFC). Therefore, this study investigated the involvement of purinergic receptors in the expression and extinction of aversive memories. C57Bl/6 background mice were submitted to the CFC protocol. Wildtype (WT) mice received i.p. injection of either a nonselective P2 receptor (P2R) antagonist, P178 (10 or 30 mg/kg); a selective P2X7 receptor (P2X7R) antagonist, A438079 (10 mg/kg); a selective P2Y1 receptor (P2Y1R) antagonist, MRS2179 (10 mg/kg); or vehicle 10 min prior to or immediately after the extinction session. Additionally, P2X7R KO mice were tested in the CFC protocol. After P2R antagonist treatment, contextual fear recall increased, while acquisition of extinction was impaired. Similar results were observed with the selective P2X7R antagonist, but not with the selective P2Y1R antagonist. Interestingly, P2X7R KO mice showed increased contextual fear recall, associated with impaired acquisition of extinction, in accordance with pharmacologic P2X7R antagonism. Our results suggest that specific pharmacological or genetic blockade of P2X7R promotes anxiogenic-like effects, along with deficits in extinction learning. Thus, these receptors could present an alternative treatment of stress-related psychiatric disorders.


Asunto(s)
Condicionamiento Psicológico/fisiología , Miedo/fisiología , Memoria/fisiología , Receptores Purinérgicos P2X7/metabolismo , Análisis de Varianza , Animales , Condicionamiento Psicológico/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Miedo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas Purinérgicos/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridoxal/farmacología , Receptores Purinérgicos P2X7/genética
7.
J Phys Chem A ; 120(39): 7778-7785, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27627833

RESUMEN

The gem-diol moieties of organic compounds are rarely isolated or even studied in the solid state. Here, liquid- and solid-state NMR, together with single-crystal X-ray diffraction studies, were used to show different strategies to favor the gem-diol or carbonyl moieties and to isolate hemiacetal structures in formylpyridine and vitamin-B6-related compounds. The change in position of the carbonyl group in pyridine compounds had a clear and direct effect on the hydration, which was enhanced by trifluoroacetic acid addition. Because of their biochemical importance, vitamin-B6-related compounds were studied with emphasis on the elucidation of the gem-diol, cyclic hemiacetal or carbonyl structures that can be obtained in different experimental conditions. In particular, new racemic mixtures for the cyclic hemiacetal structure from pyridoxal are reported in trifluoroacetate and hydrochloride derivatives.


Asunto(s)
Piridinas/química , Vitamina B 6/química , Técnicas de Química Sintética , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Estructura Molecular , Piridinas/síntesis química , Piridoxal/química , Ácido Trifluoroacético/química
8.
FEBS Lett ; 588(17): 3068-73, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24952356

RESUMEN

In the family of ATP-dependent vitamin kinases, several bifunctional enzymes that phosphorylate hydroxymethyl pyrimidine (HMP) and pyridoxal (PL) have been described besides enzymes specific towards HMP. To determine how bifunctionality emerged, we reconstructed the sequence of three ancestors of HMP kinases, experimentally resurrected, and assayed the enzymatic activity of their last common ancestor. The latter has ∼ 8-fold higher specificity for HMP due to a glutamine residue (Gln44) that is a key determinant of the specificity towards HMP, although it is capable of phosphorylating both substrates. These results show how a specific enzyme with catalytic promiscuity gave rise to current bifunctional enzymes.


Asunto(s)
Biocatálisis , Evolución Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Filogenia , Piridoxal/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Humanos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica , Especificidad por Sustrato
9.
Biochim Biophys Acta ; 1620(1-3): 15-24, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12595068

RESUMEN

Previous work from our laboratory demonstrated that pyridoxal isonicotinoyl hydrazone (PIH) has in vitro antioxidant activity against iron plus ascorbate-induced 2-deoxyribose degradation due to its ability to chelate iron; the resulting Fe(III)-PIH(2) complex is supposedly unable to catalyze oxyradical formation. A putative step in the antioxidant action of PIH is the inhibition of Fe(III)-mediated ascorbate oxidation, which yields the Fenton reagent Fe(II) [Biochim. Biophys. Acta 1523 (2000) 154]. In this work, we demonstrate that PIH inhibits Fe(III)-EDTA-mediated ascorbate oxidation (measured at 265 nm) and the formation of ascorbyl radical (in electron paramagnetic resonance (EPR) studies). The efficiency of PIH against ascorbate oxidation, ascorbyl radical formation and 2-deoxyribose degradation was dose dependent and directly proportional to the period of preincubation of PIH with Fe(III)-EDTA. The efficiency of PIH in inhibiting ascorbate oxidation and ascorbyl radical formation was also inversely proportional to the Fe(III)-EDTA concentration in the media. When EDTA was replaced by the weaker iron ligand nitrilotriacetic acid (NTA), PIH was much more effective in preventing ascorbate oxidation, ascorbyl radical formation and 2-deoxyribose degradation. Moreover, the replacement of EDTA with citrate, a physiological chelator with a low affinity for iron, also resulted in PIH having a higher efficiency in inhibiting iron-mediated ascorbate oxidation and 2-deoxyribose degradation. These results demonstrate that PIH removes iron from EDTA (or from either NTA or citrate), forming an iron-PIH complex that cannot induce ascorbate oxidation effectively, thus inhibiting iron-mediated oxyradical formation. These results are of pharmacological relevance because PIH has been considered for experimental chelating therapy in iron-overload diseases.


Asunto(s)
Ácido Ascórbico/química , Quelantes/farmacología , Compuestos Férricos/antagonistas & inhibidores , Isoniazida/análogos & derivados , Isoniazida/farmacología , Ácido Nitrilotriacético/análogos & derivados , Piridoxal/análogos & derivados , Piridoxal/farmacología , Desoxirribosa/química , Ácido Edético/antagonistas & inhibidores , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Radical Hidroxilo/química , Ácido Nitrilotriacético/antagonistas & inhibidores , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo
10.
J Protein Chem ; 21(5): 339-48, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12206508

RESUMEN

Transducin (T), a guanine nucleotide binding regulatory protein composed of alpha-, beta-, and gamma-subunits, serves as an intermediary between rhodopsin and cGMP phosphodiesterase during signaling in the visual process. Pyridoxal 5'-phosphate (PLP), a reagent that has been used to modify enzymes that bind phosphorylated substrates, was probed here as an affinity label for T. PLP inhibited the guanine nucleotide binding activity of T in a concentration dependent manner, and was covalently incorporated into the protein in the presence of [3H]NaBH4. Approximately 1 mol of 3H was bound per mol of T. GTP and GTP analogs appreciably hindered the incorporation of 3H to T, suggesting that PLP specifically modified the protein active site. Interestingly, PLP modified both the alpha- and beta-subunits of T. Moreover, PLP in the presence of GDP behaved as a GTP analog, since this mixture was capable of dissociating T from T:photoactivated rhodopsin complexes.


Asunto(s)
Guanosina Trifosfato/metabolismo , Fosfato de Piridoxal/metabolismo , Coloración y Etiquetado/métodos , Transducina/química , Transducina/metabolismo , Animales , Sitios de Unión , Boratos/farmacología , Bovinos , Inhibidores Enzimáticos/farmacología , Ojo/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanilil Imidodifosfato/antagonistas & inhibidores , Guanilil Imidodifosfato/metabolismo , Ligandos , Luz , Fosfatos/farmacología , Compuestos de Potasio/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Piridoxal/farmacología , Fosfato de Piridoxal/farmacología , Tritio
11.
Mol Cell Biochem ; 228(1-2): 73-82, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11855743

RESUMEN

Pyridoxal isonicotinoyl hydrazone (PIH) is an iron chelator with antioxidant activity, low toxicity and is useful in the experimental treatment of iron-overload diseases. Previous studies on x-ray diffraction have revealed that PIH also forms a complex with Cu(II). Since the main drug of choice for the treatment of Wilson's disease, d-penicillamine, causes a series of side effects, there is an urgent need for the development of alternative copper chelating agents for clinical use. These chelators must also have antioxidant activity because oxidative stress is associated with brain and liver copper-overload. In this work we tested the ability of PIH to prevent in vitro free radical formation mediated by Cu(II), ascorbate and dissolved O2. Degradation of 2-deoxyribose mediated by 10 microM Cu(II) and 3 mM ascorbate was fully inhibited by 10 microM PIH (I50 = 6 microM) or 20 microM d-penicillamine (I50 = 10 microM). The antioxidant efficiency of PIH remained unchanged with increasing concentrations (from 1 to 15 mM) of the hydroxyl radical detector molecule, 2-deoxyribose, indicating that PIH does not act as a hydroxyl scavenger. On the other hand, the efficiency of PIH (against copper-mediated 2-deoxyribose degradation and ascorbate oxidation) was inversely proportional to the Cu(II) concentration, suggesting a competition between PIH and ascorbate for complexation with Cu(lI). An almost full inhibitory effect by PIH was observed when the ratio PIH:copper was 1:1. A similar result was obtained with the measurement of copper plus ascorbate-mediated O2 uptake. Moreover, spectral studies of the copper and PIH interaction showed a peak at 455 nm and also indicated the formation of a stable Cu(II) complex with PIH with a 1:1 ratio. These data demonstrated that PIH prevents hydroxyl radical formation and oxidative damage to 2-deoxyribose by forming a complex with Cu(II) that is not reactive with ascorbate (first step of the reactions leading to hydroxyl radical formation from Cu(II), ascorbate and O2) and does not participate in Haber-Weiss reactions.


Asunto(s)
Sulfato de Cobre/antagonistas & inhibidores , Depuradores de Radicales Libres/farmacología , Radical Hidroxilo/antagonistas & inhibidores , Quelantes del Hierro/farmacología , Isoniazida/análogos & derivados , Isoniazida/farmacología , Piridoxal/análogos & derivados , Piridoxal/farmacología , Ácido Ascórbico/farmacología , Sulfato de Cobre/farmacología , Desoxirribosa/metabolismo , Radicales Libres , Radical Hidroxilo/metabolismo , Técnicas In Vitro , Cinética , Oxidación-Reducción , Oxígeno/metabolismo
12.
Eur J Pharmacol ; 428(1): 37-44, 2001 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11779035

RESUMEN

Pyridoxal isonicotinoyl hydrazone (PIH) is able to prevent iron-mediated hydroxyl radical formation by means of iron chelation and inhibition of redox cycling of the metal. In this study, we investigated the effect of PIH on Fe(II)-citrate-mediated lipid peroxidation and damage to isolated rat liver mitochondria. Lipid peroxidation was quantified by the production of thiobarbituric acid-reactive substances (TBARS) and by antimycin A-insensitive oxygen consumption. PIH at 300 microM induced full protection against 50 microM Fe(II)-citrate-induced loss of mitochondrial transmembrane potential (deltapsi) and mitochondrial swelling. In addition, PIH prevented the Fe(II)-citrate-dependent formation of TBARS and antimycin A-insensitive oxygen consumption. The antioxidant effectiveness of 100 microM PIH (on TBARS formation and mitochondrial swelling) was greater in the presence of 20 or 50 microM Fe(II)-citrate than in the presence of 100 microM Fe(II)-citrate, suggesting that the mechanism of PIH antioxidant action is linked with its Fe(II) chelating property. Finally, PIH increased the rate of Fe(II) autoxidation by sequestering iron from the Fe(II)-citrate complex, forming a Fe(III)-PIH, complex that does not participate in Fenton-type reactions and lipid peroxidation. These results are of pharmacological relevance since PIH is a potential candidate for chelation therapy in diseases related to abnormal intracellular iron distribution and/or iron overload.


Asunto(s)
Antioxidantes/farmacología , Compuestos Férricos/antagonistas & inhibidores , Quelantes del Hierro/farmacología , Isoniazida/análogos & derivados , Isoniazida/farmacología , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Piridoxal/análogos & derivados , Piridoxal/farmacología , Animales , Quelantes/farmacología , Compuestos Férricos/farmacología , Técnicas In Vitro , Indicadores y Reactivos , Hierro/química , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Ratas , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Biochim Biophys Acta ; 1523(2-3): 154-60, 2000 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-11042379

RESUMEN

Iron chelating agents are essential for treating iron overload in diseases such as beta-thalassemia and are potentially useful for therapy in non-iron overload conditions, including free radical mediated tissue injury. Deferoxamine (DFO), the only drug available for iron chelation therapy, has a number of disadvantages (e.g., lack of intestinal absorption and high cost). The tridentate chelator pyridoxal isonicotinoyl hydrazone (PIH) has high iron chelation efficacy in vitro and in vivo with high selectivity and affinity for iron. It is relatively non-toxic, economical to synthesize and orally effective. We previously demonstrated that submillimolar levels of PIH and some of its analogues inhibit lipid peroxidation, ascorbate oxidation, 2-deoxyribose degradation, plasmid DNA strand breaks and 5,5-dimethylpyrroline-N-oxide (DMPO) hydroxylation mediated by either Fe(II) plus H(2)O(2) or Fe(III)-EDTA plus ascorbate. To further characterize the mechanism of PIH action, we studied the effects of PIH and some of its analogues on the degradation of 2-deoxyribose induced by Fe(III)-EDTA plus ascorbate. Compared with hydroxyl radical scavengers (DMSO, salicylate and mannitol), PIH was about two orders of magnitude more active in protecting 2-deoxyribose from degradation, which was comparable with some of its analogues and DFO. Competition experiments using two different concentrations of 2-deoxyribose (15 vs. 1.5 mM) revealed that hydroxyl radical scavengers (at 20 or 60 mM) were significantly less effective in preventing degradation of 2-deoxyribose at 15 mM than 2-deoxyribose at 1.5 mM. In contrast, 400 microM PIH was equally effective in preventing degradation of both 15 mM and 1.5 mM 2-deoxyribose. At a fixed Fe(III) concentration, increasing the concentration of ligands (either EDTA or NTA) caused a significant reduction in the protective effect of PIH towards 2-deoxyribose degradation. We also observed that PIH and DFO prevent 2-deoxyribose degradation induced by hypoxanthine, xanthine oxidase and Fe(III)-EDTA. The efficacy of PIH or DFO was inversely related to the EDTA concentration. Taken together, these results indicate that PIH (and its analogues) works by a mechanism different than the hydroxyl radical scavengers. It is likely that PIH removes Fe(III) from the chelates (either Fe(III)-EDTA or Fe(III)-NTA) and forms a Fe(III)-PIH(2) complex that does not catalyze oxyradical formation.


Asunto(s)
Ácido Ascórbico , Quelantes , Desoxirribosa/química , Compuestos Férricos , Isoniazida/análogos & derivados , Piridoxal/análogos & derivados , Daño del ADN , Dimetilsulfóxido , Ácido Edético , Depuradores de Radicales Libres , Radical Hidroxilo , Cinética , Modelos Químicos , Plásmidos , Relación Estructura-Actividad
14.
Biochim Biophys Acta ; 1426(3): 475-82, 1999 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-10076064

RESUMEN

The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as beta-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against *OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for *OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of *OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on *OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.


Asunto(s)
Desoxirribosa/química , Radical Hidroxilo/química , Isoniazida/análogos & derivados , Piridoxal/análogos & derivados , Óxidos N-Cíclicos , Espectroscopía de Resonancia por Spin del Electrón , Peróxido de Hidrógeno , Hierro , Isoniazida/química , Oxidación-Reducción , Piridoxal/química , Detección de Spin
15.
Free Radic Biol Med ; 25(8): 875-80, 1998 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-9840731

RESUMEN

Pyridoxal isonicotinoyl hydrazone (PIH) has previously been studied for use in iron chelation therapy in iron-overload diseases. It is an efficient in vitro antioxidant due to its Fe(III) complexing activity (Schulman, H. M., et al. Redox Report 1:373-378; 1995). Pathologies associated with iron-overload include hepatic and other cancers. Since oxidative alterations of DNA can be linked to the development of cancer, we decided to study whether PIH protects DNA against in vitro oxidative stress. We report here that pUC-18 plasmid DNA is damaged by *OH radicals generated from Fe(II) plus H2O2 or from Fe(II) plus hypoxanthine/xanthine oxidase. The DNA damage was quantified by determining the diminution of supercoiled DNA forms after oxidative attack using agar gel electrophoresis. Micromolar amounts of PIH (20-30 microM) were able to half-protect DNA from iron (1-7.5 microM)-mediated *OH formation. The antioxidant capacity of PIH was significantly higher than that of some of its analogs and desferrioxamine. PIH and some of its analogues could also inhibit the oxidative degradation of 2-deoxyribose caused by Fenton reagents. Since we observed that PIH enhances the Fe(II) autoxidation rate, measured by the ferrozine technique, PIH may limit *OH formation and consequently DNA damage by decreasing the amount of Fe(II) available to catalyze Fenton reactions.


Asunto(s)
Antioxidantes , Daño del ADN/efectos de los fármacos , Radical Hidroxilo/farmacología , Quelantes del Hierro/farmacología , Isoniazida/análogos & derivados , Plásmidos/genética , Piridoxal/análogos & derivados , Compuestos Ferrosos/química , Radical Hidroxilo/metabolismo , Hipoxantina/farmacología , Isoniazida/farmacología , Oxidación-Reducción , Piridoxal/farmacología , Xantina Oxidasa/farmacología
16.
Biol Res ; 29(1): 69-75, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-9267518

RESUMEN

The use of fluorescent compounds can be a valuable tool to probe the active site of enzymes. Several examples of this approach are discussed, particularly the use of pyridoxal phosphate analogs. The study of protein-protein interactions by means of fluorescent-labeled proteins is also analyzed.


Asunto(s)
Nucleótidos de Adenina/química , Sitios de Unión , Piridoxal Quinasa/química , Piridoxal/química , Piridoxina/química , Transaminasas/química , Anisotropía , Conformación Proteica
17.
Biol. Res ; 29(1): 69-75, 1996.
Artículo en Inglés | LILACS | ID: lil-228550

RESUMEN

The use of fluorescent compounds can be a valuable tool to probe the active site of enzymes. Several examples of this approach are discussed, particularly the use of pyridoxal phosphate analogs. The study of protein-protein interactions by means of fluorescent-labeled proteins is also analyzed


Asunto(s)
Nucleótidos de Adenina/química , Sitios de Unión , Piridoxal Quinasa/química , Piridoxal/química , Piridoxina/química , Transaminasas/química , Anisotropía , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA