Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 904
Filtrar
1.
Environ Geochem Health ; 46(6): 189, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695970

RESUMEN

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.


Asunto(s)
Microplásticos , Oligoquetos , Contaminantes del Suelo , Animales , Oligoquetos/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Compostaje , Polietileno/toxicidad , Plásticos Biodegradables
2.
Bioresour Technol ; 401: 130739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670291

RESUMEN

A modified biodegradable plastic (PLA/PBAT) was developed by through covalent bonding with proteinase K, porcine pancreatic lipase, or amylase, and was then investigated in anaerobic co-digestion mixed with food waste. Fluorescence microscope validated that enzymes could remain stable in modified the plastic, even after co-digestion. The results of thermophilic anaerobic co-digestion showed that, degradation of the plastic modified with Proteinase K increased from 5.21 ± 0.63 % to 29.70 ± 1.86 % within 30 days compare to blank. Additionally, it was observed that the cumulative methane production increased from 240.9 ± 0.5 to 265.4 ± 1.8 mL/gVS, and the methane production cycle was shortened from 24 to 20 days. Interestingly, the kinetic model suggested that the modified the plastic promoted the overall hydrolysis progression of anaerobic co-digestion, possibly as a result of the enhanced activities of Bacteroidota and Thermotogota. In conclusion, under anaerobic co-digestion, the modified the plastic not only achieved effective degradation but also facilitated the co-digestion process.


Asunto(s)
Plásticos Biodegradables , Metano , Anaerobiosis , Metano/metabolismo , Plásticos Biodegradables/química , Biodegradación Ambiental , Lipasa/metabolismo , Porcinos , Animales , Alimentos , Residuos , Amilasas/metabolismo , Cinética , Hidrólisis , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado
3.
Sci Total Environ ; 928: 172288, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599394

RESUMEN

Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.


Asunto(s)
Plásticos Biodegradables , Biodegradación Ambiental , Contaminantes Químicos del Agua , Mar Mediterráneo , Contaminantes Químicos del Agua/análisis , Bacterias/clasificación , Agua de Mar/microbiología , Monitoreo del Ambiente , Microbiota , Plásticos/análisis , Hongos
4.
Sci Total Environ ; 929: 172586, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657802

RESUMEN

In the last years biodegradable polymers (BPs) were largely used as real opportunity to solve plastic pollution. Otherwise, their wide use in commercial products, such as packaging sector, is causing a new pollution alarm, mainly because few data reported about their behaviour in the environment and toxicity on marine organisms. Our previous results showed that embryos of the sea urchin Paracentrotus lividus (Lmk) exposed to poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) showed delay of their development and morphological malformations, also affecting at the molecular levels the expression of several genes involved in different functional responses. In the present work for the first time, we tested the effects of five microplastics (MPs) obtained from BPs such as PBS, poly(butylene succinate), PBSA, poly(butylene succinate-co-butylene adipate), PCL, PHB and PLA, upon grazing activity of the sea urchin revealed by: i. histological analysis seeing at the gonadic tissues; ii. morphological analysis of the deriving embryos; iii. molecular analyses on these embryos to detect variations of the gene expression of eighty-seven genes involved in stress response, detoxification, skeletogenesis, differentiation and development. All these results will help in understanding how MP accumulated inside various organs in the adult sea urchins, and more in general in marine invertebrates, could represent risks for the marine environment.


Asunto(s)
Paracentrotus , Poliésteres , Contaminantes Químicos del Agua , Animales , Paracentrotus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Plásticos Biodegradables , Embrión no Mamífero/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Polímeros
5.
J Hazard Mater ; 470: 134176, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569347

RESUMEN

Biodegradable microplastics (MPs) are promising alternatives to conventional MPs and are of high global concern. However, their discrepant effects on soil microorganisms and functions are poorly understood. In this study, polyethylene (PE) and polylactic acid (PLA) MPs were selected to investigate the different effects on soil microbiome and C-cycling genes using high-throughput sequencing and real-time quantitative PCR, as well as the morphology and functional group changes of MPs, using scanning electron microscopy and Fourier transform infrared spectroscopy, and the driving factors were identified. The results showed that distinct taxa with potential for MP degradation and nitrogen cycling were enriched in soils with PLA and PE, respectively. PLA, smaller size (150-180 µm), and 5% (w/w) of MPs enhanced the network complexity compared with PE, larger size (250-300 µm), and 1% (w/w) of MPs, respectively. PLA increased ß-glucosidase by up to 2.53 times, while PE (150-180 µm) reduced by 38.26-44.01% and PE (250-300 µm) increased by 19.00-22.51% at 30 days. Amylase was increased by up to 5.83 times by PLA (150-180 µm) but reduced by 40.26-62.96% by PLA (250-300 µm) and 16.11-43.92% by PE. The genes cbbL, cbhI, abfA, and Lac were enhanced by 37.16%- 1.99 times, 46.35%- 26.46 times, 8.41%- 69.04%, and 90.81%- 5.85 times by PLA except for PLA1B/5B at 30 days. These effects were associated with soil pH, NO3--N, and MP biodegradability. These findings systematically provide an understanding of the impact of biodegradable MPs on the potential for global climate change.


Asunto(s)
Biodegradación Ambiental , Microbiota , Microplásticos , Poliésteres , Microbiología del Suelo , Contaminantes del Suelo , Poliésteres/metabolismo , Poliésteres/química , Microplásticos/toxicidad , Contaminantes del Suelo/metabolismo , Polietileno/química , Carbono/química , Plásticos Biodegradables/química , Bacterias/metabolismo , Bacterias/genética , Suelo/química
6.
Microb Biotechnol ; 17(4): e14458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568795

RESUMEN

Bioplastics, comprised of bio-based and/or biodegradable polymers, have the potential to play a crucial role in the transition towards a sustainable circular economy. The use of biodegradable polymers not only leads to reduced greenhouse gas emissions but also might address the problem of plastic waste persisting in the environment, especially when removal is challenging. Nevertheless, biodegradable plastics should not be considered as substitutes for proper waste management practices, given that their biodegradability strongly depends on environmental conditions. Among the challenges hindering the sustainable implementation of bioplastics in the market, the development of effective downstream recycling routes is imperative, given the increasing production volumes of these materials. Here, we discuss about the most advisable end-of-life scenarios for bioplastics. Various recycling strategies, including mechanical, chemical or biological (both enzymatic and microbial) approaches, should be considered. Employing enzymes as biocatalysts emerges as a more selective and environmentally friendly alternative to chemical recycling, allowing the production of new bioplastics and added value and high-quality products. Other pending concerns for industrial implementation of bioplastics include misinformation among end users, the lack of a standardised bioplastic labelling, unclear life cycle assessment guidelines and the need for higher financial investments. Although further research and development efforts are essential to foster the sustainable and widespread application of bioplastics, significant strides have already been made in this direction.


Asunto(s)
Plásticos Biodegradables , Administración de Residuos , Plásticos , Fósiles , Biopolímeros , Polímeros
7.
Microb Biotechnol ; 17(4): e14457, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568802

RESUMEN

Plastics are versatile materials that have the potential to propel humanity towards circularity and ultimate societal sustainability. However, the escalating concern surrounding plastic pollution has garnered significant attention, leading to widespread negative perceptions of these materials. Here, we question the role microbes may play in plastic pollution bioremediation by (i) defining polymer biodegradability (i.e., recalcitrant, hydrolysable and biodegradable polymers) and (ii) reviewing best practices for evaluating microbial biodegradation of plastics. We establish recommendations to facilitate the implementation of rigorous methodologies in future studies on plastic biodegradation, aiming to push this field towards the use of isotopic labelling to confirm plastic biodegradation and further determine the molecular mechanisms involved.


Asunto(s)
Plásticos Biodegradables , Plásticos , Plásticos/metabolismo , Biodegradación Ambiental
8.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673918

RESUMEN

Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.


Asunto(s)
Gelatina , Polisacáridos , Gelatina/química , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Plásticos/química , Biopolímeros/química , Carragenina/química , Rastreo Diferencial de Calorimetría , Sefarosa/química , Plásticos Biodegradables/química
9.
Sci Total Environ ; 928: 172354, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614330

RESUMEN

Escalation of ecological concern due to biodegradable plastics has attracted the attention of many contemporary researchers. This study searched to investigate the acute and sub-chronic toxicity of polylactic acid (PLA) and polybutyleneadipate-co-terephthalate (PLA-PBAT) bio-microplastics on 3-month-old zebrafish to elucidate their potential toxic mechanisms. Acute toxicity assessments revealed 96 h-LC50 value of 12.69 mg/L for PLA-PBAT. Sub-chronic exposure of over 21 days revealed deviations in critical behavioral patterns and physiological indicators. In treated groups, weight gain and specific growth rates were significantly lower than those obtained for the control group, such that high doses induced significant reductions in total organ coefficient (p < 0.05). A positive correlation was observed between zebrafish mortality and increased doses. Detailed behavioral evaluations revealed a dose-dependent decrease in the speed and range of swimming, along with modifications in shoaling behavior, anxiety-like responses, and avoidance behaviors. Brain tissues transcriptomic analyses revealed the molecular responses underlying sub-chronic exposure to PLA-PBAT. Totally 702 DEGs and 5 KEGG pathways were significantly identified in low-dose group, with the top 2 significant pathways being ribosome pathway and cytokine-cytokine receptor interaction pathway. Totally 650 DEGs and 5 KEGG pathways were significantly identified in medium-dose group, with the top 2 significant pathways being Herpes simplex virus 1 infection pathway and complement and coagulation cascades pathway. Totally 1778 DEGs and 16 KEGG pathways were significantly identified in high-dose group, with the top 2 significant pathways being metabolism of xenobiotics by cytochrome P450 and drug metabolism - cytochrome P450 pathway. Most significantly enriched pathways are associated with immune responses. The validation of key gene in cytokine-cytokine receptor interaction pathway also confirmed its high correlation with behavioral indicators. These results indicate that PLA-PBAT is likely to cause behavioral abnormalities in zebrafish by triggering immune dysregulation in the brain.


Asunto(s)
Conducta Animal , Microplásticos , Poliésteres , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/fisiología , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Conducta Animal/efectos de los fármacos , Plásticos Biodegradables
10.
Int J Biol Macromol ; 266(Pt 2): 131333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574916

RESUMEN

This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.


Asunto(s)
Café , Poliésteres , Polihidroxibutiratos , Café/química , Poliésteres/química , Tecnología Química Verde , Plásticos Biodegradables/química
11.
Chemosphere ; 355: 141749, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521099

RESUMEN

Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.


Asunto(s)
Plásticos Biodegradables , Plásticos , Plásticos/química , Ecosistema , Biopolímeros , Biodegradación Ambiental , Bioingeniería
12.
Chemosphere ; 355: 141771, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522668

RESUMEN

The environmental impact of biodegradable polylactic acid microplastics (PLA-MPs) has become a global concern, with documented effects on soil health, nutrient cycling, water retention, and crop growth. This study aimed to assess the repercussions of varying concentrations of PLA-MPs on rice, encompassing aspects such as growth, physiology, and biochemistry. Additionally, the investigation delved into the influence of PLA-MPs on soil bacterial composition and soil enzyme activities. The results illustrated that the highest levels of PLA-MPs (2.5%) impaired the photosynthesis activity of rice plants and hampered plant growth. Plants exposed to the highest concentration of PLA-MPs (2.5%) displayed a significant reduction of 51.3% and 47.7% in their root and shoot dry weights, as well as a reduction of 53% and 49% in chlorophyll a and b contents, respectively. The activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in rice leaves increased by 3.1, 2.8, 3.5, and 5.2 folds, respectively, with the highest level of PLA-MPs (2.5%). Soil enzyme activities, such as CAT, urease, and dehydrogenase (DHA) increased by 19.2%, 10.4%, and 22.5%, respectively, in response to the highest level of PLA-MPs (2.5%) application. In addition, PLA-MPs (2.5%) resulted in a remarkable increase in the relative abundance of soil Proteobacteria, Nitrospirae, and Firmicutes by 60%, 31%, and 98.2%, respectively. These findings highlight the potential adverse effects of PLA-MPs on crops and soils. This study provides valuable insights into soil-rice interactions, environmental risks, and biodegradable plastic regulation, underscoring the need for further research.


Asunto(s)
Plásticos Biodegradables , Oryza , Suelo , Plantones , Microplásticos/toxicidad , Plásticos/toxicidad , Clorofila A , Poliésteres
13.
Int J Biol Macromol ; 265(Pt 1): 130834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484815

RESUMEN

Blending poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) is a cost-effective strategy to obtain biodegradable plastic with complementary properties. However, the incompatibility between PBAT and PLA is a great challenge for fabricating high-performance composite films. Herein, the ethyl acetate fractionated lignin with the small glass transition temperature and low molecular weight was achieved and incorporated into the PBAT/PLA composite as a compatibilizer. The fractionated lignin can be uniformly dispersed within the PBAT/PLA matrix through a melt blending process and interact with the molecular chain of PBAT and PLA as a bonding bridge, which enhances the intermolecular interactions and reduces the interfacial tension of PBAT/PLA. By adding fractionated lignin, the tensile strength of the PBAT/PLA composite increased by 35.4 % and the yield strength increased by 37.7 %. Owing to lignin, the composite films possessed the ultraviolet shielding function and exhibited better water vapor barrier properties (1.73 ± 0.08 × 10-13 g·cm/cm2·s·Pa). This work conclusively demonstrated that fractionated lignin can be used as a green compatibilizer and a low-cost functional filler for PBAT/PLA materials, and provides guidance for the application of lignin in biodegradable plastics.


Asunto(s)
Alquenos , Plásticos Biodegradables , Lignina , Ácidos Ftálicos , Adipatos , Poli A , Poliésteres
14.
Sci Total Environ ; 926: 172081, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554961

RESUMEN

Mature compost can promote the transformation of organic matter (OM) and reduce the emission of polluting gases during composting, which provides a viable approach to reduce the environmental impacts of biodegradable plastics (BPs). This study investigated the impact of mature compost on polybutylene adipate terephthalate (PBAT) degradation, greenhouse gas (GHG) emission, and microbial community structure during composting under two treatments with mature compost (MC) and without (CK). Under MC, visible plastic rupture was advanced from day 14 to day 10, and a more pronounced rupture was observed at the end of composting. Compared with CK, the degradation rate of PBAT in MC was increased by 4.44 % during 21 days of composting. Thermobifida, Ureibacillus, and Bacillus, as indicator species under MC treatment, played an important role in PBAT decomposition. Mature compost reduced the total global warming potential (GWP) by 25.91 % via inhibiting the activity of bacteria related to the production of CH4 and N2O. Functional Annotation of Prokaryotic Taxa (FAPROTAX) further revealed that mature compost addition increased relative abundance of bacteria related to multiple carbon (C) cycle functions such as methylotrophy, hydrocarbon degradation and cellulolysis, inhibited nitrite denitrification and denitrification, thus alleviating the emission of GHGs. Overall, mature compost, as an effective additive, exhibits great potential to simultaneously mitigate BP and GHG secondary pollution in co-composting of food waste and PBAT.


Asunto(s)
Plásticos Biodegradables , Compostaje , Gases de Efecto Invernadero , Eliminación de Residuos , Gases de Efecto Invernadero/análisis , Alimento Perdido y Desperdiciado , Alimentos , Suelo/química , Metano/análisis , Estiércol
15.
Ecotoxicol Environ Saf ; 274: 116184, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461578

RESUMEN

Ingestion of microplastics can lead to deleterious consequences for organisms, as documented by numerous laboratory studies. The current knowledge is based on a multitude of effect studies, conducted with conventional fossil-based and non-degradable plastics. However, there is a lack of information about the acceptance and the effects of novel bio-based and biodegradable plastics. Biodegradable plastics are considered an alternative to conventional plastics and are showing rapidly growing production rates. Biodegradable plastics can disperse into the environment in the same way as conventional plastics do, becoming available to marine organisms. This study aims to provide new insights into the uptake and effects of biodegradable microplastics on marine invertebrates. Rockpool shrimp, Palaemon elegans, were fed with algal flakes coated with polylactic acid (PLA), polyhydroxybutyrate-co-valerate (PHBV) and conventional low-density polyethylene (LDPE) microparticles. Live observations showed that all of the different types of microplastics were ingested. After dissection of the shrimp, less LDPE particles were found in the stomachs than PLA and PHBV particles. This indicates a longer retention time of biodegradable microplastics compared to conventional microplastics. Presumably, less LDPE particles were ingested or evacuated from the stomach, probably by regurgitation. The ingestion of microparticles of all types of plastics induced enzymatic activity of short-chain carboxylesterases in the midgut glands of the shrimp. However, only PLA induced enzymatic activity of medium-chain carboxylesterases. Palaemon elegans showed no oxidative stress response after ingestion of microparticles, irrespective of polymer type. From our results we conclude that biodegradable plastics might have different effects than conventional plastics. The longer retention times of biodegradable plastics might enhance exposure to leaching additives and other harmful substances. Our study provides new insights into how biodegradable plastics might affect aquatic fauna and indicate that the use of biodegradable plastics needs to be reconsidered to some extent.


Asunto(s)
Plásticos Biodegradables , Palaemonidae , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno , Poliésteres/toxicidad , Organismos Acuáticos , Hidrolasas de Éster Carboxílico
16.
Chemosphere ; 354: 141729, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492680

RESUMEN

The accumulation of petroleum-based plastics on our planet is causing serious environmental pollution. Biodegradable plastics, promoted as eco-friendly solutions, hold the potential to address this issue. However, their impact on the environment and the mechanisms of their natural degradation remain inadequately understood. Furthermore, the specific conditions set forth in international standards for evaluating the biodegradability of biodegradable plastics have led to misconceptions about their real-world behavior. To properly elucidate the relationship between their degradability and structure, this study mimics the thermal effect on poly(lactic acid) (PLA) under standardized composting temperature. The higher the crystallinity of PLA, the lower the degradation rate, which suggests that crystallinity is a key factor in determining degradation. The composting temperature of 58 °C induces crystallization by having a structural effect on the polymer, which in turn reduces the degradation rate of PLA. Therefore, control over temperature and crystallization during the processing and degradation of PLA is crucial, as it not only determines the biodegradability but also enhances the utility.


Asunto(s)
Plásticos Biodegradables , Compostaje , Temperatura , Poliésteres/química
17.
Int J Biol Macromol ; 266(Pt 1): 131262, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556238

RESUMEN

With the increase in global plastic pollution due to conventional plastic packaging (petroleum-derived), bioplastics have emerged as an alternative green source for practising a circular economy. This research aimed to extract cellulose from bagasse and corn cob waste and utilized in mixed form to prepare bioplastic film. The mixed cellulose was further reinforced with natural substances such as chitosan, bentonite, and P. alba extract. These newly developed bioplastics films were characterized by various physical tests like film thickness, moisture content, water solubility and spectroscopic techniques such as Fourier transform infrared (FTIR), scanning electron microscopy-energy dispersive spectroscopic (SEM-EDX), thermal gravimetric analysis (TGA), and ultraviolet-visible (UV-Vis) spectroscopy for opacity testing. The results revealed the enhanced bioplastic thermal and mechanical characteristics through robust interactions between cellulose and bentonite molecules. Moreover, incorporating chitosan solution as reinforcements in bio-composite films resulted in improved water barrier properties. The results indicated lower absorption in the UV range of 250-400 nm, attributed to the absence of UV-absorbing groups. Finally, their biodegradability was tested in soil, and 85.3 % weight loss of bioplastic films was observed after 50 days of the experiment which is the main task of this research. The antimicrobial properties of bioplastic films have been evaluated, and showed an inhibition zone of 16 mm against E. coli. After 12 days of incubation of sherbet berries, complete spoilage is identified in the control group compared to those covered with the bioplastic film. This outcome is attributed to the antioxidant and antimicrobial activities provided by chitosan and P. alba extract in the bioplastic film. The comprehensive outcomes of this study suggest the potential future adoption of these entirely bio-derived, environmentally sustainable and biodegradable bioplastic films as a viable substitute for the plastic packaging currently present in the market.


Asunto(s)
Celulosa , Quitosano , Embalaje de Alimentos , Extractos Vegetales , Zea mays , Celulosa/química , Quitosano/química , Embalaje de Alimentos/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Zea mays/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Solubilidad , Residuos , Biodegradación Ambiental , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología
18.
Int J Biol Macromol ; 266(Pt 1): 131253, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556240

RESUMEN

Food packaging is an essential part of food transportation, storage and preservation. Biodegradable biopolymers are a significant direction for the future development of food packaging materials. As a natural biological polysaccharide, chitosan has been widely concerned by researchers in the field of food packaging due to its excellent film-forming property, good antibacterial property and designability. Thus, the application research of chitosan-based food packaging films, coatings and aerogels has been greatly developed. In this review, recent advances on chitosan-based food packaging materials are summarized. Firstly, the development background of chitosan-based packaging materials was described, and then chitosan itself was introduced. In addition, the design, preparation and applications of films, coatings and aerogels in chitosan-based packaging for food preservation were discussed, and the advantages and disadvantages of each research in the development of chitosan-based packaging materials were analyzed. Finally, the application prospects, challenges and suggestions for solving the problems of chitosan-based packaging are summarized and prospected.


Asunto(s)
Quitosano , Embalaje de Alimentos , Quitosano/química , Embalaje de Alimentos/métodos , Plásticos Biodegradables/química , Biopolímeros/química
19.
J Hazard Mater ; 471: 133690, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38336580

RESUMEN

Some narratives present biodegradable plastic use for soil mulching practices in agriculture as "environmentally friendly" and "sustainable" alternatives to conventional plastics. To verify these narratives, environmental research recently started focusing on their potential impact on soil health, highlighting some concerns. The paper by Degli-Innocenti criticizes this unfolding knowledge arguing that it is affected by communication hypes, alarmistic writing and a focus on exposure scenarios purposedly crafted to yield negative effects. The quest of scientists for increased impact - the paper concludes - is the driver of such behavior. As scholars devoted to the safeguarding of scientific integrity, we set to verify whether this serious claim is grounded in evidence. Through a bibliometric analysis (using number of paper reads, citations and mentions on social media to measure the impact of publications) we found that: i) the papers pointed out by Degli-Innocenti as examples of biased works do not score higher than the median of similar publications; ii) the methodology used to support the conclusion is non-scientific; and iii) the paper does not fulfil the requirements concerning disclosure of conflicts of interests. We conclude that this paper represents a non-scientific opinion, potentially biased by a conflict of interest. We ask the paper to be clearly tagged as such, after the necessary corrections on the ethic section have been made. That being said, the paper does offer some useful insights for the definition of exposure scenarios in risk assessment. We comment and elaborate on these proposed models, hoping that this can help to advance the field.


Asunto(s)
Sesgo de Publicación , Plásticos Biodegradables/química
20.
Environ Int ; 185: 108483, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382402

RESUMEN

Biodegradable plastic, a widely used ecofriendly alternative to conventional plastic, easily form nanoplastics (NPs) upon environmental weathering. However, the effects and underlying mechanisms governing the toxicity of photoaged biodegradable NPs to aquatic insects are not understood. In this study, we investigated the photoaging of polylactic acid nanoplastics (PLA-NPs, a typical biodegradable plastic) that were placed under xenon arc lamp for 50 days and 100 days and compared the toxicity of virgin and photoaged PLA-NPs to Chironomus kiinensis (a dominant aquatic insect). The results showed that photoaged PLA-NPs significantly decreased the body weight, body length and emergence rate of C. kiinensis. Additionally, photoaged PLA-NPs induced more severe gut oxidative stress, histological damage, and inflammatory responses than virgin PLA-NPs. Furthermore, the alpha diversity of gut microbiota was lower in photoaged PLA-NPs group than virgin PLA-NPs. The relative abundance of key gut bacteria related to intestinal barrier defense, immunity, and nutrient absorption was reduced more significantly in photoaged PLA-NPs group than virgin PLA, indirectly leading to stronger gut damage and growth reduction. A stronger impact of photoaged PLA-NPs on the gut and its microbiota occurred because photoaging reduced the size of NPs from 255.5 nm (virgin PLA) to 217.1 nm (PLA-50) and 182.5 nm (PLA-100), induced surface oxidation and enhancement of oxidative potential, and improved the stability of NPs, thereby exacerbating toxicity on the gut and its microbiota. This study provides insights into the effects of biodegradable NPs on aquatic insects and highlights the importance of considering biodegradable nanoplastic aging in risk assessments.


Asunto(s)
Plásticos Biodegradables , Chironomidae , Microbioma Gastrointestinal , Envejecimiento de la Piel , Contaminantes Químicos del Agua , Animales , Microplásticos , Insectos , Poliésteres/toxicidad , Plásticos , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...