Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Sci Rep ; 14(1): 10528, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719861

RESUMEN

The current study aimed to assess the effect of the germination process of wild mustard seeds on the phenolic profile, antioxidant, antibacterial, and antidiabetic properties, and some relevant enzyme activities. The total phenolic and flavonoid contents increased 5- and 10-fold, respectively, and were maximized on 5-days sprouts. One new phenolic compound was identified on 5-days sprout extract using HPLC. The concentrations of the identified phenolic compounds increased 1.5-4.3 folds on 5-days sprouts compared with dry seeds. The total antioxidant activity multiplied 17- and 21-fold on 5-days sprouts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, respectively. The activity of carbohydrate-cleaving, phenolic-synthesizing and antioxidant enzymes also increased during germination. On 5-days sprouts, there was a substantial correlation between the highest ß-glucosidase and peroxidase activities with highest phenolic and flavonoid levels and maximum antioxidant activity. The phenolic extract of 5-days sprouts exhibited antimicrobial activities against Escherichia coli and Staphylococcus aureus and showed potent antidiabetic activity established by its inhibitory effect against α-amylase and α-glucosidase compared to dry seeds.


Asunto(s)
Antioxidantes , Germinación , Planta de la Mostaza , Fenoles , Extractos Vegetales , Semillas , Fenoles/análisis , Fenoles/farmacología , Fenoles/química , Antioxidantes/farmacología , Antioxidantes/química , Germinación/efectos de los fármacos , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Planta de la Mostaza/química , Antibacterianos/farmacología , Antibacterianos/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Cromatografía Líquida de Alta Presión
2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791329

RESUMEN

The antibacterial and anti-inflammatory effect of thioglycosides has already been established. This study investigates the effects of thioglycosides extracted from white mustard, specifically the "Bamberka" variety, in the context of oral hygiene. The aim of the study is to clarify an evidence-based link between the documented antibacterial and anti-inflammatory effects attributed to thioglycosides and their practical application in oral care. A randomized, single-blinded (patient-blinded) clinical study was performed on 66 patients using mustard-based toothpaste for oral hygiene. The patients were examined at baseline and after 6 and 12 months. The values of the Approximal Plaque Index (API), the Plaque Index (PI), and Bleeding on probing (BOP) were taken into consideration. The results show a significant reduction in plaque accumulation, especially after 6 months of using mustard-based toothpaste in all examined parameters. This suggests that thioglycosides from mustard contribute to a considerable decrease in dental plaque accumulation, confirming their potential in natural oral care solutions, which is indicated in the main conclusions or interpretations.


Asunto(s)
Placa Dental , Gingivitis , Tioglicósidos , Humanos , Placa Dental/tratamiento farmacológico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Gingivitis/tratamiento farmacológico , Tioglicósidos/uso terapéutico , Tioglicósidos/farmacología , Tioglicósidos/química , Método Simple Ciego , Planta de la Mostaza/química , Pastas de Dientes/uso terapéutico , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Higiene Bucal/métodos
3.
Plant Physiol Biochem ; 211: 108694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714131

RESUMEN

Using natural clinoptilolite (NCP) as a carrier and alginate (Alg)-calcium as an active species, the porous silicon calcium alginate nanocomposite (Alg-Ca-NCP) was successfully fabricated via adsorption-covalence-hydrogen bond. Its structural features and physicochemical properties were detailed investigated by various characterizations. The results indicated that Alg-Ca-NCP presented the disordered lamellar structures with approximately uniform particles in size of 300-500 nm. Specially, their surface fractal evolutions between the irregular roughness and dense structures were demonstrated via the SAXS patterns. The results elucidated that the abundant micropores of NCP were beneficial for unrestricted diffusing of Alg-Ca, which was conducive to facilitate a higher loading and sustainable releasing. The Ca content of leaf mustard treated with Alg-Ca-NCP-0.5 was 484.5 mg/100g on the 21st day, higher than that by water (CK) and CaCl2 solution treatments, respectively. Meanwhile, the prepared Alg-Ca-NCPs presented the obvious anti-aging effects on peroxidase drought stress of mustard leaves. These demonstrations provided a simple and effective method to synthesize Alg-Ca-NCPs as delivery nanocomposites, which is useful to improve the weak absorption and low utilization of calcium alginate by plants.


Asunto(s)
Alginatos , Planta de la Mostaza , Zeolitas , Alginatos/química , Alginatos/farmacología , Zeolitas/química , Zeolitas/farmacología , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/química , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Porosidad , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Ácido Glucurónico/química , Nanocompuestos/química , Difracción de Rayos X , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo
4.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588384

RESUMEN

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Asunto(s)
Biomasa , Flores , Luz , Planta de la Mostaza , Fitoquímicos , Hojas de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Planta de la Mostaza/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/química , Planta de la Mostaza/efectos de la radiación , Flores/crecimiento & desarrollo , Flores/metabolismo , Flores/química , Flores/efectos de la radiación , Fitoquímicos/metabolismo , Fitoquímicos/química , Fotosíntesis/efectos de la radiación , Antocianinas/metabolismo , Antocianinas/análisis , Luz Roja
5.
J Food Sci ; 88(8): 3255-3273, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421355

RESUMEN

Due to the uncontrolled fermentation process and unstable quality of naturally fermented leaf mustard, inoculated fermentation is receiving more attention. Here, the physicochemical properties, volatile compounds, and microbial community in leaf mustard under natural fermentation (NF) and inoculated fermentation (IF) were analyzed and compared. The contents of total acid, crude fiber, and nitrite of leaf mustard were measured. Headspace-solid phase microextraction-gas chromatography-mass spectrometry and orthogonal projection on latent structure-discriminant analysis were used to analyze the differences of volatile compounds in NF and IF leaf mustard. Moreover, Illumina MiSeq high-throughput sequencing technology was employed to reveal the composition of microbiota. The results showed that the nitrite content in leaf mustard after IF (3.69 mg/kg) was significantly lower than that after NF (4.43 mg/kg). A total of 31 and 25 kinds of volatile components were identified in IF and NF, respectively. Among the detected compounds, 11 compounds caused the differences between IF and NF leaf mustard. The results of inter-group difference analysis showed that there were significant differences in fungal flora between IF and NF samples. Saccharomycetes, Kazachstania, and Ascomycota were the landmark microorganisms in IF leaf mustard and the landmark microorganisms in NF were Mortierellomycota, Sordariomycetes, and Eurotiomycetes. The abundance of probiotics (such as Lactobacillus) in IF leaf mustard (51.22%) was higher than that in NF (35.20%) and the abundance of harmful molds (such as Mortierella and Aspergillus) was opposite. Therefore, IF leaf mustard showed the potential to reduce the content of nitrite and harmful molds and increase the beneficial volatile compounds and probiotics. PRACTICAL APPLICATION: Leaf mustard of inoculated fermentation (IF) showed better fermented characteristics than natural fermentation in terms of lower nitrite content, greater beneficial volatile substances, and better potential for increasing probiotics and reducing harmful molds. These results provided a theoretical basis for IF leaf mustard and contributed to the industrial production of fermented leaf mustard.


Asunto(s)
Microbiota , Planta de la Mostaza , Planta de la Mostaza/química , Fermentación , Nitritos/análisis , Hongos , Hojas de la Planta/química
6.
J Environ Manage ; 341: 118005, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148761

RESUMEN

Nano-phytoremediation is anticipated as a potential technology for the remediation of heavy metals from soil sites. This study evaluated the feasibility of using titanium dioxide nanoparticles (TiO2 NPs) at various concentrations (0, 100, 250, 500 mg/kg) along with a hyperaccumulator, Brassica juncea L., for effective removal of Cadmium (Cd) from the soil. Plants were grown for a whole life cycle in soil containing 10 mg/kg of Cd and spiked TiO2 NPs. We analyzed the plants for Cd tolerance, phytotoxicity, Cd removal, and translocation. Brassica plants displayed high Cd tolerance with a significant increase in plant growth, biomass, and photosynthetic activity in a concentration-dependent manner. Cd removal from the soil at TiO2 NPs concentrations of 0, 100, 250, and 500 mg/kg treatment was 32.46%, 11.62%, 17.55%, and 55.11%, respectively. The translocation factor for Cd was found to be 1.35, 0.96, 3.73, and 1.27 for 0, 100, 250, and 500 mg/kg concentrations. The results of this study indicate that TiO2 NPs applications in the soil can minimize Cd stress in plants and lead to its efficient removal from soil. Thus, the association of nanoparticles with the phytoremediation process can lead to good application prospects for the remediation of contaminated soil.


Asunto(s)
Biodegradación Ambiental , Cadmio , Planta de la Mostaza , Contaminantes del Suelo , Cadmio/análisis , Cadmio/metabolismo , Estudios de Factibilidad , Planta de la Mostaza/química , Planta de la Mostaza/metabolismo , Nanopartículas , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
7.
Food Res Int ; 169: 112881, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254329

RESUMEN

Germination and enzymatic hydrolysis are biological processes with well-recognized positive effects on phenolic composition and antioxidant potential. This study aimed to apply those processes to white (Sinapsis alba) and black (Brassica nigra) mustard grains and to analyze the influences on the total phenolic content (TPC); phenolic and peptide profile determined by ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS); antioxidant potential (DPPH, ABTS, and FRAP assays); and cytotoxicity against Caco-2, a human colorectal adenocarcinoma cell line. Enzyme combinations for hydrolysis were different for each mustard grain, but for both species, enzymatic hydrolysis and germination showed a positive effect on antioxidant properties. From UPLC-HRMS analysis and molecular network studies, 14 peptides and 17 phenolic compounds were identified as metabolites released from mustard after processes application, which were strongly correlated with increased antioxidant activity. In addition, enzymatic hydrolysis applied in germinated mustard grains for both mustards increased the cytotoxic activity against Caco-2 human colorectal adenocarcinoma cell line.


Asunto(s)
Antioxidantes , Planta de la Mostaza , Humanos , Antioxidantes/análisis , Planta de la Mostaza/química , Células CACO-2 , Hidrólisis , Fenoles/análisis , Semillas/química , Biotransformación
8.
Int J Phytoremediation ; 25(13): 1793-1800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073767

RESUMEN

Rapeseed, the second-most-important vegetable oil source, is cultivated in various areas of India where both groundwater and soil are contaminated with fluoride (F-). Furthermore, the frequent use of F- contaminated groundwater for irrigation leads to accumulation of F- in surface and sub-surface soil. The study aims to compare the morphological and biochemical changes in Brassica juncea L., the variations in its fatty acids (FAs) composition and oil yield, under two regimes of F- contaminated soils: (i) pre-contaminated soil (Tr) and (ii) irrigation with F- contaminated water (Ir). The level of F- (µg g-1) in the plant tissues (root, leaf, and grain) was significantly higher in Ir_10 (18.3, 14.7, and 2.8, respectively) than in Tr_10 (4.3, 2.6, and 0.77, respectively), while the oil yield was significantly lower with Ir_10 (19.5%) than with Tr_10 (44.9%). The phytoremediation potential of F- by Brassica juncea L. is greater in Tr regime than in the Ir regime. The erucic acid content (%), which is detrimental to cardiac health, increased to 67.37% (Ir_10) and 58.3% (Tr_10) from 57.73% (control). Thus, the present study shows that irrigation with F- contaminated water results in greater toxicity and accumulation in plants and is not safe for human health.


Irrigation with F­ contaminated water results in a greater accumulation of F­ in mustard than cultivated on pre-contaminated soil. The level of erucic acid in mustard oil enhances against F­ exposure.


Asunto(s)
Planta de la Mostaza , Contaminantes del Suelo , Humanos , Planta de la Mostaza/química , Ácidos Grasos , Fluoruros , Biodegradación Ambiental , Suelo/química , Agua
9.
Toxins (Basel) ; 14(2)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35202108

RESUMEN

Corn (Zea mays) is a worldwide crop subjected to infection by toxigenic fungi such as Fusarium verticillioides during the pre-harvest stage. Fusarium contamination can lead to the synthesis of highly toxic mycotoxins, such as Fumonisin B1 (FB1) and Fumonisin B2 (FB2), which compromises human and animal health. The work aimed to study the antifungal properties of fermented yellow and oriental mustard extracts using nine lactic acid bacteria (LAB) in vitro. Moreover, a chemical characterization of the main phenolic compounds and organic acids were carried out in the extracts. The results highlighted that the yellow mustard, fermented by Lactiplantibacillus plantarum strains, avoided the growth of Fusarium spp. in vitro, showing Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values, ranging from 7.8 to 15.6 g/L and 15.6 to 31.3 g/L, respectively. Then, the lyophilized yellow mustard fermented extract by L. plantarum TR71 was applied through spray-on corn ears contaminated with F. verticillioides to study the antimycotoxigenic activity. After 14 days of incubation, the control contained 14.71 mg/kg of FB1, while the treatment reduced the content to 1.09 mg/kg (92.6% reduction). Moreover, no FB2 was observed in the treated samples. The chemical characterization showed that lactic acid, 3-phenyllactic acid, and benzoic acid were the antifungal metabolites quantified in higher concentrations in the yellow mustard fermented extract with L. plantarum TR71. The results obtained confirmed the potential application of fermented mustard extracts as a solution to reduce the incidence of mycotoxins in corn ears.


Asunto(s)
Fumonisinas/química , Fusarium/metabolismo , Lactobacillaceae/metabolismo , Planta de la Mostaza/química , Extractos Vegetales/química , Fermentación , Contaminación de Alimentos , Extractos Vegetales/metabolismo , Zea mays/química
10.
J Steroid Biochem Mol Biol ; 216: 106038, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34861390

RESUMEN

In discovering new powerful antitumor agents, two series of novel diosgenin-amino acid-benzoic acid mustard trihybrids (7a-7 g and 12a-12 g) were designed and synthesized. The antiproliferative activities were tested against five human tumor cell lines and one normal cell line using CCK-8 assays. Among the trihybrids, 12e was the most promising compound, which inhibited T24 cells with IC50 value of 6.96 µM, and was stronger than its parent compound diosgenin (IC50 = 32.33 µM). In addition, 12e had weak cytotoxicity on the normal GES-1 cell line (IC50 = 213.74 µM). Moreover, 12e could cause G2/M cell cycle arrest, increase the percentage of apoptosis, induce mitochondrial depolarization, and promote reactive oxygen species generation in T24 cells. Further studies on antitumor mechanism demonstrated that 12e triggered the intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathways. More importantly, 12e could inhibit T24 cell proliferation in an in vivo zebrafish xenograft model. Therefore, 12e, as a novel trihybrid with potent cytotoxicity, might be applied as a promising skeleton for antitumor agents, which deserved further optimization.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ácido Benzoico/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diosgenina/farmacología , Células A549 , Aminoácidos/química , Aminoácidos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Ácido Benzoico/química , Proliferación Celular/efectos de los fármacos , Química Farmacéutica , Diosgenina/química , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Planta de la Mostaza/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
11.
Food Funct ; 12(22): 11250-11261, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34708849

RESUMEN

Microbial fermentation with lactic acid bacteria (LAB) is a natural food biopreservation method. Yellow mustard and milk whey are optimum substrates for LAB fermentation. The aim of the present study was to evaluate the bioaccessibility and bioavailability of bioactive compounds from yellow mustard flour and milk whey both with and without LAB fermentation. All extracts were subjected to a simulated digestion process. Total polyphenols, DL-3-phenyllactic acid (PLA), lactic acid, and the antioxidant activity were determined in the studied matrices before and after simulated digestion. Yellow mustard flour was significantly richer in total polyphenols, whereas significantly higher concentrations of PLA and lactic acid were observed in milk whey. Similar antioxidant activity was determined in both ingredients being in all cases strongly reduced after in vitro digestion. Higher bioaccessibility was found for polyphenols and PLA in milk whey. Transepithelial transport of total polyphenols was higher in yellow mustard flour compared to milk whey, reaching bioavailability values between 3-7% and 1-2%, respectively. PLA transepithelial transport was only significant in both fermented matrices with bioavailability around 4-6%. Transepithelial transport of lactic acid reached values of 31-34% (bioavailability ∼ 22%) and 15-78% (bioavailability ∼ 3%) in milk whey and yellow mustard flour, respectively. LAB fermentation showed beneficial effects on enriching extracts with PLA, lactic acid, and antioxidant activity, as well as increasing bioaccessibility of these acids in yellow mustard flour and total polyphenol bioavailability in milk whey. Results pointed to yellow mustard flour and milk whey as natural preservative ingredients used in the food industry, especially when fermented with LAB.


Asunto(s)
Antioxidantes , Lactobacillales/metabolismo , Leche/metabolismo , Planta de la Mostaza/química , Suero Lácteo/metabolismo , Animales , Antioxidantes/química , Antioxidantes/farmacocinética , Disponibilidad Biológica , Células CACO-2 , Fermentación/fisiología , Humanos , Lactatos/química , Lactatos/farmacocinética , Ácido Láctico/química , Ácido Láctico/farmacocinética
12.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684752

RESUMEN

Biogenic amines (BAs) and nitrites are both considered harmful compounds for customer health, and are closely correlated with the microorganisms in fermented mustard (FM). In this study, BAs and nitrite contents in fifteen FM samples from different brands were analyzed. The concentrations of cadaverine in one sample and of histamine in one sample were above the toxic level. Moreover, five FM samples contained a high level of nitrite, exceeding the maximum residue limit (20 mg/kg) suggested by the National Food Safety Standard. Then, this study investigated bacterial and fungal communities by high-throughput sequencing analysis. Firmicutes and Basidiomycota were identified as the major bacteria and fungi phylum, respectively. The correlations among microorganisms, BAs and nitrite were analyzed. Typtamine showed a positive correlation with Lactobacillus and Pseudomonas. Cadaverine and nitrite is positively correlated with Leuconostoc. Furthermore, thirteen strains were selected from the samples to evaluate the accumulation and degradation properties of their BAs and nitrite. The results indicated that the Lactobacillus isolates, including L. plantarum GZ-2 and L. brevis SC-2, can significantly reduce BAs and nitrite in FM model experiments. This study not only assessed the contents of BAs and nitrite in FM samples, but also provided potential starter cultures for BAs and nitrite control in the FM products industry.


Asunto(s)
Aminas Biogénicas/análisis , Planta de la Mostaza/metabolismo , Planta de la Mostaza/microbiología , Nitritos/análisis , Bacterias/metabolismo , Aminas Biogénicas/química , Reactores Biológicos , Cadaverina/toxicidad , China , Fermentación , Alimentos Fermentados/análisis , Hongos/metabolismo , Histamina/toxicidad , Lactobacillus/metabolismo , Microbiota/fisiología , Planta de la Mostaza/química , Nitritos/química
13.
J Food Sci ; 86(9): 3810-3823, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34342008

RESUMEN

Roasting of mustard seeds prior to oil extraction is a well-documented unit operation essential to produce canolol and other lipophilic sinapates. This study investigated the effectiveness of air frying as a seed roasting treatment operation for enhancing the recovery of lipophilic sinapates from various mustard samples and fractions/products. Air frying of seeds, powder, cake, bran, and flour from different mustard varieties was carried out at temperature-time combinations of 160, 170, and 180°C for 5, 10, 15, and 20 min, respectively. Oil was extracted using the Soxtec method. Lipophilic sinapates were extracted from the oil using equal volumes of hexane to methanol 70% (v/v) and quantified by high performance liquid chromatography-diode array detection (HPLC-DAD). The total phenolic content (TPC) and antioxidant activity of the oils were also evaluated. The results showed a time-temperature dependency for the recovery of major oil-soluble sinapates in all mustard samples and fractions. The optimum air frying condition 180°C for 15 min produced the maximum yield of canolol as well as other unidentified oil-soluble sinapates (retention time (RT)-7.7, RT-11.50, RT-14.95, and RT-16.24 min). The oil from lower grade yellow mustard seeds (LGYMS) roasted at 180°C for 20 mins specifically had the highest TPC (3402.22 ± 58.79 mg GAE/g oil), while LGYMS oils generally showed better antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion reducing antioxidant power (FRAP), and inhibition of linoleic acid oxidation) but were lower in metal ion chelating capacity. This information would be beneficial to the oil industry because air frying generated valuable canolol and other antioxidant lipophilic sinapates from mustard varieties and their fractions. PRACTICAL APPLICATION: A major limitation in the application of natural extracts in vegetable oils is the poor lipophilic nature of phenolic compounds. This study employed a new thermal treatment (air frying) in the recovery of canolol and other lipophilic antioxidants. Such treatments can enrich mustard-based ingredients with canolol and other lipophilic antioxidants for domestic and industrial applications.


Asunto(s)
Antioxidantes , Culinaria , Ácidos Cumáricos , Planta de la Mostaza , Cromatografía Líquida de Alta Presión , Culinaria/métodos , Ácidos Cumáricos/química , Ácidos Cumáricos/aislamiento & purificación , Planta de la Mostaza/química , Aceites de Plantas/química , Semillas/química
14.
Cells ; 10(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064835

RESUMEN

TRPA1 (transient receptor potential ankyrin 1), the lone member of the mammalian ankyrin TRP subfamily, is a Ca2+-permeable, non-selective cation channel. TRPA1 channels are localized to the plasma membranes of various cells types, including sensory neurons and vascular endothelial cells. The channel is endogenously activated by byproducts of reactive oxygen species, such as 4-hydroxy-2-noneal, as well as aromatic, dietary molecules including allyl isothiocyanate, a derivative of mustard oil. Several studies have implicated TRPA1 as a regulator of vascular tone that acts through distinct mechanisms. First, TRPA1 on adventitial sensory nerve fibers mediates neurogenic vasodilation by stimulating the release of the vasodilator, calcitonin gene-related peptide. Second, TRPA1 is expressed in the endothelium of the cerebral vasculature, but not in other vascular beds, and its activation results in localized Ca2+ signals that drive endothelium-dependent vasodilation. Finally, TRPA1 is functionally present on brain capillary endothelial cells, where its activation orchestrates a unique biphasic propagation mechanism that dilates upstream arterioles. This response is vital for neurovascular coupling and functional hyperemia in the brain. This review provides a brief overview of the biophysical and pharmacological properties of TRPA1 and discusses the importance of the channel in vascular control and pathophysiology.


Asunto(s)
Regulación de la Expresión Génica , Canal Catiónico TRPA1/genética , Aldehídos/farmacología , Animales , Calcitonina/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Sistema Cardiovascular/metabolismo , Crotalus , Células Endoteliales/metabolismo , Humanos , Hipertensión , Inflamación , Isotiocianatos/farmacología , Conformación Molecular , Planta de la Mostaza/química , Proteínas del Tejido Nervioso/metabolismo , Aceites de Plantas/química , Conformación Proteica , Dominios Proteicos , Accidente Cerebrovascular , Canal Catiónico TRPA1/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Vasodilatación
15.
Molecules ; 26(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916405

RESUMEN

The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score -912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.


Asunto(s)
Albuminas 2S de Plantas/química , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Moringa oleifera/química , Planta de la Mostaza/química , Albuminas 2S de Plantas/aislamiento & purificación , Albuminas 2S de Plantas/farmacología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Sitios de Unión , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas
16.
Food Chem ; 354: 129527, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33756325

RESUMEN

The globally cultivated Brassica crops contain high deliverable concentrations of health-promoting glucosinolates. Development of a Visible-Near InfraRed Spectroscopy (Vis-NIRS) calibration to profile different glucosinolate components from 641 diverse Brassica juncea chemotypes was attempted in this study. Principal component analysis of HPLC-determined glucosinolates established the distinctiveness of four B. juncea populations used. Subsequently, modified partial least square regression based population-specific and combined Vis-NIRS models were developed, wherein the combined model exhibited higher coefficient of determination (R2; 0.81-0.97) for eight glucosinolates and higher ratio of prediction determination (RPD; 2.42-5.35) for seven glucosinolates in B. juncea populations. Furthermore, range error ratio (RER > 4) for twelve and RER > 10 for eight glucosinolates make the combined model acceptable for screening and quality control. The model also provided excellent prediction for aliphatic glucosinolates in four oilseed Brassica species. Overall, our work highlights the potential of Vis-NIR spectroscopy in estimating glucosinolate content in the economically important Brassica oilseeds.


Asunto(s)
Glucosinolatos/análisis , Planta de la Mostaza/química , Espectroscopía Infrarroja Corta , Semillas/química , Factores de Tiempo
17.
Protoplasma ; 258(3): 601-620, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33392740

RESUMEN

In plants, glucose (Glc) acts as a crucial signaling molecule in mediating metabolism, growth, stress tolerance mechanism, etc. However, little is known about Glc supplementation in salinity tolerance. This experiment was designed to study the ameliorative effect of Glc in mustard under salt stress. The seeds were soaked in three concentrations of NaCl (0, 50, or 100 mM) for 8 h and then treated with four concentrations of Glc (0, 2, 4, or 8%) as foliar spray for 5 days at 25-day stage. The plants were harvested at three growth stages (30, 45, and 60) for examining morpho-physiological and proteomic studies. Glc application as foliar spray increases growth, photosynthesis, and antioxidative enzyme activities in NaCl-treated plants. Glc applied in plants also showed reduction in superoxide anion, hydrogen peroxide, and malondialdehyde content under salt stress. Amongst all doses of Glc, spray of 4% Glc proved best in alleviating the harmful effects of salinity.


Asunto(s)
Antioxidantes/fisiología , Carbohidratos/fisiología , Homeostasis/fisiología , Planta de la Mostaza/química , Estrés Oxidativo/fisiología , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno
18.
J Chem Ecol ; 47(2): 175-191, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33507456

RESUMEN

Plants in the flowering stage need to ensure reproduction by protecting themselves from attack and by preserving interactions with mutualist pollinators. When different plant mutualists are using the same type of cues, such as volatile compounds, attraction of parasitoids and pollinators may trade off. To explore this, we compared volatile emission of Brassica nigra plants in response to single or dual attack on their inflorescences. Additionally, we recorded flower visitation by pollinators and the attraction of parasitoids in the greenhouse and/or field. Brassica nigra were exposed in the flowering stage to one or two of the following three attackers: Brevicoryne brassicae aphids, Pieris brassicae caterpillars, and Xanthomonas campestris pv. raphani bacteria. We found that single attack by caterpillars, and dual attack by caterpillars plus aphids, induced the strongest changes in plant volatile emission. The caterpillars' parasitoid C. glomerata did not exhibit preference for plants exposed to caterpillars only vs. plants exposed to caterpillars plus aphids or plus bacteria. However, the composition of the pollinator community associated with flowers of B. nigra was affected by plant exposure to the attackers, but the total number of pollinators visiting the plants did not change upon attack. We conclude that, when B. nigra were exposed to single or dual attack on their inflorescences, the plants maintained interactions with natural enemies of the insect attackers and with pollinators. We discuss how chemical diversity may contribute to plant resilience upon attack.


Asunto(s)
Áfidos/fisiología , Mariposas Diurnas/fisiología , Herbivoria , Planta de la Mostaza/fisiología , Polinización , Avispas/fisiología , Animales , Mariposas Diurnas/parasitología , Femenino , Aptitud Genética , Interacciones Huésped-Parásitos , Larva/parasitología , Larva/fisiología , Planta de la Mostaza/química , Oviposición , Semillas/crecimiento & desarrollo , Compuestos Orgánicos Volátiles/análisis
19.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494317

RESUMEN

Obesity is a major risk factor for some metabolic disorders including type 2 diabetes. Enhancement of peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipocyte differentiation, is known to increase insulin-sensitive small adipocytes. In contrast, decreased PPARγ activity is also reported to improve insulin resistance. We have previously identified erucic acid as a novel natural component suppressing PPARγ transcriptional activity. In this study, we investigated the effect of erucic acid-rich yellow mustard oil (YMO) on obese/diabetic KK-Ay mice. An in vitro luciferase reporter assay and mesenchymal stem cell (MSC) differentiation assay revealed that 25 µg/mL YMO significantly inhibited PPARγ transcriptional activity and differentiation of MSCs into adipocytes but promoted their differentiation into osteoblasts. In KK-Ay mice, dietary intake of 7.0% (w/w) YMO significantly decreased the surrogate indexes for insulin resistance and the infiltration of macrophages into adipose tissue. Furthermore, 7.0% YMO increased bone mineral density. These results suggest that YMO can ameliorate obesity-induced metabolic disorders.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Ácidos Erucicos , Resistencia a la Insulina , Células Madre Mesenquimatosas/metabolismo , Planta de la Mostaza/química , Aceites de Plantas/química , Tejido Adiposo/metabolismo , Animales , Línea Celular , Ácidos Erucicos/química , Ácidos Erucicos/farmacología , Haplorrinos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Obesos
20.
Molecules ; 26(1)2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401641

RESUMEN

The aim of this paper is to study the effect of the pH on the extraction of sinapic acid and its derivatives from mustard seed meal. Solutions of acidic pH (pH 2), basic pH (pH 12) and distilled water (uncontrolled pH ~ 4.5) were tested at different percentages of ethanol. The maximum extraction yield for sinapic acid (13.22 µmol/g of dry matter (DM)) was obtained with a buffered aqueous solution at pH 12. For ethyl sinapate, the maximum extraction yield reached 9.81 µmol/g DM with 70% ethanol/buffered aqueous solution at pH 12. The maximum extraction yield of sinapine (15.73 µmol/g DM) was achieved with 70% ethanol/buffered aqueous solution at pH 2. The antioxidant activity of each extract was assessed by DPPH assay; the results indicated that the extracts obtained at pH 12 and at low ethanol percentages (<50%) exhibit a higher antioxidant activity than extracts obtained at acidic conditions. Maximum antioxidant activity was reached at pH 12 with buffer solution (11.37 mg of Trolox Equivalent/g DM), which confirms that sinapic acid-rich fractions exhibit a higher antioxidant activity. Thus, to obtain rich antioxidant extracts, it is suggested to promote the presence of sinapic acid in the extracts.


Asunto(s)
Antioxidantes , Ácidos Cumáricos , Planta de la Mostaza/química , Extractos Vegetales/química , Semillas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Ácidos Cumáricos/química , Ácidos Cumáricos/aislamiento & purificación , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...