Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 149(1-2): 155-170, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33131005

RESUMEN

It is hypothesized that plant submergence tolerance could be assessed from the decline of plant biomass due to submergence, as biomass integrates all eco-physiological processes leading to fitness. An alternative hypothesis stated that the consumption rate of carbohydrate is essential in differing tolerance to submergence. In the present study, the responses of biomass, biomass allocation, and carbohydrate content to simulated long-term winter submergence were assessed in four tolerant and four sensitive perennials. The four tolerant perennials occur in a newly established riparian ecosystem created by The Three Gorges Dam, China. They had 100% survival after 120 days' simulated submergence, and had full photosynthesis recovery after 30 days' re-aeration, and the photosynthetic rate was positively related to the growth during the recovery period. Tolerant perennials were characterized by higher carbohydrate levels, compared with the four sensitive perennials (0% survival) at the end of submergence. Additionally, by using a method which simulates posterior estimates, and bootstraps the confidence interval for the difference between strata means, it was found that the biomass response to post-hypoxia, rather than that to submergence, could be a reliable indicator to assess submergence tolerance. Interestingly, the differences of changes in carbohydrate content between tolerant and sensitive perennials during submergence were significant, which were distinct from the biomass response, supporting the hypothesis that tolerant perennials could sacrifice non-vital components of biomass to prioritize the saving of carbohydrates for later recovery. Our study provides some insight into the underlying mechanism(s) of perennials' tolerance to submergence in ecosystems such as temperate wetland and reservoir riparian.


Asunto(s)
Adaptación Fisiológica , Biomasa , Metabolismo de los Hidratos de Carbono , Inundaciones , Inmersión/fisiopatología , Fotosíntesis/fisiología , Estaciones del Año , Agrimonia/fisiología , Amaranthaceae/fisiología , China , Chrysanthemum/fisiología , Cynodon/fisiología , Paspalum/fisiología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Plantaginaceae/fisiología , Poaceae/fisiología
2.
Evolution ; 74(1): 73-88, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707744

RESUMEN

We explore the relationship between plant mating system (selfing or outcrossing) and niche breadth to gain new insights into processes that drive species distributions. Using a comparative approach with highly selfing versus highly outcrossing sister species, we test the extent to which: (1) species pairs have evolved significant niche divergence and less niche overlap, (2) selfers have wider niche breadths than outcrossers or vice versa, and (3) niches of selfers and outcrossers are defined by significant differences in environmental variables. We applied predictive ecological niche modeling approaches to estimate and contrast niche divergence, overlap and breadth, and to identify key environmental variables associated with each species' niche for seven sister species with divergent mating systems. Data from 4862 geo-referenced herbarium occurrence records were compiled for 14 species in Collinsia and Tonella (Plantaginaceae) and 19 environmental variables associated with each record. We found sister species display significant niche divergence, though not as a function of divergence time, and overall, selfers have significantly wider niche breadths compared to their outcrossing sisters. Our results suggest that a selfing mating system likely contributes to the greater capacity to reach, reproduce, establish, and adapt to new habitats, which increases niche breadth of selfers.


Asunto(s)
Ecosistema , Dispersión de las Plantas , Plantaginaceae/fisiología , Reproducción Asexuada , Canadá , Modelos Biológicos , Especificidad de la Especie , Estados Unidos
3.
J Vis Exp ; (154)2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31885385

RESUMEN

We describe a method to image dissolved oxygen (O2), in 2D at high spatial (< 50-100 µm) and temporal (< 10 s) resolution. The method employs O2 sensitive luminescent sensor foils (planar optodes) in combination with a specialized camera system for imaging luminescence lifetime in the frequency-domain. Planar optodes are prepared by dissolving the O2-sensitive indicator dye in a polymer and spreading the mixture on a solid support in a defined thickness via knife coating. After evaporation of the solvent, the planar optode is placed in close contact with the sample of interest - here demonstrated with the roots of the aquatic plant Littorella uniflora. The O2 concentration-dependent change in the luminescence lifetime of the indicator dye within the planar optode is imaged via the backside of the transparent carrier foil and aquarium wall using a special camera. This camera measures the luminescence lifetime (µs) via a shift in phase angle between a modulated excitation signal and emission signal. This method is superior to luminescence intensity imaging methods, as the signal is independent of the dye concentration or intensity of the excitation source, and solely relies on the luminescence decay time, which is an intrinsically referenced parameter. Consequently, an additional reference dye or other means of referencing are not needed. We demonstrate the use of the system for macroscopic O2 imaging of plant rhizospheres, but the camera system can also easily be coupled to a microscope.


Asunto(s)
Imagenología Tridimensional , Luminiscencia , Oxígeno/metabolismo , Fotograbar/métodos , Calibración , Plantaginaceae/fisiología , Rizosfera
4.
PLoS One ; 14(7): e0219527, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31291331

RESUMEN

We performed a greenhouse experiment to assess how differences in AM fungal community composition affect competitive response of grassland plant species. We used a full factorial design to determine how inoculation with natural AM fungal communities from different habitats in Western Estonia affects the growth response of two grassland forbs (Leontodon hispidus L., Plantago lanceolata L.) to competition with a dominant grass (Festuca rubra L.). We used AM fungal inocula that were known to differ in AM fungal diversity and composition: more diverse AM fungal communities from open grasslands and less diverse AM fungal communities from former grassland densely overgrown by pines (young pine forest). The presence of AM fungi balanced competition between forb and grass species, by enhancing competitive response of the forbs. The magnitude of this effect was dependent on forb species identity and on the origin of the AM fungal inoculum in the soil. The grassland inoculum enhanced the competitive response of the forb species more effectively than the forest inoculum, but inoculum-specific competitive responses varied according to the habitat preference of the forb species. Our findings provide evidence that composition and diversity of natural AM fungal communities, as well as co-adaptation of plant hosts and AM-fungal communities to local habitat conditions, can determine plant-plant interactions and thus ultimately influence plant community structure in nature.


Asunto(s)
Asteraceae/fisiología , Festuca/fisiología , Micobioma/fisiología , Micorrizas/fisiología , Plantaginaceae/fisiología , Asteraceae/microbiología , Estonia , Festuca/microbiología , Pradera , Dispersión de las Plantas , Raíces de Plantas/microbiología , Plantaginaceae/microbiología , Microbiología del Suelo
5.
Ann Bot ; 122(4): 605-615, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-29893789

RESUMEN

Background and Aims: Leaf tissue CO2 partial pressure (pCO2) shows contrasting dynamics over a diurnal cycle in C3 and Crassulacean Acid Metabolism (CAM) plants. However, simultaneous and continuous monitoring of pCO2 and pO2 in C3 and CAM plants under the same conditions was lacking. Our aim was to use a new CO2 microsensor and an existing O2 microsensor for non-destructive measurements of leaf pCO2 and pO2 dynamics to compare a C3 and a CAM plant in an aquatic environment. Methods: A new amperometric CO2 microsensor and an O2 microsensor elucidated with high temporal resolution the dynamics in leaf pCO2 and pO2 during light-dark cycles for C3Lobelia dortmanna and CAM Littorella uniflora aquatic plants. Underwater photosynthesis, dark respiration, tissue malate concentrations and sediment CO2 and O2 were also measured. Key Results: During the dark period, for the C3 plant, pCO2 increased to approx. 3.5 kPa, whereas for the CAM plant CO2 was mostly below 0.05 kPa owing to CO2 sequestration into malate. Upon darkness, the CAM plant had an initial peak in pCO2 (approx. 0.16 kPa) which then declined to a quasi-steady state for several hours and then pCO2 increased towards the end of the dark period. The C3 plant became severely hypoxic late in the dark period, whereas the CAM plant with greater cuticle permeability did not. Upon illumination, leaf pCO2 declined and pO2 increased, although aspects of these dynamics also differed between the two plants. Conclusions: The continuous measurements of pCO2 and pO2 highlighted the contrasting tissue gas compositions in submerged C3 and CAM plants. The CAM leaf pCO2 dynamics indicate an initial lag in CO2 sequestration to malate, which after several hours of malate synthesis then slows. Like the use of O2 microsensors to resolve questions related to plant aeration, deployment of the new CO2 microsensor will benefit plant ecophysiology research.


Asunto(s)
Dióxido de Carbono/metabolismo , Oxígeno/metabolismo , Fotosíntesis/fisiología , Plantaginaceae/fisiología , Ritmo Circadiano , Oscuridad , Malatos/metabolismo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Plantaginaceae/efectos de la radiación
6.
Plant Biol (Stuttg) ; 20(4): 691-697, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29577528

RESUMEN

The performance of seedlings is crucial for the survival and persistence of plant populations. Although drought frequently occurs in floodplains and can cause seedling mortality, studies on the effects of drought on seedlings of floodplain grasslands are scarce. We tested the hypotheses that drought reduces aboveground biomass, total biomass, plant height, number of leaves, leaf area and specific leaf area (SLA), and increases root biomass and root-mass fraction (RMF) and that seedlings from species of wet floodplain grasslands are more affected by drought than species of dry grasslands. In a greenhouse study, we exposed seedlings of three confamilial pairs of species (Pimpinella saxifraga, Selinum carvifolia, Veronica teucrium, Veronica maritima, Sanguisorba minor, Sanguisorba officinalis) to increasing drought treatments. Within each plant family, one species is characteristic of wet and one of dry floodplain grasslands, confamilial in order to avoid phylogenetic bias of the results. In accordance with our hypotheses, drought conditions reduced aboveground biomass, total biomass, plant height, number of leaves and leaf area. Contrary to our hypotheses, drought conditions increased SLA and decreased root biomass and RMF of seedlings. Beyond the effects of the families, the results were species-specific (V. maritima being the most sensitive species) and habitat-specific. Species indicative of wet floodplain grasslands appear to be more sensitive to drought than species indicative of dry grasslands. Because of species- and habitat-specific responses to reduced water availability, future drought periods due to climate change may severely affect some species from dry and wet habitats, while others may be unaffected.


Asunto(s)
Apiaceae/crecimiento & desarrollo , Pradera , Plantaginaceae/crecimiento & desarrollo , Rosaceae/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Apiaceae/fisiología , Sequías , Ecosistema , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Plantaginaceae/fisiología , Rosaceae/fisiología , Sanguisorba
7.
PLoS Comput Biol ; 14(1): e1005932, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29320496

RESUMEN

Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolutionary histories. Recently, statistical methods were devised for inferring such networks from either gene tree estimates or the sequence alignments of multiple unlinked loci. Bi-allelic markers, most notably single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs), provide a powerful source of genome-wide data. In a recent paper, a method called SNAPP was introduced for statistical inference of species trees from unlinked bi-allelic markers. The generative process assumed by the method combined both a model of evolution for the bi-allelic markers, as well as the multispecies coalescent. A novel component of the method was a polynomial-time algorithm for exact computation of the likelihood of a fixed species tree via integration over all possible gene trees for a given marker. Here we report on a method for Bayesian inference of phylogenetic networks from bi-allelic markers. Our method significantly extends the algorithm for exact computation of phylogenetic network likelihood via integration over all possible gene trees. Unlike the case of species trees, the algorithm is no longer polynomial-time on all instances of phylogenetic networks. Furthermore, the method utilizes a reversible-jump MCMC technique to sample the posterior of phylogenetic networks given bi-allelic marker data. Our method has a very good performance in terms of accuracy and robustness as we demonstrate on simulated data, as well as a data set of multiple New Zealand species of the plant genus Ourisia (Plantaginaceae). We implemented the method in the publicly available, open-source PhyloNet software package.


Asunto(s)
Genes de Plantas , Marcadores Genéticos , Filogenia , Plantaginaceae/genética , Algoritmos , Alelos , Teorema de Bayes , Biología Computacional , Simulación por Computador , Funciones de Verosimilitud , Modelos Genéticos , Nueva Zelanda , Hibridación de Ácido Nucleico , Plantaginaceae/fisiología , Polimorfismo de Nucleótido Simple , Probabilidad , Recombinación Genética , Programas Informáticos
8.
Evolution ; 71(10): 2359-2369, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833077

RESUMEN

Although sexual selection and sexual conflict are important evolutionary forces in animals, their significance in plants is uncertain. In hermaphroditic organisms, such as many plants, sexual conflict may occur both between mating partners (interlocus conflict) and between male and female sex roles within an individual (intralocus conflict). We performed experimental evolution, involving lines that were crossed with either one or two pollen donors (monogamous or polyandrous lines), in the hermaphroditic plant (Collinsia heterophylla) where early fertilizations are associated with female fitness costs (reduced seed set). Artificial polyandry for four generations resulted in enhanced pollen performance and increased female fitness costs compared to the monogamous and source (starting material) lines. Female fitness was also reduced in the monogamous line, indicating a possible trade-off between sex roles, resulting from early pollination. We performed a second experiment to investigate a potential harming effect of pollen performance on seed set. We found that high siring success of early arriving pollen competing with later-arriving pollen was associated with high female fitness costs, consistent with an interlocus sexual conflict. Our study provides evidence for the importance of sexual selection in shaping evolution of plant reproductive strategies, but also pinpoints the complexity of sexual conflict in hermaphroditic species.


Asunto(s)
Evolución Molecular , Flores/genética , Plantaginaceae/genética , Flores/fisiología , Aptitud Genética , Plantaginaceae/fisiología , Polinización , Autofecundación
9.
Ann Bot ; 117(7): 1133-40, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27192708

RESUMEN

BACKGROUND AND AIMS: Angiosperms display remarkable diversity in flower colour, implying that transitions between pigmentation phenotypes must have been common. Despite progress in understanding transitions between anthocyanin (blue, purple, pink or red) and unpigmented (white) flowers, little is known about the evolutionary patterns of flower-colour transitions in lineages with both yellow and anthocyanin-pigmented flowers. This study investigates the relative rates of evolutionary transitions between different combinations of yellow- and anthocyanin-pigmentation phenotypes in the tribe Antirrhineae. METHODS: We surveyed taxonomic literature for data on anthocyanin and yellow floral pigmentation for 369 species across the tribe. We then reconstructed the phylogeny of 169 taxa and used phylogenetic comparative methods to estimate transition rates among pigmentation phenotypes across the phylogeny. KEY RESULTS: In contrast to previous studies we found a bias towards transitions involving a gain in pigmentation, although transitions to phenotypes with both anthocyanin and yellow taxa are nevertheless extremely rare. Despite the dominance of yellow and anthocyanin-pigmented taxa, transitions between these phenotypes are constrained to move through a white intermediate stage, whereas transitions to double-pigmentation are very rare. The most abundant transitions are between anthocyanin-pigmented and unpigmented flowers, and similarly the most abundant polymorphic taxa were those with anthocyanin-pigmented and unpigmented flowers. CONCLUSIONS: Our findings show that pigment evolution is limited by the presence of other floral pigments. This interaction between anthocyanin and yellow pigments constrains the breadth of potential floral diversity observed in nature. In particular, they suggest that selection has repeatedly acted to promote the spread of single-pigmented phenotypes across the Antirrhineae phylogeny. Furthermore, the correlation between transition rates and polymorphism suggests that the forces causing and maintaining variance in the short term reflect evolutionary processes on longer time scales.


Asunto(s)
Antocianinas/metabolismo , Flores/fisiología , Plantaginaceae/fisiología , Evolución Biológica , Filogenia , Pigmentación
10.
Ecology ; 97(2): 325-37, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27145608

RESUMEN

Plants produce an array of secondary metabolites that play important ecological roles as anti-herbivore and anti-pathogen defenses. Many herbivores experience physiological costs when they consume secondary metabolites, yet some also benefit, for example when these chemicals confer resistance to parasites and predators. Secondary metabolites are often present in nectar and pollen, which is paradoxical given that floral rewards are important in the attraction of mutualists rather than deterrence of antagonists. Motivated by studies of interactions among plants, herbivores, and parasites, as well as research showing that secondary metabolites can reduce bee disease, we characterized the occurrence of two iridoid glycosides, aucubin and catalpol, in floral rewards and other tissues of the bee pollinated plant, Chelone glabra. We then experimentally investigated effects of nectar iridoid glycoside concentrations on the foraging behavior of bumble bee pollinators naturally afflicted by a parasitoid fly and a protozoan intestinal parasite, and subsequent effects on an estimate of plant reproduction. We found that floral nectar had lower iridoid glycoside concentrations than leaves, pollen, and corollas, and that, compared to those plant parts, the relative ratio of the two primary iridoid glycosides, aucubin and catalpol, was reversed in nectar. Whether bees carried parasitoid fly larvae did not affect their response to nectar chemistry; however, there was a significant interaction between protozoan parasite infection and nectar treatment, with infected bees foraging longer at flowers with high compared to low nectar iridoid glycoside concentrations. Parasitized bees were also more likely to return to inflorescences with high iridoid glycoside nectar. Consequently, flowers in the high iridoid glycoside nectar treatment donated significantly more pollen to conspecific stigmas than did flowers in the low iridoid glycoside treatment, suggesting an increase in male plant fitness. Taken together, these results demonstrate that nectar secondary metabolites can mediate the behavior of pollinators with subsequent benefits for estimates of plant reproduction.


Asunto(s)
Abejas/parasitología , Conducta Animal/fisiología , Dípteros/fisiología , Néctar de las Plantas/química , Plantaginaceae/fisiología , Trypanosomatina/fisiología , Animales , Interacciones Huésped-Parásitos , Glicósidos Iridoides/química , Masculino , Polinización
11.
BMC Evol Biol ; 16: 34, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26860628

RESUMEN

BACKGROUND: Our current understanding of the evolutionary history of boreal and arctic-alpine plants in their southern range in Asia remains relatively poor. Using three cpDNA non-coding regions and nine nuclear microsatellite (nSSR) loci, we examine the phylogeographic pattern in a broad geographic sampling of the boreal plant Hippuris vulgaris to infer its dispersal and diversification in China. In addition, the species distributions at the Last Glacial Maximum (LGM) and at present were predicted using ecological niche modeling (ENM). RESULTS: The cpDNA results revealed two distinct lineages, A and B. A is restricted to Northeast China; B is distributed in Northwest China, the Qinghai-Tibet Plateau (QTP) and North and Northeast (NNE) China; and A and B diverged ca. 1.36 Ma. The nSSR data revealed two genetic clusters corresponding to the two cpDNA lineages and nonreciprocal hybridization with lineage A as the maternal lineage in Northeast China. Cluster B further divided into three subclusters: I, mainly in NNE China and the northeastern border of the QTP; II, in Northwest China and the QTP; and III, on the QTP. ENM predicted a marked range shift on the QTP at the LGM, retreating from the platform to the northeast and southeast edges. CONCLUSIONS: Hippuris vulgaris probably diverged into lineages A and B in high latitudes and then immigrated into Northeast China and Northwest China, respectively. Lineage A persisted and diversified in Northeast China. Lineage B reached the QTP during the mid-Pleistocene, diversified in that region due to the influence of climatic oscillations, migrated into Northeast China and subsequently hybridized with lineage A. Our findings give empirical evidence that boreal plants display complex evolutionary history in their southern range in Asia and provide new insights into the evolution of boreal and arctic-alpine plants.


Asunto(s)
Filogeografía , Plantaginaceae/genética , Evolución Biológica , China , ADN de Cloroplastos/química , ADN de Cloroplastos/genética , Repeticiones de Microsatélite , Dispersión de las Plantas , Plantaginaceae/fisiología , Tibet
12.
J Evol Biol ; 28(7): 1321-34, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26011732

RESUMEN

Sexual conflicts and their evolutionary outcomes may be influenced by population-specific features such as mating system and ecological context; however, very few studies have investigated the link between sexual conflict and mating system. The self-compatible, mixed-mating hermaphrodite Collinsia heterophylla (Plantaginaceae) is thought to exhibit a sexual conflict over timing of stigma receptivity. This conflict involves (i) delayed stigma receptivity, which intensifies pollen competition, and (ii) early fertilization forced by pollen, which reduces seed set. We investigated the potential for the conflict to occur under field conditions and performed glasshouse crosses within eight populations to assess its consistency across populations. Flowers were visited, and produced seeds after pollination, at all developmental stages, suggesting that the conflict can be of significance under natural conditions. In the glasshouse, early pollination imposed costs in all populations. Overall, the timing of first seed set was most strongly affected by the maternal parent, denoting stronger female than male ability to influence the onset of stigma receptivity. Crosses also revealed a negative relationship between donor- and recipient-related onset of receptivity within individuals, a novel result hinting at trade-offs in sex allocation or a history of antagonistic selection. Neither timing of stigma receptivity, timing of first seed set, nor pollen competitive ability covaried with population outcrossing rate. In conclusion, these results indicate that sexually antagonistic selection may be present in varying degrees in different populations of C. heterophylla, but this variation does not appear to be directly related to mating system variation.


Asunto(s)
Flores/fisiología , Plantaginaceae/fisiología , Reproducción/fisiología , Animales , Abejas , California , Cruzamientos Genéticos , Genética de Población , Néctar de las Plantas/metabolismo , Plantaginaceae/genética , Polen , Polinización , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA